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The considerations concern the steady state of a non-linear discrete
three-degree-of-freedom system containing a torsional damper. The sys-
tem vibrates under harmonic excitation. The analysis takes into account
structural friction and linear viscous friction of a ring floating in a plun-
ger filled with a high-density silicon oil. A uniform pressure distribution
between the friction discs is assumed. The influence of the main para-
meters such as: external load amplitude, unit pressures, linear viscous
damping, geometric parameters and amplitude-frequency characteristics
are analysed. The equations of motion of the examined power transmis-
sion system are solved by a slowly-varying-parameter method and digital
simulation.
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1. Introduction

Phenomena described in the paper are very important for engineers who
aim at improving the construction of frictional dampers. Traditional professio-
nal literature treats frictional dampers, frictional clutches and brakes as joints
of rigid bodies. Therefore, the efect of natural damping has been neglected.
The autor of this paper takes into consideration the elasticity of the material
of co-operating elements in a frictional damper. Frictional torsion dampers are
widely applied to to many devices and machines, e.q. to fuel engines. In the pa-
per a three-degree-of-freedom system, reduced to a two-degree-of freedom one
is examined. The problem is investigated on the assumption of a uniform di-
stribution pressures and uniform friction coefficient. Structural friction occurs
between the cooperating surfaces of discs 2 and plunger 1 (Fig.1). The discs 2
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are pressed down to the plunger 1 by means of the springs 3. Viscous friction
arises due to the ring 4, which is suspended and immersed in a high-density
silicon oil that fills the plunger. An electrorheological fluid FL or ML as well
as magnetostricitive suspension can be substituted for the silicon oil. In the
case of electrorheological fluids and suspensions, the medium density can be
changed, hence the damping by means of current control can be modified as
well. Therefore, the damping of vibrations in the system can assume an active
form. The influence of linear viscous damping and structural friction on the
damping of vibrations in the system with the uniform distribution pressure
is considered, too. The problem of deriving precise mathematical description
of the structural friction is very complicated because of the complexity of the
friction phenomena as well as difficulties in describing stress or strain states
present in the slip zone. Therefore, the mathematical description is based on
many simplifications. The friction forces are assumed to be in accordance with
the Coulomb law. The discs are made of Hookean materials. The friction is
fully developed in the slip zones and does not appear outside them. Theoretical
results show good agreement with experimental data.
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Fig. 1. Physical model with bilinear hysteretic and viscotic damping of the frictional
torsion damper; M = M (1, A1,¢1)

More advanced techniques utilize viscoelastic properties of a given damper
as the source of energy dissipation. A proper selection of geometric and dyna-
mic parameters can considerably decrease vibration amplitudes near resonant
frequencies or shift these dangerous regions away from operational frequencies.
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To accomplish that one must create a mathematical model which can reflect,
possibly precisely, most aspects of a real system.

The influence of geometric parameters and external loads on the system
response are analysed. In this area, most of the work has been restricted to
the analysis of a one-degree-of-freedom system (Gatkowski, 1981; Giergiel,
1990; Grudzifiski et al., 1992; Iwan, 1965; Osiniski, 1993, 1998; Skup, 1991;
Szadkowski and Morford, 1992; Zagrodzki, 1994).

In a series of three papers Caughey (1960) successfully investigated the
response of a one-degree-of-freedom system to both harmonic and random
excitations, and then went on to treat the problem of forced oscillation of a
semi-infinite rod exhibiting weak bilinear hysteresis. In the paper by Kosior
and Wrébel (1986) a 2-DOF system with an iron strip (dynamical vibration
eliminator) with structural friction and viscotic damping was examined where
the authors used a method of digital simulation.

2. Equations of motion of the system

We assume a three-mass model of the mechanical system which contains
a frictional torsion damper as shown in Figure 1.
The equations of motion of the considered system can be written as follows

Ligi + M(p1, A1, ¢1) + Cpaz — ¢33) = M(t) + My,
Iy$oa — M(p1,A1,¢1) =0 (2.1)

I3psz — C(p2n — ¢33) =0

where
I, I, I3 — mass moments of inertia of the driving and driven
part, respectively
P11, P22, P33 - angular displacements
M(p1,A1,1) — damper torque in a cycle represented by a structu-

ral hysteresis loop (Fig.2) dependent on the relative
displacement and sign of the velocity

C - viscous damping coefficient (Fig. 1)

M(t) + My, — variable engine torque described by the constant ave-
rage value M,, and discrete torque M (t) in the form
of harmonic excitation, i.e.

M(t) = Mg cos wt (2.2)
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and
M, - excitation amplitude
w - angular velocity of the excitation torque
i - time.
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Fig. 2. Hysteresis loop in the frictional torsion damper

In order to determine the hysteresis clutch torque M (¢, A1, 1), we shall
apply the results obtained by Skup (2000), thus

M(p1, A1, ¢1) = 23)
= i(i\/ Ay + sgngiy/ Ay + ¢1sgngy — 1\/ 24, - 1Sa‘liﬂsi’n/%ll)
V73 \V?2 2 2
2
K1Y o 208(ky + k9) - 3
A 6 S k[kz Y= 27r,u,pR3 (24)
ﬂ:%? ky = Ghy ks = Ghy
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73 — nondimensional parameter
ki - stiffness of the discs

k2 — stiffness of the plunger

hi - discs thickness

ha - plunger thickness

p — friction coefficient

p — unit pressure

R - external radius of the discs
G - shear modulus.

Introducing new variables ¢; = @11 — @12 and @2 = @12 — @13 in the form
of relative angles of torsion, we can reduce equations (2.1) to two second-order
nonlinear equations describing the relative torsional vibration

P1+p1o2 + filpr, A1,91) — B = zcoswi

(2.5)
P2 +np2 — fi(p1, A1, ¢1) =0
where
P1 = P11 — Paa P2 = P22 — P33 P2 = P22 — P33
LI M
P = ¢ I, =2 B=—-"
I I+ 1, I (2 ﬁ)
M, . M(p1,A1,¢ :
zzT[—}- f1(<P1,A1,<,01)= (WI = (Pl)
1 z
C . M(p1,A1, ¢
n= _I_ f?(‘Pl:Ala‘Pl) — (‘PII 1 (pl)
3 2
3. Solution to equations of motion
Let the solution to system of equations (2.5) be approximated by
p; = A; cos 0; 1=1,2 (3.1)
where
01 = wt — ¢ 02 =01 — ¢ (3-2)

and A;, ¢;, 1 = 1,2 are slowly varying functions of time. Thus

Q0 = A,: cosf; + quai sinf; — A;wsinb; 1=1,2 (33)
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By analogy to Lagrange’s method of the variation of a parameter, it is per-

missible to set . )
A;cos0; + Ajp;ising; =0 1 =1,2 (3.4)

Thus . -
$i = wAi; cos ; — A;jw? cos 0; — wA; sinb; 1=1,2 (3.5)

Substituting equations (3.5) into the equations of motion (2.5), using formulas
(3.2) and (3.4) as well as the slowly varying parameter method, we obtain

_ p1Agw cos ¢y
2

27
1 : ; 1 .
tox ff1(A1,91)sm91 df) — wA, = —Zzsind,
0

1 . 1 .
——2-A1w2 + wA; ¢ + EplAgw sin ¢y +

2
+'2}7?/.f1(A1,61)00391 d91 = —%zcos ¢1
0

2
—wAg - %nAgw - "05;"2 / f2(Ay1,0,)sin 6y df; + (3.6)
0

si

2
+ ;f:! /fz(A1,91)COB 61 d6; =0
0

27

. 1

wAspy — §A2w2 - 00287352 /f2(A1,91)C08 6, do, -
0

27
_Siné /fg(Al,f?l)sinﬂl df, =0
2
0

As the variables A; and ¢;, ¢ = 1,2 have been assumed to be slowly
varying, they remain essentially constant over one cycle of #;. Thus, equations
(3.6) can be averaged over the cycle of ;. _

Steady-state equations (3.6) can be obtained when A; = ¢; =0, i = 1,2.
If we introduce the notation

2% 27
1 1 .
C(A) = ;/f1(41,91)60391 dé, S(4) = ;ffl(Alaol)Slnal do,
0 0

(3.7)
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equations (3.6) take the following form

wpy Ag COS ¢y — (A1) = zsing,
z (3.8)
——A1w2 + p1Aswsin ¢y + C(IAI) = zCOo8 ¢
z
ndaw 4 S(A;) cos ¢o 3 C(A,)sin ¢y —0
Ig I2 (39)
WAy + C(A;) cos ¢y " S(A1)singy _ 0

Iy i

Because of the discontinuity of the function M (¢, A1, 1) at ¢ we confine
the analysis to one half-period of the vibrating motion. The integration (0, 2)
will be divided into the following two intervals: (0,7), when sgn¢; < 0 and
(m,2m) when sgn¢; > 0. This is a procedure adopted by Giergiel (1990) and
Osinski (1998).

Thus, by substituting formulas (2.3), (2.6) and (3.2) into equations (3.7),
and by integrating, we obtain

2

C(A)) = ;/fl(Al,b”l)cos(?l df, =
0

-

T 2
1
— --——(chosz dz¢5@¢l<g+chosz dzisgmm)g) = 2KV A
0 T

wl,
(3.10)

i

27
1 )
S(A) ;ff1(41,91)311191 df, =
0

T 27
1 . .
= #(/Msmz d2 | sgn 1 <0 +/Msmz dzsgn ¢1>0) = —Ky/ Ay
0 T

i,

where M = M (1, A1, ¢1) and
K= ————2\/5
3ml,\ /M3

The variable ¢; can be eliminated from the foregoing equations by squaring
and adding equations (3.8).

(3.11)



504 Z.SKup

This gives

a®A2 + w2 AL (WP A — 204, sin ¢y) +

+2811/A1[aAz(cos po + 2sin ¢y) — 2w A, + 52 A, = 2°

where .
Q= pw ﬁl = T
z
Equations (3.9) can be rewritten in the form
. Agh Agg
singy = —— o8 g = —==
VA VAL
where
v — 89 K v - 2w
h = %5 V= nw 6-}—2- g= £5

By squaring and adding equations (3.14) we obtain
Al = QUA%

where w = h% + g%

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Equations (3.14) can be used to eliminate the variable ¢ in equation
(3.12). Thus, substitution of equations (3.14) and (3.16) into equation (3.12)

and rearranging gives

A} +bAS +eAl+f=0 (3.17)
where
_ 2
b= Z2V% (0 1 26,u) f= o
ww (3.18)
1 :
e = ——[a® + 5w + 2P (g + 2h)]
ww
Finally, we introduce the following notations
ay — nondimensional vibration amplitude, ay = Az /@4t
wst — static displacement in the form of a relative angular displa-
cement of the damper discs, g = My/k
0 — nondimensional frequency, v = w/wp
wp - natural frequency of the system, wy = \/k/I,

k,G - shear modulus, k = Gly/l = nGd*/(32I)
d - diameter and length of the damper shaft
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gives
wM}
a3 +tia3 +uai+m=0 a) = —Ez—na,g (3.19)
where o 2 oy
e
By substitution
t
ag =y — Zl- (3.21)
we reduce equation (3.19); to the following form
y* +poy® + qoy +7 =0 (3.22)
where
3 1, /1
Po=1u~— gti go = Efl(ztf - ’u)
(3.23)

3

— 1 2 4
T-—m'l"lﬁutl 256t1

Because ¢g # 0, the roots of equation (3.22) are determined from the following

equations
A q
2 — — o — —_—
Y +yvA P”(z 2\/',?-—;;;) 0 324)

y? —y z\—pu+(%+——-——~—2 ,r-_qn_po)ZO

It results from the analysis of equations (3.24) that only one root of equation

(3.24), is a real number.
Therefore
_/\—P0+\/—(A2“Pﬁ)'—290\/x_?0 (325)

Y
2v/X = po

where A can be determined from the following equation

2% —poA? —drd + (4por — g2) =0 (3.26)

By substitution
A=z +w (3.27)
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where w;, = po/3, equation (3.26) can be reduced to the form

B4En+n=0 (3.28)
where )
_ Lo _ 2P0, PO\ _ 2
§=—3gp—4r == (41" 9 ) G (3.29)
Because
7, €, 3.30
Ty (3:30)
thus

Y N S Y L S
zl-—\/ 2+1/4+27+\/2 Lt (3.31)

In this way the formulation of the steady-state problem has been reduced
to a set of two equations (3.19) expressed in terms of two unknown non-
dimensional amplitudes a; and a,.

Equation (3.19); is solved by the Newton-Raphson Iterative method. One
from the ten roots of equation (3.19), satisfying the physical condition is
chosen in the analysis. This root takes a specific value of the deformation am-
plitude in the examined system. For such a value ag the value a, is calculated
with formulae (3.19) in the function of forced vibration frequency.

Numerical simulations carried out for the above formulas incorporated the
following data:

hy = 0.003 m ha = 0.006 m R=10.08m
[ =0.015m d = 0.055 m I, = 0.35 kg m?
I, = 0.09 kg m? My = 100 Nm p=0.20

P = 0.6 - 105 N/III2 I3 = 0.002 kg m2

4. Conclusions

In the paper the effect of most important parameters of the vibrating
frictional damper system on resonant amplitudes is discussed in detail.

On the basis of the obtained results it has been found that all resonance
curves start from the nondimensional resonance amplitude and tend asymp-
totically to zero in the postresonance range. They also tend to a more smooth
form in that range.



STRUCTURAL FRICTION AND VISCOUS DAMPING... 507

0 05 1.0 15 20 25 30

Fig. 3. Resonant curves for various values of the unit pressure p;
p1 =0.8-10°Nm~2, py =1.2-10°Nm~2, p3 = 1.5 10° Nm~?
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Fig. 4. Resonant curves for various values of the viscous damping coefficient c¢;
¢; = 1.0Nms, ¢ = 1.3Nms, ¢3 = 2.0 Nms
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Fig. 5. Resonant curves for various values of the friction coefficient p; py = 0.24,
e = 0.34, pg = 0.44
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Fig. 6. Resonant curves for various values of the friction coefficient M;
M, = 120Nm, M5 = 200 Nm
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The graphs shown in Fig. 3 to Fig. 6 illustrate these phenomena. Moreover,
one can observe a decrease in the resonance amplitudes and their rightwards
shift for growing pressure (Fig. 3), viscous damping (Fig. 4), friction coefficient
(Fig. 5) and excitation amplitude (Fig. 6) with the other parameters kept con-
stant. The amplitudes of the first resonance are smaller than the vibration
amplitudes of the second one. In the extra resonance range the vibration de-
creases rapidly to zero (but asymptotically). A distinctive feature of this sys-
tem is that the vibration amplitudes of the frictional part of the clutch plates
are smaller by an order than the amplitudes of the ring immersed in the liquid
with a proper damping coefficient.

The effect of reduction of the vibration amplitude is caused by the existence
of the optimal pressure and friction coefficient of the material, which enhances
greater energy dissipation. The increase in the energy dissipation results in a
more intensive vibration damping in the examined power transmission system.
The effect of damping is especially big for an appropriate value of the friction
force because the solid zone between the discs in the damper is the greatest.
It is clearly seen in Fig3 to Fig.6 as they show it for the same geometric
parameters and loading but varying pressure p, viscous damping c, friction
coefficient g and loading M. Non-linear effects occur at any frequency and
for any vibration amplitude. For the forced frequency w which is close to the
natural frequency the non-dimensional amplitudes @ assume big values.

The damping effect is the greatest for an appropriate value of the friction
force because the zone of relative slip between the damper discs is the largest.
The effects of structural friction and viscous damping can be used in order to
improve the design methods of dynamic systems.

Finally, it can be said that the efficiency of vibration damping by means
of a frictional damper is largely influenced by the following factors: excitation
amplitude, stiffness of the shaft and discs, unit pressure, friction and viscous
damping coefficient. It seems that the proposed model is interesting from the
engineering point of view.
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Thumienie drgan skretnych poprzez tlumik cierny przy uwzglednieniu
tarcia konstrukcyjnego i wiskotycznego

Streszczenie

Rozwazania, przeprowadzono dla stanu ustalonego nieliniowego dyskretnego
uktadu mechanicznego zawierajacego ttumik drgan skretnych o trzech stopniach swo-
body. Drgania wystepuja pod wplywem wymuszenia harmonicznego. Badany uklad
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zawiera specjalny tlumik cierny, uwzglednia tarcie konstrukcyjne oraz liniowe tlu-
mienie wiskotyczne plywajacego pierScienia wewnatrz bezwladnika wypelnionego ole-
jem gilikonowym o duzej gestoéci. Zagadnienie rozpatrywane jest przy zalozeniu
réownomiernego rozktadu naciskéw wystepujacych pomiedzy wspdlpracujacymi po-
wierzchniami tarcz ciernych. Zbadano wplyw amplitudy obciazenia zewnetrznego, na-
ciskéw jednostkowych, liniowego ttumienia wiskotycznego oraz wspolczynnika tarcia
na charakterystyke amplitudowo-czestotliwo$ciowa ukladu. Réwnania ruchu badanego
ukladu mechanicznego rozwiazano metoda wolno zmieniajacych sie parametréw oraz
symulacji cyfrowej.
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