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Dynamic behaviour of an elastic layer with periodically undulating bo-
undaries and resting on a rigid base is investigated. To this end a certain
simplified averaged 2D-model of the layer is proposed as a tool of the
analysis. The obtained model is applied to study some wave propagation
problems. It is shown that the periodic shape of the boundaries leads to
the dispersion of waves propagating along the unbounded layer.

Key words: dynamics, elastic layer, modelling

1. Introduction

The aim of this paper is to investigate dynamic behaviour of an elastic layer
resting on a rigid base and having periodically undulating boundaries. The
region {2 occupied by the layer in a physical space referred to the Cartesian
coordinates 0z;zyz3 is given by

0= {(II!]_,:I?Q,.‘B3) : Hy(z) < z3 < H(z), == (z1,29) € H}

where I7 is a region on the 0z;zy plane and Hy(z), H(z) are A-periodic
functions with A = (—1;/2,11/2) x (=13/2,13/2); cf. Fig. 1.

The special cases in which either Hy = const or H = const as well
as the case IT = R? can also be taken into account. It is assumed that the
diameter [ = \/11§ + lg of A is sufficiently small when compared with the
smallest characteristic length dimension of II. The layer is made of a linear
elastic material and 3 = const are assumed to be the material symmetry
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planes. Hence the stress-strain relations combined with the strain-displacement
ones have the form

0ij = Cijkit(k,1) Capys =0 Cazzz =0 (1.1)

here and hereafter the Latin indices 1,7, k,[,... run over 1,2,3 and the Greek
indices «, 3,7, ... run over 1,2; summation convention holds. In general, the
elastic moduli Cjjx as well as the mass density p can depend on z3 and
be A-periodic functions of z = (z1,z3). The displacements w; of the layer
are assumed to be equal zero on the boundary z3 = H(z), 2 = (z1,z2) € II;
it means that the layer is resting on the rigid base. The layer is loaded on
the boundary z3 = Hj in the direction of the z3-axis with the intensity
p = p(z,t), t being the time coordinate. The body force b is acting in the
x3-axis direction. Thus, the problem under consideration can be governed by
constitutive equations (1.1), the displacement boundary conditions

u;(z, H(z),t) =0 z = (z1,29) € IT (1.2)
and by the variational equation of motion
H(z) H(=z)
/ / 03U j da:gdz—f / p(bis — ;) dw3da:+/pu3 dz (1.3)
IT Hg(z) IT Hy(z)
where
u3 = Us(z, Ho(z)) dz = dz1dzs

which holds for every virtual displacement field @; such that %;(z, H(z)) =
for every 2 = (z1,29) € II. Here, and in the subsequent analysis all functions
are assumed to satisfy the required regularity conditions.
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As a rule, direct application of (1.1)-(1.3) to analysis of most special dy-
namic problems, due the periodic and possible discontinuous form of the func-
tions H(-), Ho(-), Cijm(-,3), p(-,x3) is not advisable. Hence, the aims of this
contribution are:

(i) To obtain a certain mathematical 2D-model of the layer under considera-
tion represented by equations with constant coefficients;

(ii) To apply this model to investigation of certain dynamic problems.

Aim (i) will be realised in two steps. Firstly, we formulate (see Section 2)
the simplified 2D-model of the layer by using the approach similar to that given
by Vlasov and Leontiev (1960). That 2D-model will be governed by a partial
differential hyperbolic equation with periodic functional coefficients. Secondly,
in order to obtain the equation with constant coefficients, we shall apply the
tolerance averaging approach detailed by Wozniak and Wierzbicki (2000). To
this end we shall recall in Section 3 some basic concepts and assertions related
to this approach which will be used in Section 4 to derive of the final form
of the model equations. The resulting model will be applied in Section 5 to
analysis of some dynamic problems.

2. Formulation of the 2D-model

In the subsequent analysis our attention will be restricted to problems
in which the displacement components wu,, @ = 1,2, can be neglected as
sufficiently small when compared with the displacement wu3. Extending the
approach given by Vlasov and Leontiev (1960) we shall assume that

‘u3($, $3,t) = ’LU(&‘,t)’!ﬂ(E,Z‘;;) ua(za T3, t) =0 (21)

where the decay function (z,-) is linear and satisfies for every z = (z1, )
the conditions

(2, Ho(z)) =1 (e, H(z)) =0

It follows that conditions (1.2) are satisfied and w(z,t) = us(z, Ho(z), 1), is
the basic kinematic unknown.
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Imposing constraints (2.1) on (1.1)-(1.3) and denoting

H(z)
k= / {03333(?1’,3)2 + Ca3ﬁ3'ﬁb,a'¢',ﬁ} dz3
Ho(z)
H(z) H(z)
Mof = / Cospa?” dzs Sa = / Cospat,p dzs
Ho(z) Ho(z)
H(z) H(z)
T = /pi,b?dx;; f=p+ /,oba,bdw;; k=E"8a,a
Ho(z) Ho(z)

after substituting into (1.3) %, = 0, U3 = wW(z)y(x,z3), where w(-) is an
arbitrary test function, we arrive at the equation

(Magwe) g — i — kw + f =0 (2.2)
which holds in IT and has to be satisfied together with the condition
(Mapw,5 — saw)na = 0

on OII, where n, is the unit normal to &II. Equation (2.2) represents a
2D-model of the problem under consideration and constitutes a certain gene-
ralisation of equation (7.8) p. 56 in the book by Vlasov and Leontiev (1960).

Unfortunately, direct application of (2.2) to analysis of special problems
is not advisable due the A-periodic and possibly discontinuous and highly
oscillating form of the functional coefficients myp(Z), 7(z) and k(z). The
simplest approximate model of (2.2) can be obtained by means of the homo-
genization approach, cf. Bakhvalov and Panasenko (1984), Bensoussan et al.
(1978), Jikov et al. (1994) and Sanchez-Palencia (1980). Within the framework
of this approach (2.2) is ”approximated” by a similar equation but with con-
stant coefficients, and the unknown field w(-) can be calculated by means of a
certain asymptotic formula. However, the aforementioned homogenized model
does not depend on the periods [, I3 and is not able to describe dispersion
phenomena which play an important role in the analysis of dynamic problems.
That is why in this contribution we shall apply the method of the tolerance
averaging of partial differential equations with periodic coefficients to equation
(2.2). This method is deprived of the drawbacks typical for homogenization
and has been successfully applied to the analysis of special problems in a series
of papers by Baron and Jedrysiak (1998), Baron and C.WozZniak (1999), Cie-
lecka et al. (2000), Jedrysiak (2000), Mazur-Sniady (1993), Michalak (2000),
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Wierzbicki (1995), Wierzbicki et al. (1996), WozZniak C. (1997), Wozniak M.
(1996) and other. To make this paper self-consistent, in the subsequent sec-
tion, following Wozniak and Wierzbicki (2000), we outline the main concepts
and assertions of the tolerance averaging.

3. Fundamentals of tolerance averaging

The tolerance averaging of partial differential equations with periodic co-
efficients is based on the concept of the tolerance space introduced by Zeeman
(1965). In the simplest case it is a pair (IR,&) where R is a set of real numbers
representing values of a certain physical quantity (e.g. displacement expressed
in the known unit) and ¢ is a positive number, called the tolerance para-
meter, which determines the accuracy of calculation of these values or the
accuracy of a measurement related to the quantity under consideration. For
any a,b € R we say that a, b are in a tolerance provided that |e —b| < ¢.
From the point of view of the performed investigations, we shall not discern
between the values @ and b. To denote this fact we shall write a ~ b if and
only if |a — b| < €. By the tolerance system we shall understand the triple
T = (9(II),e(-),l) where @(II) stands for a set of fields defined in IT which
can also depend on time and are unknowns in the problem under considera-
tion, €(-): @(II) 3 F — ¢(F) € R is a mapping which assigns corresponding
tolerance parameters to the values of these fields and their derivatives, and [
is the diameter of the periodicity cell. In the subsequent analysis we shall use
the notation ep = e(F).

Let us assume that a certain tolerance system 7 is known and let DF(-) €
F(IT) stand for the function F(-) or its arbitrary derivative (including the time
derivative) which appears in the problem under consideration. We say that
F(-) is a slowly varying function, F(-) € SV(T), if for every z',2" € Dom F
the condition ||z’ — £"|| < | implies |DF(z') — DF(z")| < epr for every
DF € o(I).

Define A(z) =+ Aand 14 ={z € II: A(z) C II}. A function ¢(-) is
called a periodic-like function, ¢(-) € PL(T), if for every @ € II 4 there exists
an A-periodic function ¢(-) such that for every y € Dom ¢, the condition
lz — y|| <1 implies [p(y) — ©(y)| < €. In this case the function ¢, (-) is
called a periodic approzimation of ¢(-) in A(z).

Let k(-) be a certain positive valued A-periodic integrable function. The
periodic-like function ¢(-) will be called an oscillating function (with a weight
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k(-)), ¢(-) € PL¥(T) if the condition

/ k(y)p2(y) dy =0
A(z)
holds for every z € Il 4.
It was shown by Wozniak and Wierzbicki (2000) that every periodic-like

function can be uniquely represented as a sum of a slowly varying function
and a function oscillating with the known weight. Define

W@ = [owdy s=@amem @
A(z)

where ¢ is an arbitrary integrable function. One can prove that for any
F € SV(T), ¢ € PL(T) and for arbitrary A-periodic functions f(-),
h(-) where max{|h(z)| : = € A} < [, the following relations hold for every
T € Ily

(fF)(z) ~ (f)(2)F(z) for &= (|f|)er
(fo)(@) ~ (fos)(@) for &= (|fl)e, (3.2)
(f(hF)a)(®) ~ (fFha)(z) for &= (|f|)(er +levr)

(h(f9),a)(®) ~ —(foha)(z) for e=c¢g+leve

where G = (hfy)l™; it is assumed that all aforementioned functions satisfy
the required regularity conditions, cf. Wozniak and Wierzbicki (2000).

The tolerance averaging of partial differential equations with periodic func-
tional coefficients is based on two assumptions. Firstly, the conformability
assumption (CA) states that the averaging can be carried out only if the
unknown functions in the problem under consideration are periodic-like with
respect to a certain tolerance system. Secondly, the tolerance averaging appro-
ximation (TA) makes it possible to approximate the left-hand sides of relations
(4.2) by their right-hand sides. For a more detailed analysis of the tolerance
averaging method and its applications to thermoelasticity the reader is referred
to Wozniak and Wierzbicki (2000).

4. Averaged 2D-model

Assuming that a certain tolerance system 7" is known and applying (CA)
to (2.2) we obtain w(-,t) € PL(T) and hence w(-,t) = W(.,t)+ V(-,1),
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where W(-,t) € SV(T) and V(-,t) € PL¥(T) for every time t. It means that
W(z,t) = (kw)(z)(k) ! is an averaged displacement at the point = = (z,z3)
of the boundary z3 = Hy(z), £ = (z1,22) € II. Averaging (2.2) by means of
(3.1), after applying (TA), we obtain

(Mag)W,ap = (YW = ()W + (mVa)a = (rV) +{(f) = 0 (4.1)

From (2.2) by using (TA) we also derive the periodic variational cell pro-
blem (on an arbitrary cell A(z), £ = (z1,22) € II4) for the A-periodic
approximation V, of V

(V Ve.aMap) (@) + (VVik)(2) + (VVpr)(z) =

(4.2)
= —(V gmap) (@)W a(2,1) — (V1) (&, )W (2,8) — (V[)(2,1)

which holds for every A-periodic test function V such that (Vk) = 0, and
where V, has to satisfy the condition (V;k)(z) = 0. After neglecting the
underlined terms in (4.2) we obtain the known periodic cell problem for the
homogenized 2D-model of the layer. Hence, the applied approach constitutes
a certain generalisation of the homogenization approach.

The A-periodic solution V(-) to cell problem (4.2), which satisfies the
condition (V. k)(z) = 0 will be obtained using Galerkin’s approximation. To
this end we shall introduce the system h4(:), A = 1,..., N of linearly inde-
pendent A-periodic shape functions such that (kh4) =0, h4(z) € O(l) and
lh:‘z‘, (z) € O(1). The functions h“(-) can be taken as the mode shape functions
related to a certain eigenvalue periodic cell problem related to (4.2), which
was formulated by Wozniak and Wierzbicki (2000), or should approximate the
expected modes of free periodic vibrations of the cell A in the problem under
consideration. Then the approximate solution to (4.2) will be taken in the
form (summation over A =1,..., N holds)

Ve(y,t) = hA(y)VA(z,1) yeEAlx) = (z,20) €My (43)

where V4(z,t) are the new unknowns. It was shown by Wozniak and Wierz-
bicki (2000) that V4(-,¢) have to be slowly varying functions. By means of
(4.3) we obtain from (4.1), (4.2), after some transformations and assuming
that V = a4, A = 1,...,N, the following system of N + 1 equations with
constant coefficients

(Map)Wap — (YW = ()W + (moghp)Va — (rhYVA + (f) = 0(4 Y
(rhAhByVB 4 (maﬁh;f;hg + khARBYWVE + (maﬂh;‘};)w,a +

+{rh YW + (fh4) =0
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for N + 1 unknowns W, V4. It has to be emphasised that solutions to the
above system have a physical sense if only the conditions

W(-,t) € SV(T) VA t) € SV(T) (4.5)

hold for every t¢. Under these conditions we obtain, for the displacement field
w(-), the approximate formula

w(z,t) ~ W(z,t) + h*(@)VA(,t) = (z),29) € II4 (4.6)

where the approximation = depends on the number of terms in (4.3) as well as
on the tolerance parameters in the tolerance system 7. Formulae (4.4)-(4.6)
represent the averaged 2D-model of the layer under consideration. In contrast
with the homogenized 2D-model, the above 2D- model describes the effect
of the cell size on the global behaviour of the layer and includes a posterior:
reability conditions (4.5). The cell size effect is due to the underlined terms in
(4.4) depending on the shape functions A“(-), the values of which are of order
of O(I).

5. Applications

In order to study the effect of boundary undulating on the dynamic be-
haviour of the layer we shall consider the case in which the functions Hy(-),
H(-) depend only on z; and have the period [. For the sake of simplicity we
shall also introduce only one shape function h = h(z,) with the period I.
Denoting m = my,, s = (k')*>m + h%k, g = hl~! we obtain from (4.4) the
following system of equations for W = W (zy,t) and V = V(z,1)

(M)W 11 = (YW — (B)W + (mh,1)V,1 = Urg)V + (f) =0 6
2(rg )V + (s)V + (mh )W + l(rg)ﬁ" +1{fg)=0

where the dependence of the coefficients on the period [ is given in an explicit
form.

The form of the shape function A(-) in (5.1) depends on the periodic
material heterogeneity of the layer and on the periodic functions z3 = Hy(z),
zr3 = H(z,) describing the waveness of the layer boundaries. To obtain an
illustrative example of (5.1) let us assume that the layer is homogeneous and
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isotropic with the Lamé moduli A, 4 and Hy(z;) = 0 for every z;. In this
case Y(z3) =1— z3/H(z;) and

m— %H(zzl) r= gH(xl)
b= A+ 2k (8 @) - LH" (@) H(y)] H(lrm)

where H(z1) is now the thickness of the layer at z;. Let us assume that H(:)
is the piecewise constant function such that H(z,) = H' for z; € (-1',0) and
H(zy) = H" for z; € (0,1") where I'+1" = [. In order to satisfy the condition
(kh) = 0 we shall assume h(-) as the continuous function with the period I,
linear in (—1’,0) and (0,1") such that A(—1') = k(") = —h(0) = /3 1/6 (cf.
Wozniak and Wierzbicki (2000), Section 6). Setting v/ = I'/l, v = 1"/l we
obtain (H) = v'H' 4+ v"H" and the coefficients in (5.1) will take the form

(m) = S(H) (r) = £(H)
1 2\/?;“ ! 1
(k) = A+ 2u)( 7 ) (mh,1) = == (H' ~ H")
(rg®) = g(H) (rg) =0
Hf HH

(s) = 4#(7, + -y—,,-) + 2L ()

It can be seen that for H' = H" and after neglecting inertial forces the first
from equations (5.1) reduces to the form given by Vlasov and Leontiev (1960),
and the second one yields V = 0.

In order to study the boundary undulating effect on the dynamic beha-
viour of the layer we shall investigate the wave propagation and free vibration
problems for the unbounded layer, IT = R? using equations (5.1) with f = 0.

5.1. Wave propagation analysis

Let L be the wave-length of the functions W and V in Egs. (5.1). First,
we consider the short waves in which the ratio L/H is assumed to be small
compared with 1, i.e. L/H < 1. In the asymtotic analysis of equations (5.1)
the terms of order O((L/H)?) will be neglected compared to 1. After some
calculations the above equations yield

(MW = (m)W 1 — (mh 1)V =0 52)
2(rg®)V + (m(h1)?)V + (mh 1 )W, =0
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For the investigation of wave propagation in the z,-direction the functions
W and V can be assumed in the form

W = W(z; — ct) V=V(z —ct) (5.3)
Substituting (5.3) into equations (5.2) we obtain

({r)e* - (m))Wi1 —{mh )V, =0
(5-4)

6212(Tg2>K11 + (m(h‘l)z)V + (mhl1>W‘1 =0
At the begining, let us consider two special cases.

Case 1. Suppose that the boundary is plane and the layer is homogeneous.
These assumptions yield

(mh,l) = m(h,l) =0

and
((r)e® = (m))W11 =0

Assuming that W 1, # 0 we obtain the value ¢p of the wave propagation
speed as

g =m 65

Case 2. Assume that the length-scale effect on the layer behaviour is neglec-
ted. From (5.4)y after neglecting the term (rh?), we obtain

(m(h )V + (mb, )W, = 0
and (5.4); yields

9 mh 1)?
(10 = )+ g Won =0

The wave propagation speed in this case is given by

~_(m)  (mh,)®

S () m(ha)?)

It can be proved that ¢2 > 0.

(5.6)
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Now. let us pass to the general case. Under denotations

po = (r) p2 = (rg?)

po = (m) p1 = (mh,y) po = (m(h,1)*)

equations (5.4) can be transformed to the form

(ug — po)W i1 + 1V =0

PpaVn + paV + mW, =0
Assuming that W ;; # 0 and p; # 0, from (5.7); we obtain
v Pl - CQ)W,
M1
where, in accordance with (5.5), we have used the denotation
2 _ Ko
. Po
The relation (5.7)y together with (5.8) leads to the equation

C2(C(2] - cz)l2p2W,11 —i-;.tz(Ez - C2)W = ()

where

~ 1 2
2 _(M _ () )
Po H2

is the wave propagation speed in special case 2, defined by (5.6).

169

(5.8)

It can be shown that the three types of waves can propagate in the layer

under consideration.

(i) If ¢ <cor ¢ > ¢y then sinusoidal waves exist
U = Asink.(z, — ct) + Bcosk.(z1 — ct)

where
2 po . € c

c = 12py cz(cg — ¢?) >0

(ii) If ¢ < ¢ < ¢ then there exist exponential waves
U = Aexp|[—ke(z1 — ct)] + Bexp|kc(z1 — ct))

where ) \
2 He C7—C
[

T2y (G - )

I

K >0

(5.10)

(5.11)
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(iii) f ¢ = ¢ then W, =0, V, = 0, and this degenerate case, which is
situated between the sinusoidal and exponential waves, takes place.

Note that the speed ¢ = ¢y is not allowable in the class of problems under
consideration.

Let us consider propagation of an arbitrary transverse wave. Substituting
(5.3) into the system (5.1) we obtain

((rye® — (m)W 1 — (mh 1)V + (B)W =0
(5.12)

6212<?‘92)VZ1]_ + (m(h,l)z)V + (mh,]_}W,l =0
Three special cases of (5.12) will be now considered.

Case 1. If the boundary is plane and the layer is homogeneous then system
(5.12) yields

k

(C2 - C%)W,u + <p—)W =0 ¢ # ¢ (513)
0

If ¢ < ¢y then we deal with the exponential waves and if ¢ > ¢y then

the sinusoidal waves propagate.

Case 2. If the length-scale effect is neglected then system (5.12) can be re-
duced to the equation

(62 - E:%)W,H + %QW =( c#cC (5.14)
0

If ¢ < ¢ then there exist the exponential waves, and if ¢ > ¢ then the
sinusoidal waves propagate.

Let us pass to the analysis of the general case. Let system (5.12) be trans-
formed to the form

(C% - CQ)W,]_l + <k>W + ElV;l =0
0

o (5.15)

FPpaVius + paV + mW, =0
Assuming that p; # 0 from (5.15); we obtain

MW, = —po(cg — )W — (k)W (5.16)
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Equation (5.15)9 together with (5.16), under denotations

k
2= =8
p2 Po
yields the following equation for W
(g — )W 111 + ea(€? — )Wy + 2wfW =0 (5.17)

It is easy to show that the three types of waves can be considered here:
(i) if ¢ < ¢ then only the sinusoidal waves exist;
(ii) if ¢ < ¢ < ¢ then only the exponential waves can propagate;
(iii) if ¢ > ¢ then both the sinusoidal and exponential waves can propagate.

In the numerical analysis the function H(-), which describes the boundary
undulations, was chosen in the form

. 2?T$1
H(zy) = lsin l (5.18)
and the decay function was considered as linear.
<A
I sinusoidal and exponential waves
1.0 )
exponential waves
0.9
0.8k sinusoidal waves
0.7+
c.
0.6
0.5 L L : 1 L 1 L 1 " 1
0 0.1 0.2 0.3 0.4 0.5 5

Fig. 2.
In Fig. 2 the dimensionless speeds

* [P ~x _~ [P
= Cy4/ — C =0C.]—
‘0 M K

versus the dimensionless parameter ¢ = [/H are presented. Three regions
shown in this figure display the three types of the waves mentionted above.
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5.2, Free vibration analysis

Substituting the right-hand sides of
W = W(z) cos wt V =V(z;) cos wt

into system (5.1) we obtain

(MW 11+ (w2(r) — (&) )W + (mh,)V,y = 0
(5.19)
(w¥12(rg?) — (m(h,1)? ~ 1*kg®) )V = (mh, )W 1 = 0

In order to simplify the subsequent analysis the term (I2kg?) will be
neglected as small when compared to (m(h;)?). Under the denotations

L2 = \Kas3) Sz b2
’ Po . 2pa
- 1 (k1)*
2 . f—
1= o, (”2 140 )
and assuming that u, # 0, system (5.19) yields
2~2 oy o
MW,H + (W - W)W =0 (5.20)

wi — w?

Let us introduce the function k = k(w) given by

(2 = W) (W} — w?)
3@ — o)

k?

If k2 >0 (i.e. wp <w <@ or w > w) then the sinusoidal vibrations with
the wave number k = 27/L take place.

Setting
1 2 -
e2 =12 ?E—(pg—(ul)) 0<e<e
P2 P2 Ho
we obtain
) _ € ~y €
UJi — l_2 wi = 'z'z-

and from equation (5.20) the following dispersion relation takes place

Put — (€2 + P(wp + k2cd)|w? + wie® + k*c3e? =0 (5.21)
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Setting & = kl = 2nl/L equation (5.21) can be transformed to the form
2w — [(ke)? + e2(wp + k*c)]w? + k2[(woe)? + (kcoe)?] = 0 (5.22)

Taking into account that ¢ < 1 the following asymptotic formulae for the free
vibration frequencies w can be obtained as the solutions to equation (5.22)

. 2 2
W2 + k"cﬁ(l _ () ) — (W + k%‘)@(ﬂ) €2 + O(eh)
— HoH2 Po N2 -
w (1)’ (5.23)
w? + k2c§-1~w + O(e?)

HoH2

The frequency wj given by

2 2 2 2 (#1)2 2 9 P2 (H1)2 2
W= Wi+ k (1——)—w+k2§)-~(—)e 5.24
I = wp Co olin (wp 20 Ui (5.24)
can be treated as the lower free vibration frequency and
2
2 2 2 2 (B1)
wy = wi + k°cg——— 5.25
h = wi 0 yotia (5.25)

represents the higher free vibration frequency.

In the numerical analysis the function H(z;), which describes the boun-
dary undulations, was chosen in the form of (5.18), and the decay function
was taken as linear. The dimensionless frequencies introduced by the formulae

H? H?

versus the dimensionless wave number ¢ are presented in Fig. 3, where the
non-dimensional coefficient § = [/H is used as a parameter.

6. Conclusions

We close the paper with some conclusions and comments concerning the
new results obtained in the field of dynamics of an elastic layer resting on a
rigid base.

e The simplified 2D-model of an elastic layer introduced by Vlasov and
Leontiev (1960) was extended to the case of a layer with periodically
undulating boundaries; to this end a new form of the decay function %
was proposed in Section 2.
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e The 2D-model of the elastic layer obtained by the Vlasov and Leontiev
approach is described by equation (2.2), which has functional periodic
coefficients, and hence is not advisable for the analysis of special pro-
blems. That is why the method of tolerance averaging, described by
Wozniak and Wierzbicki (2000), was applied in order to derive new mo-
del equations (4.4) with constant coefficients.

e The derived averaged 2D-model, described by (4.4)-(4.6), takes into acco-
unt the effect of the boundary periodic undulation size on the dynamic
layer behaviour. This effect is neglected if the known homogenization
method is applied to the averaging of equation (2.2). In this case the un-
derlined terms drop out from (4.5), and after eliminating the unknowns
VA we obtain from (4.4) an approximate form of the homogenized equ-
ation for W.

e Derived model equations (4.4) consist of the partial differential equation
for the displacement W coupled with the system of N ordinary dif-
ferential equations for VA, A = 1,..,N. Hence, V4 are independent
of the boundary conditions, and that is why they were referred to as
the inertial kinematic variables in Wozniak (1997). Following WoZniak
and Wierzbicki (2000), equations (4.4) can be also supplemented by the
boundary effect equations in order to satisfy the boundary conditions
not only for W but also for w, cf. (4.6).

e The derived model includes a posteriori conditions (4.5), on the basis of
which the degree of the approximation of the obtained solutions can be
estimated.

e The illustrative example in Section 5 shows that the derived model can
be successfully applied to the analysis of wave propagation which takes
into account dispersion effects.

e The proposed model makes it possible to describe the behaviour of the
elastic layer under consideration on different levels of accuracy depending
on the number N of terms in finite sum (4.4). The main drawback of
the model lies in the specification of the mode-shape functions h“ and
in the large number of the unknowns V4, which - in most cases — have
to be taken into account in approximation (4.4) to cell problem (4.2).

At the end of this paper it has to be emphasised that the obtained model
can be applied only if constraint conditions (2.2) are well motivated from the
physical wievpoint in the problem considered cf. Vlasov and Leontiev (1960).
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More general constraints leading to 2D-models, in which the displacements
u, are not neglected, will be investigated in a separate paper.
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O dynamice warstwy sprezystej z pofaldowanymi brzegami

Streszczenie

Praca dotyczy analizy dynamicznej warstwy sprezystej z periodycznie pofatldowa-
nymi brzegami. W tym celu zaproponowano jako narzedzie analizy nowy uSredniony
2D-model warstwy. Wykazano, ze periodyczne pofaldowanie brzegéw powoduje efekty
dyspersyjne dla fal propagujacych sie wzdtuz warstwy.
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