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Computational time needed for reliability analysis of realistic structural pro-
blems as a rule is very high. Improvements in efficiency are critical to allow so-
lution of large realistic problems. The reliability analysis is usually performed
using approximate First Order Reliability Method (FORM). Iterative solution
procedures of FORM require extensive design sensitivity computations of high
accuracy. The design of realistic structures requires computer-based numerical
procedures, such as finite element analysis. The design sensitivity gradients
are not explicitly available in terms of design variables. The most intensive
computational task of design sensitivity computation should be carried out
by highly efficient and accurate methods such as discrete design sensitivity
analysis. This paper describes requirements for design sensitivity information
for reliability analysis. The way of coupling reliability computation with di-
screte AVM and DDM methods of design sensitivity analysis is pointed out.
A computational program developed for layered concrete shells allows one to
solve large realistic reliability problems. The reliability study of an RC nuc-
lear containment shell is carried out. Reliability studies show which of the
parameters have the highest impact on the reliability of the vessel.
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1. Introduction

Design of advanced structural systems should account for randomness of
geometric, material and loading parameters. Furthermore, the reliability sho-



180 E.POSTEK AT AL.

uld be evaluated as the most objective structural safety measure. Computa-
tional time for reliability analysis of realistic structural problems is very high.
Improvements in efficiency are critical to allow solution of large realistic pro-
blems.

The reliability analysis is usually performed using approximate First Order
Reliability Method (FORM). Iterative solution procedures of FORM require
substantial design sensitivity computations of high accuracy. The design of re-
alistic structures requires computer-based numerical procedures, such as finite
element analysis. For these structures, sensitivity is not available explicitly in
terms of design variables. The most intensive computational task of design
sensitivity computation is often carried out quite inefficiently by the finite
difference method. It is obvious, that to increase efficiency and accuracy of
FORM procedures the continuum or discrete methods of design sensitivity
analysis instead of the finite difference one should be used.

This paper shows that integration of discrete sensitivity analysis method
with reliability analysis may produce an efficient system allowing one to solve
large realistic design problems. The paper describes requirements for design
sensitivity information and points out the way of coupling reliability computa-
tion with design sensitivity analysis. Practical developments are concentrated
on layered shells.

A reliability study of the containment structure is performed. Componental
reliability indices and the design derivatives of the indices with respect to
design parameters are calculated. Reliability studies show which parameters
have the highest impact on the reliability of the containment.

2. Reliability analysis

The first step in evaluating the reliability of a structure is usually the
identification of a number of variables by which the uncertainties related to
the structural system can be described satisfactorily. They are called basic
variables and are modelled as random variables or, if necessary, as stochastic
processes.

Let X = {X1,Xs,...,X,}" be the vector of random variables. Specific
realization of the vector X is denoted by z = {z1, 2z, ..., xn}T. It is useful to
consider the variable z as a point in an n-dimensional basic variable space (2.
The number of basic variables n is assumed finite. For a given set of realizations
of random variables, z, it is assumed that it is possible to determine whether
the structure is in a failure state or in a safe state. In other words, the random
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variable space {2 is divided into two sets called the failure domain 2 and the
safe domain {2;. The hypersurface separating the two domains f2; and {2
is called the failure surface and it is described by a failure function g(z) =0
defined in such a way that positive value of g corresponds to the safe domain
and non-positive value of g to the failure domain, i.e.

g(z) >0 when =€ (2
(2.1)
g(z) <0 when =z € 2

The probability of failure describes the probability that the limit (failure)
state will be attained, i.e. g(z) will be less or equal to zero. This is given by

ps = Plg(X) < 0] = f fx(z) dz (2.2)
9(z)<0

where fx(z) is the joint probability density function of X.

The integration is performed over the failure region (2f. If some of the
basic random variables are discrete, the integration over the corresponding
densities is substituted by a summation over finite probabilities.

The reliability analysis aims at evaluation of the multidimensional integral
in Eq. (2.2). Only a few analytical and exact results are known. Standard nu-
merical integration techniques are generally not feasible for high-dimensional
problems, and in general, either Monte Carlo simulation (MCS), or the analy-
tically based first- and second-order reliability methods (FORM /SORM) must
be used.

The methods, MCS and FORM/SORM should be considered as comple-
mentary methods. For example, if the basic variables are discrete, the neces-
sary transformation between the physical z-space and the standard normal
u-space does not exist and MCS methods must be used.

In FORM method the failure function g(u) = 0 is expanded up to the
first order at the S-point (Madsen et al., 1986; Hasofer and Lind, 1974). This
is defined as the point on g(u) = 0 at the shortest distance from the origin
of the coordinate system to the linearized failure surface in the standardized
normal space. Reliability index corresponding to the [-point is evaluated by
the minimization problem

B =|w*|| = min|u|]  subject to g(u)=0 (2:3)

The B-point should be defined in the normal space. Several methods for re-
aching [-point have been developed and the R-F algorithm is one of them,
Ref. [19].
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3. Requirements for design sensitivity information

Accounting for complex reliability models in the design/optimization pro-
blems requires that effective and accurate sensitivity analysis of the structural
performances measures with respect to design parameters can be realised.
Especially, if general nonlinear optimization algorithms are used, high pre-
cision sensitivity coefficients are needed in order to assure convergence. This
paper presents a strategy for integration of reliability analysis with the discrete
design sensitivity analysis (DSA). The potential failure mode is described by
the failure function

9{(z(u), Plz(u)]} =0 (3.1)

where ¥ is a general performa.nce measure, e.g., a componental stress or a
nodal displacement component and # is the vector of realizations of random
variables. Solution to Eq. (2.3) requires the computation of the first derivative
of the failure function, Eq. (3.1), with respect to the standard variables u
dg _ Og 0z + 9 0¥ Oz (3.2)
du  Ordu OV dr du
The derivatives dg/0¥ and dg/0z are given explicitly. The advanced reliabi-
lity codes compute the derivatives 0z/0u internally from the transformation
z = T(u). The most difficult and time consuming task is to compute deriva-
tives of the performance measure w.r.t. 0¥/0z. This is performed by highly
efficient adjoint variable method of DSA (Madsen et al., 1986). For structural
safety considerations it is important to have capabilities for performing relia-
bility parametric studies. Then, it is necessary to compute the derivatives of
the reliability index B w.r.t design parameters z* and 27 assigned to mean
values and standard deviations of random parameters, respectively, as well as
to deterministic design parameters z¢. The following formulae should be used

48 _||9%
« = || ou

where the gradients dg/0z®, 0g/0u and 9T /Ou are known from the reliability
computations, whereas in the case of deterministic parameters z

iz~ |

~! 8¢ or

—_— f ¢ — gt x° 3.3
525 9u or z%=1z" 2 (3.3)

-1 dg Bg ov

521 T 50 9z (34)

where the derivatives 0% /dz? are also computed by the adjoint variable me-
thod of DSA (Ditlevsen and Madsen, 1996).
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4. Design sensitivity analysis of layered shells

4.1. Adjoint variable method

Reliability considerations of a nuclear reactor containment shell will be ba-
sed upon displacement failure functions. To obtain the displacement sensitivi-
ties the adjoint variable method of DSA will be employed. The computational
aspects of DSA are given in Haug et al. (1986), Kleiber et al. (1997).

Note, that two different displacement sensitivities are required, namely,
with respect to realizations of random parameters z, Eq. (3.2), and with re-
spect to design parameters %, Eq. (3.4). From the point of view of DSA this
distinction is irrelevant and the computation is exactly the same. Therefore,
the sensitivities with respect to design parameters are described.

For the design sensitivity analysis the adjoint variable and direct differen-
tiation methods can be used, Haug et al. (1986). To obtain the displacement
failure function sensitivities for the reliability analysis the adjoint variable me-
thod is employed and is presented briefly. The equilibrium equation is written
as

Kq(z*) = Q(z*) (4.1)

where K is the stiffness matrix, ¢ is the displacement vector, and @ is the
external load vector. All these quantities depend on the design parameters
z® comprising the deterministic parameters ¢ and mean values z* of the
random parameters X. Sensitivity of the performance measure ¥, where ¥ =
U(g(z®),2%), with respect to the design parameter £ can be written as

v o 17 0K oQ
da7 = 5z~ (270~ o) (42)
where A is obtained from the adjoint equation
OUNT
KA = (a—q) (4.3)

As design parameters for the layered shell element the Young modulus, thick-
ness of the reinforcement layer and its position with respect to the midsurface
are considered. As performances the displacements are considered.

In contrast to the known commercial FEA programs like Nastran [20],
Abaqus [18] where the design derivatives are calculated using finite difference
method, which may lead to a dependence of the results on the selected per-
turbation, the stiffness design derivatives are calculated explicitly herein.

The explicit expressions for the stiffness design derivatives in Eq. (4.2) for
the element considered are given in the subsequent sections.
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4.2. Ahmad-type finite element

In application to nuclear reactor containments the isoparametric layered
shell element of Ahmad is used (Postek, 1996; Postek and Kleiber, 1996).

To have a consistent derivation, firstly the stiffness matrix of the element is
presented, secondly, the contribution of the reinforcement to the element stif-
fness is shown and finally the design derivatives of the total stiffness matrix,
with respect to the design parameters connected with the reinfocement pro-
perties, e.g. Young’s moduli, thickness and the distance of the reinforcement
layer from the midsurface of the shell are presented.

To describe the geometrical relations in the described element four refe-
rence sytems are defined, see Fig. 1.

Z,w |

Fig. 1. Layered shell element, coordinate systems

1. Global system — this is an arbitrary Cartesian system {X,Y, Z}, the final
total stiffness is defined in that system.

2. Local isoparametric system &,7,( - the curved midsurface of the ele-
ment (in the £,7n coordinates) and the positions of the layers (by the
coordinate) are defined.

3. Local nodal coordinate systems — these systems are defined in each node
by three orthogonal vectors V%,V%, V% where i is the node number
1 =1,...,9.
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4. Local coordinate system z’,%/, 2’ — this is a Cartesian system in which
the strains, stresses, generalized forces and the design derivatives are
calculated. That system is defined at the integration stations.

The geometry of the element is defined as follows

HA 1 o n b
y | = Z Ni| v | + Z N,C%Vg (4.4)
2 =1 Z; i=1

The displacement field in the element is defined by the following equation

U 9 U 9 ¢ o

— i chp. | A
v | = 2 Ni| v |+ EN,@ 5 @i [ o, ] (4.5)
w =1 w; =1

where N; are the Lagrange shape functions and @; is a vector containing
vectors tangent to the midsurface defined in the nodal coordinate system as
follows

®; = [V, Vi (4.6)

At each node of the element three tanslational degrees of freedom wu,v,w
parallel to the axes of the global coordinate system X,Y, Z and two rotational
degrees of freedom ¢, ay being the rotations about the vectors V; and V,y
are defined.

The geometrical relations developed in the local coordinate system are of

the form
-9 -

S g 0
o 0 — 0
(AT ay’ !
v'y 5 5 u
emfyr = 6_3’!" 3_55"' 0 ‘b‘, (4_7)
€y o, 9 w'
e oz ox!
- & 0
| Y B By
where
u! u
o | =67 | v 8 =V, V>,V (4.8)
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The above relation constitutes the dependence between the displacements in
the global coordinate system X,Y,Z and the local one z’,4/, 2’. Taking into
consideration displacement field (4.5) and geometrical relations (4.7) and de-
noting by A the following term

A A 0
') '=A=| Ay Ay 0 (4.9)
0 0 A

where J is the Jacobian of the transformation between the local coordinate
system z',y’,z' and the isoparametric one the geometrical relations take the
form

Uj ) .
€ =BO" | v |+ %‘(gai +D;)8'8; [ 31‘; ] (4.10)
w; 24
The matrices B; and D; are of the form
B, 0 0 ] 0 0 07
0 By 0 0 0 0
B,=| B, By 0 D; = 0 0 0 (4.11)
0 0 B D, 0 0
| 0 0 B 1, | 0 Dy 0 1,
where
By = A N;¢ + A1aN; )
By = A21Na’,§ + A22Ni,n (4.12)

D, = A3 N;

The stiffness matrix is obtained using numerical integration. The element is
layered and is integrated using Simpson’s rule throughout the thickness and 4
or 9 points Gauss rule over the surface. The ready for programming stiffness
matrix is of the form

B N ne+l QT 0
KI = > 5 wnug - [Bi|¢*B; + Dyl
m=1 n=1 0 _2_9 Q}
" (4.13)
e’ 0

Cfnn [B.’flcsz + D.’f]m [ det J,,

tj AT
0 Je's;
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The C;,, is the constitutive matrix for the orthotropic material defined at the
integration stations, the sumiation over m is done over integration points;
N depending on the integration rule is 4 or 9. The summation over n is
done throughout the thickness; mc is the number of the concrete layers in
the element, w,, is the Gauss weight, (¢ is the normalized coordinate of the
layer m measured in the direction ¢ and w¢ is the weighting coefficient for
the Simpson rule; t,, is the thickness of the shell at the point m.

4.3. Reinforcement

The ’smeared’ model of the reinforcement is used. The equivalent thickness
ts = Agd, where Aj is the cross-sectional area of the reinforcement bar and
d is the distance between the bars, is assumed. The uniaxial stress state is
assumed in the reinforcing bars. The reinforcement is assumed to be placed in
two orthogonal directions. Then, the constitutive matrix for the reinforcement
assuming its existence in both directions is of the form

E, 0 0 0 07
E, 00 0
C. = 000 (4.14)
00
L. 0.-

If the reinforcement exists only in one chosen direction the nonzero elements
of the above matrix (4.14) are the relevant ,C';(u) = F, or 02(22) = FE, terms
(E; is the Young modulus for the reinforcement). The total stiffness is the sum
of the stiffness of the concrete and the equivalent reinforcement layers

Ke =K. +K, (4.15)

The stiffness matrix of the reinforcement is similar to the stiffness matrix (4.13)
presented above. It is obtained introducing instead of the constitutive matrix
for the orthotropic material the relevant constitutive matrices for the equ-
ivalent reinforcement layers (4.14). The stiffness matrix for the reinforcement
layers is of the form

N N ns QT 0 T
Ki = 3" wnul t o [Bi[¢*B; + Di] ), -
m=1n=1 0 59 ﬁi m
(4.16)
o 0
Cfnn B-g‘sB-+D-m . det J,,
[B;[¢°B; ;] 0 t_Jer)j
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The summation over m index denotes the sum over the Gauss points on the
surface of the element, ns is the number of the reinforcement layers, (? is the
non-dimensional coordinate fixing the position of the reinforcement layer with
respect to the midsurface of the shell element (direction ¢) and C;  is the
constitutive matrix of the reinforcement layer at the integration station.

4.4. Design derivatives of the stiffness matrix with respect to the rein-
forcement parameters

The formulae concerning the design derivatives of the total stiffness matrix
with respect to the selected design parameters of the reinforcement such as
the Young modulus, thickness of the reinforcement layer and the distance of
the reinforcement layer from the midsurface of the shell are presented herein.
To calculate the design derivative of the total stiffness at the chosen layer
the components of the design derivatives at the reinforcement layer should be
calculated and summed up.

In the case of the Young modulus the design derivative takes the form

o' 0 !
3K‘3’ ’ T
Ewmwﬂ o YaTa, [Bil¢*Bi +Dily,
m (4.17)
.
acm ! ? 0
0 Edj P,

The design derivative of the constitutive matrix (4.14) with respect to the
Young modulus in the case of the existence of reinforcement in both orthogonal
directions is of the form

acs 1.0

Y em(al)

oF

oo O

(4.18)

o oo O
o O oo O

If the reinforcement exists only in one selected direction the relevant elements
of the matrix given above are zeroed (element 11 or element 22).

The formula for the design derivative of the total stiffness matrix with
respect to the thickness of the reinforcement layer is obtained by differentiating
formula (4.13) with respect to the thickness of the layer at each integration
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station in the layer. The component of the stiffness matrix connected with
the reinforcement layer in the element is linearly dependent on the weighting
factor of the rectangular integration rule. In consequence, the design derivative
of the total stiffness w.r.t the thickness of the particular layer takes the form

oK Yoo \ T
= = ‘ |¢°B; + D; " -
Ot s mz—lwm tm 0 EeTﬁi [leC B+ z]m
. " (4.19)
d' 0
Couciry [Bj1¢°B; + Dyl . det J,,
LigTe.
0 J6'e; |

Finally, in the case of the distance of the reinforcement layer from the mid-
surface of the shell the design derivative of the stiffness matrix with respect
to that parameter is of the form

T T
ij N o] 0
ag m=1 0 Eze @i
m
(4.20)
0 0 0 N A
(il) (i)
0 boo Fos 0 0 baa Fg 0
0 0 0 0 0 0
IR0 2 S R Y COT W - O 0
0 bpEM 0 0 2byy 0
0 0 0 0 0 0
L <4 m
KN 0
. det J
0 ligTg, "
5 2 m

where by, = BBY, by, = BIYBY), b, = B BY).

The expressions for the stiffness design derivatives can be substituted into
Eq. (4.2).

Having the displacement sensitivity field, we may easily obtain the stress
sensitivities, considering the formula for strains (4.10), and taking into account
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the constitutive relations for the reinforcement (4.14), it reads

.
do :n[il) e 0 g+C o' 0 dq (4.21)
- == : 1 . - (4.
dh —dh | g %’GT@- "0 ye'e, | dh

The h are the design parameters of the reinforcement (Young’s moduli). The
stress derivatives with respect to the design parameters of the concrete matrix
can be obtained setting the constitutive matrix for the orthotopic material in
formula (4.21).

4.5. Design derivatives validation

As a testing example a hypar structure is chosen, Figure 2. The standard
equlibrium analysis was done by several authors and the results are well docu-
mented in the literature, Chetty and Tottenham (1964), Connor and Brebbia
(1967), therefore that structure is also considered by us as a benchmark for
the DSA.

Fig. 2. Hypar, geometry and the discretization

The following material data are assumed (non-dimensional): Young’s mo-
dulus 28500, Poisson’s coefficient 0.4, thickness of the shell 0.8. The shell is
reinforced with two orthotropic reinforcement layers. The distances of the lay-
ers measured in the isoparametric coordinates are +0.555. Young’s modulus
of the reinforcement is 2.5 x 108. The equivalent thickness of the reinforcement
is 0.065. The shell is fixed on its edges and is loaded with the unit pressure
normal to the midsurface. The structure is meshed with 100 elements.

The design sensitivity gradients are obtained using the adjoint variable
method (AVM) and are verified with finite differences. The design sensitivity
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Fig. 3. Design sensitivity of the vertical displacement of the midpoint of the
structure w.r.t the distances of the lower reinforcement layer
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Fig. 4. Design. sensitivity of the vertical displacement of the midpoint of the
structure w.r.t the distances of the lower reinforcement layer in particular elements
along the line A — A computed by finite differences and AVM
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of the vertical displacement of the midpoint of the structure with respect to the
distances of the lower reinforcement layer in particular elements is investigated.

The distribution of the design sensitivity gradients is presented in Figure 3.
The highest absolute values of the sensitivity gradients are in the midpoint
area of the structure which means that the perturbation of the distance from
the midsurface of the shell in the investigated reinforcement layer influences
the considered displacement the most.

Further, the design sensitivity gradients (along the line A — A, Fig.2)
are compared with the one obtained with finite differences. The results are
presented in Figure 4. The difference between the gradients obtained by both
methods does not exceed 1.12% with the perturbation 0.99%.

5. Reliability study of the concrete containment shell

In the event of a severe accident, the pressure inside a containment buil-
ding may significantly exceed the postulated design pressure. Since the conta-
inment structure provides the last structural barrier against the leakage of a
radioactive material into the environment in the event of beyond-design-basis
accident, knowledge of performance of the containment structure subjected to
internal pressure associated with the accident is essential.

The reliability analysis (RA) associated with reliability sensitivity analysis
(RSA) constitutes an effective investigative tool to supplement but not at
all to replace the traditional deterministic approach. The RA/RSA not only
grants a quantitative perspective on the plant safety but also provides a more
balanced, objective and realistic picture. The most important results provided
are engineering insights, i.e. the identification of vulnerabilities to a high safety
level of the plant, sensitivities of reliability measures with respect to design
parameters and the assessment of alternative means for improvements.

As an example a reliability study of a reinforced concrete nuclear conta-
inment shell is presented. The geometry of the structure and a typical cross-
section of the wall are presented in Figure 5. The structure consists of the
cylinder (radius 20 m) and the dome (radius 20m). The height of the struc-
ture is 64 m. In this example the stochastic parameters are connected with the
reinforcement layers system and internal pressure. The goal of the analysis
is to evaluate the reliability of the system considering a displacement failure
function corresponding with the appearance of the first crack in concrete.
The structure is discretized with 640 shell elements, Figure 6. The number
of degrees of freedom is about 12500. The cylindrical and the dome parts of
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Fig. 5. The vertical cross-section of the structure

Fig. 6. Finite element discretization, shrink plot



194 E.POSTEK AT AL.

the vessel are prestressed by a system of tendons. The action of tendons is
approximated by an external pressure. The aspects of the standard stress-
displacement deterministic analysis were presented in Barbat et al. (1995),
Postek et al. (1994).

To perform the reliability study of the structure, the reliability analysis
code COMREL (Hasofer and Lind, 1974; Ditlevsen and Madsen, 1996), has
been integrated with the finite element code POLSAP-RC for analysis of lay-
ered shells. Design sensitivity capabilities have been added, as described in
Section 4 (Postek, 1996; Postek and Kleiber, 1996).

As variable design parameters the mean values of the thicknesses of the
equivalent steel layers, distances of the reinforcement from the midsurface of
the shell and the load multipliers are considered, see Table 1. The reinforce-~
ment placement and the geometric data are shown in Figure 7 and Table 1,
respectively. The data concerning the internal pressure distribution are taken
after Postek et al. (1994). However, we investigate the first crack pressure. For
the internal pressure the log-normal distribution with a standard deviation
equal to 20% has been assumed. In our specific case the stochastic model con-
sists of 3841 parameters. The parameters connected with the structure are the
thicknesses of the particular reinforcement equivalent layers and their distances
from the midsurface of the shell in particular finite elements. The parameters
characterize the errors of the reinforcement distribution and placement.

Table 1. Reinforcement parameters

Zone Distance Equivalent Description
from midsurface | thickness
1.000 0.650E—2 | liner
—-0.739 0.761E—2 | circ. ext.
0.513 0.264E—2 | circ. internal
I —0.687 0.940E—2 | meridional ext.
0.565 0.974E—2 | meridional internal
—~0.480 0.900E—2 | prestressed (circ.)
- 1.000 0.6560E—2 | liner
-0.739 0.761E—2 | circ. ext.
0.513 0.264E—2 | cire. internal
IT —-0.687 0.530E—2 | meridional ext.
0.565 0.309E—2 | meridional internal
~0.480 0.900E—2 | prestressed (circ.)
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1.000 | 0.650E—2 | liner
—0.739 | 0.761E—2 | circ. ext.
0.513 | 0.264E—2 | circ. internal
ITT | —0.687 | 0.5630E—2 | meridional ext.
0.565 | 0.193E—2 | meridional internal
—0.480 | 0.900E—2 | prestressed (circ.)
1.000 | 0.650E—2 | liner
—0.739 | 0.761E—2 | circ. ext.
0.513 | 0.264E—2 | circ. internal
IV | —0.687 | 0.414E—2 | meridional ext.
0.565 | 0.193E—2 | meridional internal
—0.480 | 0.900E—2 | prestressed (circ.)
1.000 | 0.650E—2 | liner
—0.725 | 0.471E—2 | circ. ext.
0.537 | 0.275E—2 | circ. internal
V | —=0.725 | 0.448E—2 | meridional ext.
0.537 | 0.217E—2 | meridional internal
—0.480 | 0.900E—2 | prestressed (circ.)
1.000 | 0.650E—2 | liner
—0.725 | 0.328E—2 | circ. ext.
0.537 | 0.204E—2 | circ. internal
VI | —=0.725 | 0.328E—2 | meridional ext.
0.537 | 0.204E—2 | meridional internal
—0.480 | 0.900E—2 | prestressed (circ.)
1.000 | 0.650E—2 | liner
—0.725 | 0.328E—2 | circ. ext.
0.537 | 0.2756E—2 | circ. internal
VII | —0.725 | 0.328E—2 | meridional ext.
0.537 | 0.217E—2 | meridional internal
—0.480 | 0.900E—2 | prestressed (dome)

195

We have assumed a Gaussian distribution of the thicknesses and distances
of the layers. The assumed values of the standard deviations for the thicknes-
ses are as follows (layerwise): 15%, 15%, 1.6%, 15%, 15%, 16%, and for the

distances from the midsurface 0.8%, 0.4%, 0.5%, 0.5%, 0.1% and 0.5%.

As the potential failure mode the gross structural failure of the contain-
ment structure is considered. From the deterministic studies the critical ho-
rizontal displacement ¢* in the middle of the cylindrical wall is assumed and
the associated actual displacement ¢ taken as a representative of the overall
containment deformation.
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Fig. 7. Reinforcement zones

The global failure function is described by an excessive displacement

9(z) =" — ¢ (5.1)

where ¢* is the admissible displacement corresponding to the first crack occu-
rence. It is equal to 0.15E—2 m. The displacement is caused by the determini-
stic internal pressure 756 kN /m?.

We have started the analysis for the internal pressure far below its first
crack value i.e. for the load multiplier equal to 6.5. For that pressure when
considering the layer thicknesses as the design parameters the f index is 6.08
with the corresponding probability ps = 6.17E — 10 and when taking into
account the distances of the reinforcement from the midsurface of the shell
the B index and the probability of failure are 6.11 and 4.93E—10, respectively.

We will not deal with the description of the establishing the critical di-
splacement since it is beyond the scope of the considerations, it is possible to
obtain the first crack value by any method concerning the first crack criterion
assuming linear, in that case, behaviour of the materials and the geometry of
the structure.
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Table 2. Reliability indices and the corresponding probabilities of reaching
the design constraint

Internal | Rel. index | Probability | Rel. index |Probability| Considered
pressure | (thickness | (thickness | (distance of| (distance |displacement
factor | of layers) | of layers) | of layers) | of layers) [m]
6.5 6.0764 |6.1685E-10 6.1122 | 4.9316E-10| 0.4824E-03
6.6 5.1342 | 1.4193E-07 5.1639 1.2114E-07 | 0.5766E-03
6.7 4.3157 | 7.9589E-06 4.3418 7.9589E-06 | 0.6727E-03
6.8 3.6263 | 1.4308E-04 3.6509 1.3970E-04 | 0.7688E-03
6.9 2.9800 |1.4411E-03| 3.0026 |1.3383E-03| 0.8648E-03
7.0 2.4354 | 7.4380E-03 2.4576 | 6.9938E-03 | 0.9648E-03
7.1 1.9705 |2.4388E-02| 1.9934 |2.3108E-02( 0.1057E-02
7.2 1.4583 | 7.2375E-02 1.4792 6.9544E-02 | 0.1158E-02
7.3 1.0880 0.1383 1.1127 0.1329 0.1254E-02
74 0.6569 0.2556 0.6796 0.2484 0.1345E-02
7.5 0.2833 0.3885 0.3042 0.3805 0.1414E-02
7.55 0.0990 0.4606 | 0.9902E-01 | 0.4606 0.1489E-02

The reliability analysis is performed varying the internal pressure factor.
The numerical results are collected in Table 2 and presented in Figure 8.
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Fig. 8. Probability of the failure versus load level (displacement constraint)
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The dependence of probability of failure (i.e. violation of the condition
(5.1)) versus internal pressure factor is given in Fig.8. The probabilities of
failure starts to increase significantly after passing the internal load pressure
factor 7.0.

Further, the design derivatives fields for the load level causing the displa-
cement close to the established failure condition are presented. Figure 9 shows
the design sensitivity of the selected displacement with respect to the thicknes-
ses of the external circumferential reinforcement in particular elements at the
pressure close to the first crack pressure (AVM method). The displacement de-
rivative field with respect to the thickness of the external circumferential layer
in element 165 (close to the midspan of the cylinder) is presented in Figure 10.
The direct differentiation method (DDM) is used, details of the method are
not presented since it is used only for the deterministic analysis herein.

Model: VADJZ
Ll---1:
Step: 1
Gauss GRADIENT DTA
Max = .949E-3
Min = -,135E-2
Results shown:
Mean on element

.T41E-3
.532E-3
¢ .323E-3
.115E-3
.942E-4
.303E-3
.512E-3
.72E-3
.929E-3
.114E-2

g

L

Fig. 9. Design sensitivity of the selected displacement with respect to the thickness
of external circumferential reinforcement

Figure 11 shows the distribution of the circumferential stress derivative
field (in the external concrete layer) with respect to the thickness of the exter-
nal circumferential layer in element 165.

The following two pictures show the distribution of the reliability index de-
rivatives w.r.t. the distances of the external circumferential layer in particular
elements (mean values and standard deviations) (Figures 12 and 13).

Further, a numerical experiment is performed assuming a higher value
of the standard deviation of the load multiplier (40%) at the mean value 7.4.
Assuming that the stochastic variables are the layers thicknesses the reliability
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Model: VSDD

L2---1:

Step: 2

Nodal DISPLACE DER ZETA
Max = .324E-2 Min = 0

29582
.2658-2
i 23682
Y 206E-2
4 1778-2
% 14782
f 1188-2

. 884E-3
i 5g0m-3

b a956-3
b2

Fig. 10. Displacement derivative field w.r.t the thickness of the external
circumferential layer in element 165

Model: VSDD

L2---1:

Step: 2

Gauss DSTRES-C DSXX

Max = .B93E4 Min = ~.137E5

Results shown:
Mean on element
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Fig. 11. Circumferential stress derivative field w.r.t. the thickness of the external
cicumferential layer in element 165
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Model: VRL7
L1---1:

Step: 1

Gauss GRADIENT DTA
Max = .422E-1

Min = -.209E-1
Results shown:
Mean on element

Fig. 12. Beta index derivative field w.r.t the mean values of the distances of the
external circumferential layer in particular elements

Model: VR7S
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Step: 1 T : \
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Max = -.991E-16 —  ——
Min = -.427E-5 ; H } Ao

Results shown:
Mean on element
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= T1TTE-6
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Fig. 13. Beta index derivative field w.r.t the standard deviation of the distances of
the external circumferential layer in particular elements
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index is 0.4911 and the corresponding probability is 0.3117, when dealing with
the layers distances the relevant values are 0.4795 and 0.3158, respectively. In
that case the highest impact on the probability of the failure has the load
multiplier.

The programs are implemented on the SUN HPC Enterprise 10000 plat-
form. The calculation of the reliability index takes between 1 to 5 hours CPU
and the computational time is higher for the high values (close to 6.0) of the
reliability index. The run of the reliability module takes only a few per-cent
of the total CPU time. The rest is the stress-displacement analysis, the sensi-
tivity gradients calculation takes about 3 minutes of FEA program run. One
run of the FEA program takes about 15 minutes for the system considered.

6. Final remarks

This paper put forward a way to integrate the discrete design sensitivity
analysis with the reliability analysis and the reliability sensitivity analysis
with significant improvement of the computational efficiency. Requirements
for design sensitivity information were defined. The adjoint method of di-
screte design sensitivity analysis was used to derive sensitivity information for
the layered reinforcement concrete shell elements. The computational system
developed allows are to solve large realistic reliability problems. The reliability
study of a reinforced concrete nuclear containment building was carried out.
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Analiza niezawodnosci ostony budynku reaktora

Streszczenie

Analiza niezawodnosci duzych konstrukeji wymaga zazwyczaj bardzo dlugich ob-
liczei komputerowych. Poprawa efektywnosci algorytmow jest zazwyczaj warunkiem
koniecznym uzyskania rozwigzan dla duzych rzeczywistych probleméw. Analize nieza-
wodnoéci zwykle przeprowadza sie stosujac przyblizong metode analizy niezawodnosci
pierwszego rzedu (FORM). Procedury iteracyjne analizy niezawodno$ci pierwszego
rzedu (FORM) wymagaja obliczenia gradientéw wrazliwosci o wysokiej dokladnoéci.
Projektowanie konstrukcji wymaga stosowania metod numerycznych takich jak me-
toda elementéw skorficzonych. Gradienty wrazliwoSci nie sg jawnie zalezne od zmien-
nych projektowych. Obliczenia gradientéw wrazliwoéci powinno byé realizowane przy
zastosowaniu efektywnych, dyskretnych metod analizy wrazliwoéci. W artykule przed-
stawiono sposéb polaczenia analizy niezawodnoéci z dyskretnymi metodami obliczania
gradientéw wrazliwosci — zmiennej sprzezonej (AVM) i rézniczkowania bezpo§redniego
(DDM). Rozwinigty program komputerowy dla zelbetowych powlok warstwowych po-
zwala na rozwigzywanie duzych zadan niezawodnoéciowych. Przedstawiona zostala
analiza niezawodno$ci zelbetowego budynku bezpieczenstwa reaktora nuklearnego.
Analiza niezawodno$ci pozwala na stwierdzenie, ktéry z parametréw projektowych
ma najwiekszy wplyw na niezawodnos¢ ostony.
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