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The aim of this paper is to investigate the influence of nonlocality on the physical
and material field equations of heterogeneous media. Taking into account that
plastic deformations in metals or damage in brittle and ductile materials are
governed by physical mechanisms observed on levels with different lengthscales,
we introduce a 6-dimensional kinematical concept with two locally defined vectors
to model the material behaviour on a macro- and meso- or microlevel.

Using a variational procedure the physical and material balance laws, boundary
and transversality conditions are derived for macro- and microdeformations of
heterogeneous media. The dissipation inequality including relaxation terms for
transport processes is presented. The constitutive equations are formulated with
macro- and microstrain measures, their gradients and time rates, and the ani-
sotropy tensor as arguments, where the latter can be considered as a coupling
measure between the deformed macrostates with compatible microstates.

The model presented in this paper delivers a framework, which enables one to
derive various nonlocal and gradient theories by introducing simplifying assump-
tions. As the special case a solid-void model is considered.
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1. Introduction

In the lifetime oriented design and analysis of engineering structures incre-
asing research efforts were made during the last couple of years to overcome
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essential deficiencies of local models of continuum mechanics, especially in the
fields of finite elastoplasticity, damage and fracture mechanics (cf. Nowacki,
1986). These deficiences can be observed in finite element solutions based on
local models, which exhibit a strong mesh-dependency whenever a strain lo-
calization occurs, or even they are not able to simulate problems with scale
effects (cf. Bazant and Ozbolt, 1990). The reason for this is the fact that the
plastic deformations or damage of material bodies are governed by physical
mechanisms on levels with different lengthscales, on a macro- and meso- or
microlevel, and the interaction of these phenomena can be described appro-
priately only by nonlocal theories.

The inescapable influence of the nonlocality to classical notions as stress
at a point depending on the state of the whole body was already noted by
Duhem in 1893. Since then, many nonlocal models of continuum mechanics
were proposed (cf. Rogula, 1973), which can be grouped according to their es-
sential feature. Here, we can mention only a few papers. Taking into account
that the plastic deformation process is governed by dislocation motion Bilby
et al. (1955), Kroner (1960), Kunin (1968), Krumhansl (1968), Valanis (1969),
Le and Stumpf (1996a.,b) used as kinematical concept a non-Euclidean space
structure to model the influence of dislocation motion on the macrodeforma-
tion of elastic-plastic bodies. In an alternative approach a material particle
can be equipped with additional degrees of freedom as the director theories
of Ericksen (1961), Toupin (1964) and Mindlin (1964), the multipolar theory
of Green and Rivlin (1964a) and the micropolar theory of Eringen (1964) (cf.
Wozniak, 1973). The third category of nonlocal models is characterized by inc-
luding higher-order gradients of displacement and velocity as in the models of
Toupin (1962), Mindlin and Tiersten (1962), and Green and Rivlin (1964b). In
the above mentioned papers additional balance laws were introduced. In the
next category the nonlocal interactions were resolved by introducing certain
integral terms into the balance laws without postulating additional laws. Here,
we have to mention the theories of Edelen (1969), Eringen and Edelen (1972).
A theory with explicit dependence on nonlocality, but with additional laws for
nonlocal ingredients was given by Gurtin and Williams (1971a).

Recent results have shown that the locality assumption leads to signifi-
cant errors in the treatment of the energetic description of dislocations within
cohesive zone models (Miller et al., 1998). The cohesive zone models, which
constitute a bridge between the microscopic and macroscopic modelling of ma-
terial behavior, were first proposed by Peierls (1940) to describe dislocations
and by Barenblatt (1962) to model fracture processes.

Continuum theories, including long-range interactions, have been investi-
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gated by Kunin (1982, 1983), Gurtin and Williams (1971b), and Edelen (1976).
There are different approaches to the problem of describing nonlocal interac-
tions, but common is to postulate balance equations for the whole body and
not for an arbitrary part. Corresponding local equations are only valid after the
incorporation of nonlocal residulas accounting for the long-range interactions.

The need for nonlocal models (Maugin, 1979; Eringen, 1992) in damage
mechanics and finite elastoplasticity became evident, when during the last
decade numerical simulations of experimental data were not able to predict
appropriately size effects, and the numerical results obtained by FE methods
based on local models exhibited a strong mesh-dependency (e.g. Bazant, 1991;
Roehl and Ramm, 1996; Miehe, 1998; Schieck et al., 1999). To overcome these
deficiences an integral enhancement of the strain measures (Bazant and Pijau-
dier, 1988) and a gradient enhancement of the strain or hardening parameters
(e.g. de Borst and Miilhaus, 1992; de Borst et al., 1996; Fleck and Hutchinson,
1997; Gao et al., 1999) were introduced into the local models to overcome the
obvious deficiencies of numerical procedures. Consistent nonlocal theories of
the gradient type in finite elastoplasticity were proposed by Naghdi and Srini-
vasa (1993) and Le and Stumpf (1996a,b), where the dislocation density tensor
as an additional microvariable has to satisfy own balance law of microforces.

It is well-known that in the presence of fields of dislocations, voids, mi-
crocracks and other defects there exist only locally defined vector fields and
that an appropriate corresponding kinematical model is a manifold with tor-
sion and curvature. Also the classical Euclidean gradient operator has to be
replaced by the so-called connection. In an interesting paper Rakotomamana
(2001) has shown that the results obtained by ultrasonic in site measurements
of the state of damage in engineering structures cannot be interpreted correc-
tly, if the underlying theory is based on a gradient theory with the classical
operator and not using a non-Euclidean manifold.

In order to model continua with defects on two levels with different length-
scales, the macro- and mesolevel, Stumpf and Saczuk (2000, 2001) introduced
a 6-dimensional model with two locally defined vectors, where one vector re-
presents the macroposition and the other a local vector on the microlevel with
a physical interpretation according to the underlying problem. A variational
approach enables then derivation of the balance laws for macro- and microfor-
ces with two different non-Euclidean differential operators.

The aim of this paper is to present a thermodynamical framework for the
modelling of two-scale inelastic processes in heterogeneous media.

The structure of the paper is as follows. In Section 2 we discuss first some
physical interpretations of the locally defined microvector. Then, we shortly
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recall the basic kinematical results outlined in detail in Stumpf and Saczuk
(2000, 2001). Also we define the deformation induced anisotropy tensors re-
presenting the microstructural changes in the material anisotropy. In Section 3
we present a variational-based derivation of the physical and material balance
laws on the macro- and microlevel, where also the gradients of the deformation
measures on both levels are taken into account leading to the second-order first
Piola-Kirchhoff and Eshelby stress tensor in the balance laws, boundary and
transversality conditions. Also, in Section 3, we include viscous contributions
of the deformation measure and its gradient and derive their contribution to
the balance laws. In Section 4 the dissipation inequality is considered, and in
Section 5 we discuss the constitutive modelling taking into account the strain
measures on both levels and their gradients and rates, the anisotropy ten-
sor, temperature and its gradient as well as its rate. In Section 6 we discuss
the special case of a solid-void continuum model and finally, in Section 7, we
present the conclusion of the paper.

2. Kinematics of a heterogeneous body

Fig. 1.

Let us assume that in the reference configuration at the time ¢ = 0 the
material body, which models appropriately inelastic phenomena in solids, oc-
cupies a regular region By in the three-dimensional space. For the choice of
an appropriate kinematical model let us consider in the body B at the time
instant ¢ a representative volume element (RVE) on the macroscale and a
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representative sub-volume element (SRVE) with distributed microdefects on
a mesoscale (Fig. 1). Correspondingly, we shall model the body B; by a gene-
ralized 3-dimensional oriented continuum ‘B endowed at each point with an
internal structure. Following the picture of a two-level description with RVE
and SRVE, we introduce in the reference configuration Cj a pair of two locally
defined vectors (X, D), where the macrovector X can be identified with the
location of the material particle in the macrocontinuum (RVE) and the micro-
vector D with the location in the microcontinuum (SRVE) or orientation of
the crystalographic structure depending on the problem under consideration.

2.1. Background information in a (sub-)microscopic description of the
variable D

We provide here some additional information which justifies the choice of
the variable D at different spatial scales and give its physical interpretation.
We observe that for inelastic behaviour of materials, a number of microstructu-
ral features of their motion can always be seen with increasing details at finer
scales of observation. While the body appears quite smooth on the macroscale,
its permanent deformation at finer scales turns out to be discontinuous. With
reference to the microscopic description of the body, in the vicinity of an ar-
bitrary point X of B we consider a propagating dislocation segment with the
tangent vector £, velocity v and Burgers’s vector b during some time interval.
The discrete motion of dislocations within the vicinity of X can be modelled,
within an idealized mechanistic model in the RVE, by the dislocation kinetics
that depends on the dislocation density d. In this model the dislocation func-
tional d, assumed to be a continuous function of X, &, v, b and ¢, describes
the probable number of dislocations in the sub-volume element By attached
to the point X.

The vector D(X,t), the displacement between atoms in B with respect
to X, can be defined by (Stout, 1981)

D(X,t) = / bé x {Vd + b*[6yd + V* - (Fd)]} dVy (2.1)
Br

where the first term of the integrand describes the contribution from the di-
slocation motion, and the second term, from the changes of the dislocation
density. Moreover, in Eq. (2.1) we denote by dVg the sub-volume element
equal to dbdfdvdydt with x denoting the position of the atoms at the time ¢,
by b* the lumped vector modelling the displacements of the neighbouring
atoms when the changes of the dislocation density take place, and by ¥ the
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velocity of the transported dislocation configuration changes in Bg. Also, the
notation V* stands for the spatial differential operator with respect to X and
0 for the time part. .

In the context of the theory of structured solids developed by Naghdi
and Srinivasa (1993, 1994) one can represent the periodic arrangement of the
crystal lattice of crystals at each particle X* of B* C B by means of the
lattice vectors D*, non-complanar by definition in any time interval. Then
the vector D(X,t), called by them the lattice director, can be expressed as a
spatial average of the local values of the lattice vector by

D(X,t) = Vi f D* dv (2.2)
EB!

where V* is the volume of any arbitrary material volume B* of B in the
reference configuration. In Eq. (2.2) D* is evaluated at the point X in the
local sub-representative volume element (SRVE).

The volume average D of the microvector field D defined in the RVE with
cracks is defined as

D(t) = % gLn% f D(X,t) dV (2.3)
Vs

where V is the volume of the RVE without the cracks, Vs =V — ) .V and
the volume V,; is the volume of the ith region with cracks represented by
surfaces of discontinuity (Costanzo et al., 1996).

In the light of these remarks, the vector D, in special cases, can be under-
stand as the atomic displacement, (2.1), or the lattice director, (2.2). On the
other hand, within the generalized model of the oriented continuum (Stumpf
and Saczuk, 2000), the correlation between properties of a statistical mecha-
nics and those of the field theory (Girifalco, 1973; Wilson and Kogut, 1974)
leads to another physical interpretation of the vector D.

The system we imagine now is a SRVE, attached at the point X of the
RVE, of distributed N discrete dislocations with Burgers’s vectors b;. The
behaviour of the system, usually defined by means of a Hamiltonian, is de-
termined mainly by the type of interactions present in the Hamiltonian and
the strengths of the corresponding coupling constants. In this case, each di-
slocation configuration has a particular energy described, by assumption, by

a Hamiltonian
H=a)_ > b-b
ik

accounting only for the nearest-neighbour dislocation coupling, where a is the
dislocation-dislocation interaction parameter. Macroscopic degrees of freedom



ON NONLOCAL GRADIENT MODEL OF... 211

are the values of the dislocation functional W (X, -) (Stumpf and Saczuk, 2000)
at macroscopically separated points.

If the SRVE is immersed in the external force field B then the Hamiltonian
requires the additional term

H=a) Y bj-b+B-) b
ik J

The statistical property of the SRVE follows from the hypothesis that the
probability P for a particular dislocation vector configuration is defined by

P = exp(—pH)

where B = (kgf#)~', 6 is the temperature and kp the Boltzmann constant.
According to the statistical physics methodology, the thermodynamics of the
SRVE is deduced from the partition function

Z= Y exp(—BH)
{config}

where the sum runs over all possible dislocation configurations of the SRVE.
Using the free energy concept

U =—kpbfinZ

an average defect or distortion vector (of the lattice, if distinguished, of the
SRVE) per site can be expressed as

where (...) stands for the sum over configurations.

To define an analytical model of the RVE we shall identify b with the
director vector D if |b| # 0. Using this macro-micro vector concept as the
point of issue, we have to introduce a kinematical structure of 8 general
enough to describe inelastic material behaviour with dislocation motion and
evolving macro- and microdefects. This goal can be reached by choosing a
non-Euclidean space structure for the body B.

2.2. A nonlocal geometric setting for the body

To make the paper self-contained, we recall some basic results of the ki-

nematical model introduced in Stumpf and Saczuk (2000) and Saczuk et al.
(2001).
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We assume that the deformation yx, of the body B can be expressed in
terms of the locally defined vectors (X, D) on the macro- and microlevel rela-
ting particles in the actual configuration C} by means of a smooth invertible
map

r = x,(X,D) X;: B —E xE
(2.4)

= “x(X, D) +“x,(X, D)

with associated particles in the reference configuration Cy. In Eq. (2.4) “x;
may be interpreted as the macroplacement of the material particle in the RVE
and %y, as the microplacement and/or orientation of the material particle in
the sub-RVE at the actual configuration Ct.

Deformation gradient

Consider the geometry of the body B induced by the metric tensor G
G(X,D) =G kG’ ® GX +9G 56" ® 16" (2.5)

where the metric space components *G g = %G i are state-dependent func-
tions. Eq. (2.5) is written in a globally defined fields of adapted coframes

G¥ 9G¥ = 9G% + N’ G NE=(N)T  (26)

dual to the adapted frames

Gk =Gk — Ni Gy ‘G, Nig = (No)k (2.7)
where
9 ; 9
GK:(’;?X—K GA:W (K,A=1,2,3)

are the natural base vectors, and
GE = dx¥ iG* = dD* (K,A=1,2,3)

and natural covectors. The coefficients , N constitute a representation of the
non-linear connection N, of the body *B.

To define covariant differential operators on ‘B, we introduce a linear con-
nection V = [*V 4V] with the macro-covariant derivative V and the micro-
covariant derivative 4V. In terms of the covariant derivatives
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"Vg,G1 =115 Gk (2.8)

and
Wag, “Go = T'fy%Gy (2.9)

where the coefficients FI{{I are the macroconnection coefficients for the sub-
bundle *(T"B) and I'Z,, the microconnection coefficients for the sub-bundle

4(T8), the deformation gradient F: T%) — TB;, associated with deforma-
tion function (2.4), is defined by

B
s o I
&, B
i I I

F=Vy, = [ ] (2.10)

Ha

where the block components of F are given as
TF — TV Ty, = Vg, “X; ® GK

iF =V =Yg, % ®G" (2.11)
IF = 4V oy, = WVaig, *x: ® “G"

df _ dy dy, = 4y ., dy, ® dgA

with the Christoffel symbol objects on the macrospace I’ := (I'f) and mi-
crospace I' := (I'},). We assume here that detF # 0.

In general, the deformation gradient F includes the relevant, taken from
the mesoscale, information of the processes taking place at the microscale
and defined in the adapted basis. Only on certain simplifying assumptions
the above deformation measures can be reduced to the classical counterparts.
There is also an additional possibility to reduce F to the diagonal form F
expressing explicitly both the macro- and microbehaviour.

Let us introduce a deformation-induced anisotropy tensor Ar and the de-
viation tensor Bp to transform the deformation tensor F: T8y — T8, with
block components (2.10) into the diagonal form F : %(T8Bg) & 4(TB¢) —
“(TB;) @ 4(T*B;)

~ F 0
F=ArFBr = 0 9 (2.12)

The deformation-induced anisotropy tensors Ap and Bp, diagonal compo-
nents 2F and °F, respectively, are defined by
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A _[I -g?(dﬁ)-—l] 5 _[ I o] o)
"o | " —@RE |

and - e ~ ~
*F = °F — 2F (F)~1 9F IF = dF (2.14)

The above results demonstrate how the evolution of the microstructural
changes and of the deformation process itself induce changes in the material
anisotropy adjusting its internal structure to the environmentally applied lo-
ads. Therefore, the anisotropy tensor Ap can be considered as the coupling
measure between the deformed macrostate with compatible microstates.

3. Variational-based formulation in the physical and material
space

Classical continuum mechanics is based on the principle of a local action
and on the assumption that the balance equations are valid for every part of a
given body. The principle of the local action is not valid in nonlocal theories,
when for example the stress at a material point is affected by the behaviour
of other material points.

The first law of thermodynamics, balance of energy, written in incremental
form for changes of an arbitrary system Bpr of B in a time interval At is
assumed in the form

AU = AQ + AW (3.1)

where AU is the change of the internal energy of Br, AQ the internal-external
heat transported to Br, and AW the external (mechanical) work done on
Br in the time At.

The physical terms in (3.1) will be defined in the subsequent subsections,
and the second law of thermodynamics for the corresponding entropy flux in
Section 4.

Variational formulation

We assume the following form for the second order functional

L= [ L@ B dv (3.2)
G
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where @ = {X,D,z} and B = {F, VF}. The argument D represents the direc-
tor vector and pg the reference mass density. The integral functional L(a, B)
in (3.2), called the Lagrangian (deformation energy) density, is assumed as a
smooth map

L: B8 x J*ES) =R

with J2(-) being the second jet bundle, and G denotes a fixed, closed and
simply-connected region in the 6-dimensional space of (X, D), bounded by
the surface dG. The region G is here identified with a part of the body B.
The volume element associated with any of the inelastically distorted states
considered in (3.2) is defined by

dV =T dXdD = T dX'dX?dX*dD'dD*dD? (3.3)

where I" is the determinant of the metric tensor G according to (2.5).

The variational problem consists of finding the stationary values of the
functional I, in some class of the functions z = x,(X, D) defined over G. The
smoothuess required for the stationary values of (3.2) is strictly correlated
with the problem under consideration.

To obtain the explicite variational identity for £ we introduce the first
Piola-Kirchhoff macro-micro stress tensor defined by

_oc e d [ OL 0L
T=-% o (TD=(-55F) (3.4)
the macro-micro couple-stress tensor
oL oaa daRy oL oL
M=-z o ("M, M)_( 3 advdF) (3.5)
the Eshelbian macro-micro stress tensor
T=-LI-T'F (3.6)
or
(°T,%T) = (L1 - *TT °F, L4 - 4T T9F)
the external body macro-micro force vector
_oc cedp [ OL OL
f=% o CEN=(5 ) (3.
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and the macroinhomogeneity macro-micro force vector by
f=vL or  (*f, %) = ("VL, VL) (3-8)

The integral version of the second order functional L, after using the Gauss
theorem, is

8y = /[(f + DivT — Div DivM) - 6z + (f + DivT®). (SX] av —

“ (3.9)
- /[TmN . 6X + (T — 2DivM)N - 6z + MN . (Véz — FV&X)] ds
aG

where
T® =T+F' DivM - (VF)"-M

and the corresponding Euler-Lagrange equation for L is given by

oL . oL Y

9z Dlvaf + Div Div 5UF =
Moreover, dS denotes the area element of the hypersurface G bounding G,
and N = (*N,%N) is a suitably oriented unit vector normal to OG. The
generalized divergence operators Div of T = (°T,?T) and of T = (*T,“T)
are represented by

0

Div®T =*D*T — N, ?D®T - *T°I
DiveT = 4pdT - 4Tip

Div®T = —2VL - 2F ' (*f 4+ Div®T)
DiviT = -4V L - (4F) T (¢ + DiviT)

with the total differentials

d(6X)
TD6X) = V(6 X) + ——2L TY*
(6X) (6X) xs Xt
d(oD)
iD(§D) = V(D) + ——~ Ay
(6D) (6D) P, Xt

The representation for DivM corresponds to Div T, the difference lies in the
order of the tensors M and T.
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3.1. Correlation with the first-order variational formulation

Our starting point will be the functional

5T, — f[(f + DivT — Div DivM) - 6z + (f+ DivI®) - 6X| dV -
G (3.10)

- f['jr@m +6X + (T = 2DivM)N - 6z dS
aG

obtained from (3.9) by omitting the term MN - (Véz — FV4X) in the surface
integral.

First, we adopt some notations for the stress and/or moment tensors va-
lid for the second (and also higher) order variational formulation. Denote by
T(") = (#T(®), 4T(")) the Eshelbian stress tensors for the nth order functional
L. In the same manner one can, if necessary, denote the stress tensor T by
T and its higher order one by T™).

With this notation scheme our earlier Eshelbian stress tensor T will be
identified by T(). The second order one, denoted by T(?), is represented by

T = —LI-F T+F DivM—(VF)T-M=
(3.11)

I

T+F' DivM - (VF)T-M

where | = %l & 9.

Consider now a new first Piola-Kirchhoff type macro-micro stress tensor
T® defined as

T® =T - DivM (3.12)

which can be also obtained directly using the Volterra derivative (cf. Beris and
Edwards, 1994)

@_ L _ 9L . (0L
T=-5= 3F+D“’(aVF)

In terms of T?)| the equality (3.10) takes the simple form

51, — / [(f + D T®) . 5z + (f+ DivI®) - 5X] aV -
“ (3.13)
- / [TON - 6X + (T®) — DivM)N-Jz] s
aG
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We close this paragraph with some remarks concerning different definitions
of the stress tensors. Definitions (3.4) and (3.12), per se, suggest that T is a
function of F, while T® is addtionally gradient-dependent. The definition of
T incorporates the first order gradient of F or the second order gradient
in displacements. Formally, these two definitions are the same under the
obvious identification of the first order variational formulation (Stumpf and
Saczuk, 2000) with (3.10) and T with T(). Finally, there is no basic reason
for limiting the consideration of the balance laws, at least for the mechanical
part of the phenomenon discussed, to the first order case.

The balance laws and boundary conditions

The balance laws and boundary conditions for deformational and configu-
rational forces resulting from the variational functional (3.13) are the following

(a) The balance of the deformational and configurational macro-micro mo-
menta

f+DivT® =0 f+ DivT® =0 (3.14)

where T(?) is the first Piola-Kirchhoff macro-micro stress tensor, T(?) the
Eshelbian macro-micro stress tensor, f the external body macro-micro
force, and f the material inhomogeneity macro-micro force.

(b) The balance of moments of the deformational and configurational macro-
micro momenta

TAFT = FT®)T TA)C = C(T)T (3.15)
where C =F'F.

(c) The deformational and configurational macro-micro traction boundary
conditions

(T® — DivM)N =1t TAN =¢ (3.16)

where ¢ and t are prescribed deformational and configurational boun-
dary macro-micro tractions, respectively, and N is the outer vector nor-
mal to the boundary 0B in the actual and reference configuration, re-
spectively.
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3.2. Recourse to Mindlin’s approach

We now study the first-order variation of I; for an arbitrary variation of
the placement in the actual and reference configurations

5T, = / [(f+ DivT®) . 6z + (f + DivT®) -5x] dv —

G (3.17)
/ [W)N 6X + (T® — DivM)N - 6z + MN - (Véz — FV&X)] ds
aG

The given virtual displacement dz (on part) of G can be used to determine
its gradient on AG. Making use of this fact, one can eliminate the dependence
of variation (3.17) on Véz — FVéX. Based on Mindlin’s approach (1965)
(cf. Leroy and Molinari, 1993) we decompose the gradient Véz — FVJX into
normal and surface terms

Véz — FViX =Véz+ N®NVér — F(ViX + N® NViX)

where V is the surface version of the spatial operator V. With the surface
divergence theorem (see Brand, 1947)

/V-(Av) dS:/(V-N)NA-vdS+j£NcA-de
[0}
S 5

where S is a smooth, closed surface, with the boundary C, V the surface
operator, N the unit vector normal to the surface S, N the unit vector
normal to C and tangent to S, A a second-rank tensor, and v a vector. After
neglecting the line intergral, the surface integral in (3.17) is modified such that
the final expression for (3.17) reads

5L, = /[(f + DivT®) . 6z + (f + DivT®) -5x] v —
G
- f { [(T® — DivM)N + (DivgN)NMN — Div g(MN)) - 6z +
aG (3.18)
+ [T®N — (DivsN)NFMN + Div s(FMN)] - ax} ds —

- f [NMN - VézN — NFMN - V6XN] dS
oG
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where Divg(-) = V- (-) stands for the surface divergence operator.
Looking at the structure of (3.18), one can postulate the following genera-
lized principle of a virtual surface work, valid for any surface X' of B

6I¢=—/(t-6z+tg-Véa:N+t-5X+tg-V5XN) s (3.19)
z
in which ¢, t5 and t, t5 are the deformational and configurational generalized
tractions, respectively. _
The corresponding equilibrium equations are the same as before, given

by (3.14), but the deformational and configurational macro-micro traction
boundary conditions take respectively the following forms

(T - DivM)N + (DivgN)NMN — Divg(MN) =t
(3.20)
NMN =t5
and
TN — (DivgN)NFMN + Divg(FMN) =t
(3.21)
NFMN = t5

where N is the outer vector normal to the boundary @8 in the actual and
reference configuration.

3.2.1. Transversality conditions

The transversality conditions establish, in problems with movable boun-
daries like e.g. those connected with the evolution of crack surfaces, relations
between the deformation gradient F and the gradients of macro- and microsur-
faces in motion. In reality, they impose additional conditions on L necessary
for an extremum of the action integral I;. The extremum of I; can only be
obtained when the solution curve is one of the integral curves of the Euler-
Lagrange equations (3.14) and (3.15).

The necessary conditions for an extremum §/; = 0 according to (3.10) lead
to

TN - 6X + (T? - DivM)N - 6z = 0 on 9G (3.22)
and, with respect to (3.18), to

(T®) — DivM)N + (Div gN)NMN — Div g(MN)] - 6z —
—~NMN - VézN + [T?N — (Div gN)NFMN + Div g(FMN)] - 6X — (3.23)
~NFMN - V6XN =0 on 8G
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These relations are of central importance in a number of nonlocal problems
(e.g. Rice, 1968; Stumpf and Saczuk, 2001). If the variations X and dz are
independent, then

(T® - DivM)N| =0 TON| =0 (3.24)
PeX PeXx
and
[(’]1‘(2) — DivM)N + (Div sN)NMN — Div S(MN)] ~0
pPeXx
(3.25)
[T@)N — (Div sN)NFMN + Div S(FMN)] pes =0

represent the homogeneous static boundary conditions of the Newtonian and
Eshelbian type at any point P of the surface X, respectively.

3.3. Extension by including viscous contribution

If we assume @ = {X,D,z,z} and B = {F, VF, IE,VI.:} then the corre-
sponding Euler-Lagrange equation for £ = L(a, ) is given by
oL oc oL oL oL

. R . )
9 D1v¥-Dt£+D1v DlvavF+DtD1va—f__-—DtD1vD1v VE =0
(3.26)

with D; denoting the material time derivative.
To obtain the continual version of the Euler-Lagrange equation, Eq. (3.26),
we additionally adopt the following definitions
oL oL oL
P= = P=— M= —
oz oF dVF
for the momenta of the zero-, first- and second-order, respectively. In this case
Eq. (3.26) takes the form

(3.27)

Dy[p — Div(P — DivM)] = f + Div(T — DivM) (3.28)

the third-order equation of motion of the body ‘B.
The stationarity conditions for the rate-dependent functional lead to the
following equations of motion

p = f + Div(T® + P

and

p=f+ Div[T® +F P 1 (VF)T - M|
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in the physical and material formulation, respectively. Finally, on the external
or internal (movable) boundaries of the body, the boundary conditions take
the following form

[T + FTP®) + (V)T - M|N - 6X + [T + P2 — Div(M + M)|N -6z =0

where

PO = D,(P — DivM) =P - DivM

4. The dissipation inequality

In the non-thermal formulation, the second law of thermodynamics states
that the rate of energy increase cannot exceed the total expended power. For
the heat induced entropy flow, the second law is commonly written as the
production entropy inequality

% ndV > —[B‘IH-NdS+/6‘1R % (4.1)
B aB B

where [, 7dV represents the internal entropy of B, the surface integral the
entropy flow by heat conduction with the vector of heat flux H, and the
volume integral on the right hand side of inequality (4.1) the entropy flow by
heat production R into B, neglected in the sequel. This inequality, known as
the Clausius-Duhem inequality, is identified here with the sufficiency condition
for functional (3.2) (cf. Stumpf and Saczuk, 2000).

The Euler-Lagrange equations (3.14), (3.15) and (3.16) or (3.22) of the La-
grangian (3.2) with arguments from Section 3.3 are not, in general, sufficient
for the action integral I; to attain an extreme value. The sufficiency condi-
tions for Iy, strictly connected with the convexity conditions demanded by the
dissipation inequality, can easily be obtained within the so-called method of
equivalent integrals (Rund, 1966). This method, in principle, requires construc-
tion of a function A; (a counterpart of the total derivative) and to form the
integrand Ly(X,D) = L, — A; for a new action integral I,(X, D) = [, L,dV
which, by definition, provides an extreme value to the same solutions as the
solutions to the original problem defined by I; = [, L; dV.

To solve this problem we have to consider the function A; (Stumpf and
Saczuk, 2000) and to define the Weierstrass excess function £ as the difference

€ = L4(@;b) — A4(a;d) (4.2)
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where @ = {0, F, V?,V@} and b = {?, VF, V6}. With these preliminary re-
marks the sufficiency condition of Weierstrass for a thermo-inelastic process
of B has the form N

& =E&(a,a;b,b) 20 (4.3)

valid for all F = QF, VF = QVF, etc. with arbitrary positive-definite tensor
Q and for all constants 1 such that 6 =6 + 9 > 0.

An explicit form of (4.3), accounting for inelastic and thermal effects, leads
to a local Clausius-Duhem-type inequality in the physical form

poly — (T® £ PR F497'Ve-H <0 (4.4)

or, accounting additionally for the material (configurational) contributions in
the form _ _ - _
oLy — (TO £ POY. E_T? 4 9-'ve. H <0 (4.5)

where T = T +F PR 4 (VF)T-M, Fis alinear map of the configurational

velocity, L the rate of the energy functional per unit mass, po the mass density
in the reference configuration, @ the absolute temperature, and H the heat
flux vector.

From the fact that the right-hand side of (4.5) never exceeds some finite
upper bound, pof7n (Day, 1972) with 7 being the entropy, inequality (4.5)
leads to the final form

po(nf+ &) — (T 4+ PO E_T® . F 4 9-1ve. H <0 (4.6)

expressed in terms of the Helmholtz free energy ¥ = L, —07 as a state variable.
When this inequality holds with the equality sign, the thermodynamic process
is called reversible, otherwise irreversible. This form of the entropy inequality is
meaningful when the temperature is used as an independent thermal variable.
Because of the rate-dependency of 7, Tm, P2 and H , 1t 18 necessary to
find their changes (towards the equilibrium state) between any two times &g
and t; on any path of the thermo-inelastic process for which inequality (4.6)
holds. This can be only valid if the following differences (cf. Day, 1972)

n—nt, T -1 PO _p* T _T" and H- H*

according to the non-vanishing rates F, F and @ satisfy inequality (4.6) on
any thermo-inelastic path. The quantities with on asterisk refer to the corre-
sponding values at the equilibrium.

The only thermodynamic information that we have now is the positive de-
finiteness of the entropy production, which imposes some restrictions on the
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possible form of the evolution (relaxation) equations of thermodynamic fluxes.
Within the formalism of extended irreversible thermodynamics, we have to ge-
neralize dissipation inequality (4.6) by including the relaxation terms for trans-
port processes via the relaxation entropy concept 7, (Sieniutycz, 1981a,b). We
assume also that the non-equilibrium entropy is only defined when the devia-
tions from the equilibrium state are not too large. For thermo-inelastically
deformed solids, for instance, the relaxation entropy takes the form

m(S° H) = —C\[H]-H— .. & (4.7)

e 2G 40G ‘
where by S° we denote an objective deviatoric form of the stress tensor
T 4 P@), C is the thermostatic capacity tensor and G the shear modu-
lus. For example, in the case of pure heat diffusion we have C := 6h/8V6H~!,
where h is the enthalpy.
Substituting

S°C=S°-C°+~;~tr5trc (4.8)

and (4.7) into inequality (4.6), written in the objective form, we get

po(neb +¥) —8°-C° — ltrS trC + ltfl"l[I:Y] H-ls.g_
3 G 20G (4.9)

T . F4+0've-H<O

where
ne(U,8°, H) = n(U) +n-(S°, H)

is the total entropy and U = U(C, @) the internal energy. In the above deriva-
tion we have assumed the shear modulus G to be time independent.

5. Constitutive equations

To complete the set of equations defining a thermodynamical theory of
continuum mechanics we have to postulate appropriate constitutive equations
for the specified class of materials. In the following we select as independent
variables in the constitutive equations the macro- and microstrain tensors *E
and 9E, the deformation-induced anisotropy tensor Ap, the temperature 6
and their rates to describe the thermomechanical behaviour of solids with a
specific microstructure.
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In the light of the axiom of equipresence, the arguments of the constitutive
quantities 7, *S, S and H may be selected as

—7(E, 8,V0,E, 6,Ar) = 7(°E, 9E, 6, V6, E, °E, 0, Ar)
2§ — S(E, 0, V0,E, 6, Ar) = “S(*E, 9E, 9, V4, E, °E, 6, Ar)
— 9S(E,9,V0,E, 6,Ar) = 9S(°E, 9E, 0, V0, E, °E, 0, Ap)
H = H(E,0,V0,E,0,Ar) = H(“E,9E, 0,V0,E, €, 6,Ap)

(5.1)

in which the response functions 7, x§’ 4§ and H for the entropy, macro-
and microstress tensors and the heat ﬂux vector are the characteristics of the
material. The variables “E, 9E, 6, °E, 9E, § and Ay are, by definition, functions
of the reference vectors X, D and time ¢.

Case without relazation

The first simplification consists in neglecting 7,. In this case inequality
(4.9) is reduced to

po(n + %) —S-E+0"'VO-H <0 (5.2)

_ To specify a material, we assume that the generalized free energy functional
¥ depends only on the strain, the temperature and their rates as independent
variables. It means that the generalized free energy ¥ can be written in the
form

¥ = W(E,0,E,0,Ar) = U(E,"E, 0, °E, °E, §, Ar)

Calculating the material time derivative of ¥ we get

S8 e O g OV U
V= 5E E+8dE E+868+5$E- E (5.3)
where the differential operators 6/6%E and §/6E are defined by the relations
d d 7, y 9 7,
5E = o€ N7 piE E-E V0

The objects Nrp and Ny represent material connections, first, correlated
with the deformation-induced anisotropy tensor Ap, second, with the thermo-
mechanical coupling (Boffi et al., 1980). In this case the connection N should
be expressed by E, while Ny, according to Boffi et al. (1980), can be appro-
ximated by

N =—80’7+O—V E
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where v is the Griineisen (thermomechanical coupling) tensor, p the visco-
sity coefficient, Cy the specific heat at constant volume and 6y the reference
temperature.

In terms of Eq. (5.3) inequality (5.2) gives rise to

o+ 20) - (><37>

57
o0y SE 4 VIng-H <
P seE "

(5.4)

This inequality can hold for all choices of “E only if

This constraint means that the generalized free energy is dependent on the
rate 6 via the rate °E. Therefore, the generalized stresses are determined by
the response function U = LT/(E 0,E(f)) and in the equlibrium by ¥*(E, 0) =
¥(E, 0,0).
In the same manner, from the requirement that inequality (5.4) is fulfilled
for all choices of 6,%E and “E, we get

ov

de _
S =r g

ov o B'If) (5.5)

_ 9= z el

T S= pO(amE Nrgag

as the necessary constitutive relations. :

As a simple illustration for the discussed problem, let us consider the free

energy functional ¥ defined only in terms of the strain measures E and “E.
Applying Egs (5.5) to ¥ we get

'S = m(zeg ~ Vi)

To show the correlation with classical results, it is enough to adopt an obvious
functional relation between E and *E, where the classical strain measure E is
defined in terms of the deformation gradient F = 9z/0X. Based on (5.6) we
obtain with

g_, % _ 0% o 9"E
~POBE T POGE BE 9E

a functional relation between the classical stress tensor S and the macrostress
tensor *S derived in the anlysis presented here. The equality S = ?S can only

ov

98 = po=c (5.6)

= (“S+ NpS)Ap Ap = (5.7)
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be obtained if the reference anisotropy tensor A, reduces to the identity tensor
(or Ap =1)and, at the same time, the deformation-induced anisotropy tensor
Ar is singular at each step of the deformation process. Furthermore, any detail
connected with the internal state has to be neglected.

Case with relazation

The entropy production terms

g = %C_I[H]-ﬂ—l—vg-l -H

in inequality (4.9) on the basis of Curie’s principle is equal to
L g -1
= — 8
H LH(GC‘ [H) + V6 ) (5.8)
where Lp is the positive definite Onsager tensor. For the case of pure heat

diffusion, Ly = A@?%, where X is the conductivity coefficient tensor. In this
case Eq. (5.8) can be replaced by the equation

H+7H=-)\V0
As a result, the above evolution equation for the heat flux vector H is com-

patible with the Cattaneo equation for pure heat diffusion (Cattaneo, 1948),
g+ 7q = — AV, where 7 is the relaxation time of the heat flux vector gq.

Application of the same procedure to the term
P T
= _-(S°.F° 4+ —§°. o)
o5 =—5(S B+ 58§
in inequality (4.9) gives rise to the following evolution equation for S°
S 4 Bl g — ) E°
G Hd

which is known as the Maxwell equation for momentum diffusion in a viscous
(in)elastic body. In this case an appropriate Onsager tensor is defined by the
symmetry relation, Lg = 2u40, with pg being the dynamic viscosity coeffi-
cient.
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6. Application: A solid-void continuum model

In this section we sketch a solid-void continuum model to describe the
inelastic process in solids. To be in agreement with the solid-solid phase mo-
delling (Pagano et al., 1998) we assume that the thermomechanical aspects of
an inelastic process are completely determined by the free energy of a solid-
void continuum (a body with defects), denoted by ¥, and by the dissipation
functional @ (collectively denoted by L; as a function of ¥ and &).

As an example, let us consider (cf. Pagano and Alart, 1999)

V(E,Eq,2,0) = (1 — 2)W.(E, 0) + £2U4(Eq, 0) + Wins(£2,0)

where (2 is the volume fraction of voids in the body, ¥, the free energy of
the body without defects, ¥, the free energy of the damage phase, ¥;,: the
interaction energy between the solid-void phases, and E; the defect measure.
By assumption, ¥(-, §2,6) has multiple local energy minima corresponding to
the solid and void phases. For our purpose we choose

1 O
poe(E,0) = SCe[E]- E—~ Cv (6 — Oc)y - (E+Eq) — 7 po(6 — 0c)°

1 C
po%a(Eq, 0) = 5CalEa) - Eq+ Ov(0 — Oc)va - (E+Ea) = 2 po(6 — 6c)”

Tint(£2,0) = @[Q — 2]+ M(02)

where vy and 7y, are the Griineisen tensors defined by (cf. Stumpf and Saczuk,
2000)

’Y=po(9

0*w N\ -1 0%y, N 0%y -1 5%,
392) 900E "d"""(" 662) 900K,

0. is the characteristic temperature of the material, Cy the specific heat at
constant volume and C(6), M(§2) known material functions.

The form of the interaction energy ¥;,; can be used to define the convexity
or non-convexity of the potential, and thus the stability or instability of the
material behaviour. In general, we expect that {2 minimizes the solid-void
phase energy ¥;p;.

It is assumed that the state variables (E, Eg4, £2,8) obey the following con-
stitutive laws
ov o o

e:a_E Sde:éé; AE@QLP n=—— (61)

S ol



ON NONLOCAL GRADIENT MODEL OF... 229

where A is the thermodynamic function associated with the fraction f2.
Dissipation inequality (4.4) suggests assuming a dissipation potential @ as
a function of E, E; and (2. In terms of @ one can write then the constitutive
laws, see Eqgs (6.1), in the complementary form
0P 0P od
= — G — A= ——
OE OEy a1

where S, and Sy, are the irreversible parts of the stress tensors S and Sg.

v

7. Conclusion

In this paper a nonlocal gradient model of inelastic heterogeneous me-
dia is presented, which can be considered as a framework general enough to
account for mechanisms in a material with different lengthscales by using a
6-dimensional non-Euclidean manifold structure and including strain gradient
terms. This enables derivation of various nonlocal and gradient, theories by
introducing simplifying assumptions. Balance laws for physical and configura-
tional forces on a macro- and microlevel are derived and boundary and trans-
versality conditions are given. The dissipation inequality and the constitutive
modelling are discussed taking into account also relaxation processes. As an
application a solid-void continuum model is considered.
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Nielokalny model gradientowy niesprezystych oérodkéw heterogenicznych

Streszczenie

Celem pracy jest zbadanie wplywu nielokalnodci na fizyczne i materialne réw-
nania pola oSrodkéw heterogenicznych. Biorac pod uwage, ze plastyczna deformacja
w metalach lub zniszczenie w kruchych i ciggliwych materialach rzadzone sg przez fi-
zyczne mechanizmy na réznych poziomach skali, wprowadzono 6-wymiarows strukture
z dwoma lokalnie zdefiniowanymi wektorami do modelowania materialnego zachowa-
nia oérodka na poziomie makro- i mezo- lub mikroskali.

Wykorzystujac wariacyjna procedure otrzymano fizyczne i materialne prawa bi-
lansu, warunki brzegowe i transwersalnosci dla makro- i mikrodeformacji o§rodkéw he-
terogenicznych. Przedstawiona nier6wnoéé¢ dyssypacyjna zawiera czlony relaksacyjne
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proceséw transportu. Sformutowane réwnania konstytutywne wyrazono przy pomocy
miar makro- i mikroodksztalcenia, ich gradientéw i przyrostéw oraz tensora anizo-
tropii, gdzie ostatni argument moze by¢ traktowany jako miara sprzezenia pomiedzy
odksztatconymi makrostanami i kompatybilnymi mikrostanami.

Przedstawiony w pracy model dostarcza podstaw, ktére poprzez wprowadzenie
uproszczajacych zatozefi umozliwiaja otrzymanie réznych postaci nielokalnych i gra-
dientowych teorii. Jako przypadek szczegdlny rozpatrzono model typu cialo stale-
pustka.
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