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Recently, thin piczoelectric foils or fibers with a thickness between 10 pm
and 30 um have been manufactured and used as sensor/actuator com-
ponents cf smart composite structures. The paper deals with the ma-
thematical analysis and numerical simulation of such smart composite
structures. A concept for laminated thin finite shell elements with ac-
tive and passive layers considering three different approaches is intro-
duced. In a test casc the applicability of these different approaches is
investigated and discussed. To verify the suitability of the algorithm for
analyzing composite structures a practical example of a composite consi-
sting of piezoelectric fibers embedded in a matrix material is considered.
At first, the introduced composite shell elements are used, where the
piezoclectric fibers are modeled as active layers in a smeared form. At
second, a discrete concept is used, where the piczoelectric fibers are mo-
deled as one-dimensional truss-like finite elements which are embedded
into conventional finite elements by the penalty technique. These two
approaches are discussed and compared.
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1. Introduction

Over the past few years the smart structures concept has been given incre-
asing attention in many branches of engineering, and several novel engineering
applications have been developed. Smart structures, or to be more precise
structronic (structure + electronic) systems, are characterized by synergistic
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integration of active materials into a passive structure connected by a control
system to enable an automatic adaptation to changable environmental condi-
tions. Piezoelectric materials (e.g. PZT, PVDF) are widely used as distributed
sensors and actuators in smart structures, where especially hybrid composites
~ a combination of fiber-reinforced angle-ply and piezoelectric laminae — are
very powerful smart material systems (Chee et al., 1998; Koppe et al., 1998,
Gabbert and Weber, 1999; Sporn and Schoenecker, 1999). Such hybrid com-
posites are characterized by a high structural conformity preventing major
disturbances of the mechanical behavior as a result of the integration of ac-
tuator and sensor materials into the structure. In general the active material
forms an integral part of a load bearing structure itself and does not cause
significant changes in the passive behavior of the structure.

In vibration control of structures commercially available piezoelectric wa-
fers (e.g. PI Ceramic, Germany; ACX, USA, etc.) are very common active
materials. Such thin wafers are glued on the surface of the base structure or
can be embedded in a composite during production.

It is very time-consuming and expensive to measure the macroscopic (ho-
mogenized) material data which are non-linear functions of the properties as
well as the arrangement and the volume fraction of constituents in the compo-
site. Alternatively, analytical methods (e.g. based on the Mori-Tanaka mean
field approach) as well as numerical methods (e.g. based on the finite element
analysis of a representative volume element) can be employed to calculate ho-

mogenized material tensors of a heterogeneous material system (Gabbert and
Weber, 1999; Levin et al., 1999).

Powerful simulation tools are required for the analysis and the design pro-
cess of complex engineering smart structures with integrated piezoelectric wa-
fers and fibers as actuators/sensors. Here, the finite element method (FEM)
provides an effective technique. Due to its wide-spread use it has become a
theoretically and practically established method for a wide range of appli-
cations. It is also proved to be a suitable method for solving coupled piezo-
electric field problems (Berger et al., 1999). Over the past years significant
progress has been made in the development of finite elements for coupled elec-
tromechanical fields, but even today only special continuum finite elements
are available in general purpose finite element codes, such as ABAQUS and
ANSYS (Lin et al., 1994). Consequently, we developed a general purpose finite
element simulation and design tool for piezoelectric controlled smart structu-
res. The basis of this development was the standard software package COSAR
(COSAR, 1992). The main new features are an extended library of multi-
field finite elements with coupled thermoelectromechanical degrees of freedom
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(dof's), a substructure technique which allows one to separate passive struc-
tures and structures with coupled electromechanical dof's, numerical routines
to solve static and dynamic problems, where also control algorithm and opti-
mization tools for optimizing the actuator/sensor placement can be included
(Berger et al., 1999; Gornandt and Gabbert, 2002; Gabbert and Weber, 2000).
Controller design tools such as Matlab/Simulink can be applied via a standard
data interface (Berger et al., 2001, Gabbert et al., 2001). New graphical fe-
atures, e.g. description of material properties, application of electric loads,
graphical representation of electric field values, etc., were added to provide a
user-friendly simulation and design software.

In the following, a brief review of general theoretical fundamentals of our
coupled electromechanical finite element analysis is given first. Then a concept
for modeling thin piezoelectric composite structures is presented, where each
active layer consisting of piezoelectric wafers or fiber bundle embedded in a
matrix material is modeled as an anisotropic coupled electro-mechanical con-
tinuum and analyzed by a recently developed layered thin shell finite element.
For comparison an alternative discrete concept is used, where the piezoelec-
tric fibers are modeled as one-dimensional truss like finite elements which are
embedded into 3D finite elements by a penalty technique.

2. General piezoelectric finite element formulation

The coupled electromechanical behavior of a polarizable (but not magne-
tizable) piezoelectric smart material can be modeled with sufficient accuracy
by means of linearized constitutive equations. These linear equations can be
derived from an energy expression (Tiersten, 1969) in a quadratic form of the
primary field variables, i.e. mechanical strain & and electric field E, on the
assumption that the temperature distribution @ is a priori known or can be
calculated independently of the electromechanical field. This results in the
following constitutive equations

oc=Ce—eE—-(0
(2.1)
D=e'e+KkE+7m0

In a compact form the equations (2.1) can be written as

U=Jy-6 (2.2)
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with
' =o' D" AT =[e",-ET] 6 - €', —7"06)

and the stress vector o'

= |o11,0922,033,012,023,031], the strain vector
€' = [e11.€90,€33, 2612, 2693, 2e31], the electric field vector ET = [E1, Es, Ej3],
the [9x 9] hypermatrix J containing the [6 x 6] elasticity matrix C, the [6x 3]
piezoelectric matrix e, and the [3x 3] dielectric matrix &, the vector of thermal
stress coefficients (, the temperature variation  of the body with respect to
an initial temperature, the vector of electric displacements D' = [Dy, Do, D3],
and the vector of pyroelectric coefficients w. This general form is suitable to
model any anisotropic behavior, e.g. smeared piezoelectric fiber layers or layers
with interdigitated electrodes, etc.
The mechanical balance equations (Cauchy’s equation of motion)
oijj + bi = pii; and the electrical balance equation (4th Maxwell equation)
D;; = 0 can also be written in a compact matrix form as

L'&+b—pg=0 (2.3)

where ¢ = [u'¢] is the vector of generalized displacements including addi-
tionally the electric potential ¢. Using the linear strain displacement relation
€ij = (u;; + u;,;)/2, the relation between the electric field E and the electric
potential F; = —¢; which can be written in a matrix notation as vy = Lq, and
the constitutive equation (2.2), the balance equation (2.3) can be rewritten as
L'JLg-L"E+b- pq = 0. The mechanical stress boundary conditions and the
electric charge boundary conditions can be written as 7 — 7 =0 on O,, with
T = [ET@], where %, Q are the traction vector and the surface charge, re-
spectively. Additionally, the boundary conditions of the primary variables, i.e.
prescribed displacements %; and the electric potential ¢, have to be fulfilled.
The balance equations together with the boundary condition can be written
in a weak form as

5y = féqT(LTJLq LB+ b pit) dV + f 5T (F-1)d0O=0  (24)
Vv O

In a finite element discretization the interpolation functions N(z) are used
to approximate the primary field variables g elementwise by the nodal degrees
of freedom (dof's) g,. In a matrix form these approximations can be written
as q(z,t) = N(z)q.(t). Application of the matrix differential operator L on q
results in Lg = LNg, = Bg,. Introducing the shape functions into the weak
formulation Eq. (2.4) of the coupled field problem and following the standard



MODELING OF SMART COMPOSITE SHELL STRUCTURES 579

procedure (partial integration, Gauss integral theorem) the semidiscrete form
of the problem can be derived as

M.q, + R.q. + Keq, = F., (2.5)
with

M, — / NT pN dV K, = / BTIB dV
V. i
(2.6)

F. :fNdeV+/BT§dv+/NTa=do
Ve Ve Oe

Additionally, a velocity proportional damping is taken into account in Eq.
(2.5). The finite element library for piezoelectric controlled smart structu-
res developed on the basis of the above given equations includes solid ele-
ments, plane elements, axisyminetric elements, rod elements as well as spe-
cial multilayer composite shell elements (Berger et al., 1999; Gabbert et al.,
1999, 2000b; Koppe et al., 1998). The shape functions of the finite elements
can be linear or quadratic and the isoparametric element concept was used
to approximate the element geometry. The solid element family consists of
a basic brick-type element (hexahedron) and some special degenerated ele-
ments derived by collapsing nodes. The curved quadrilateral and triangular
thick multilayered shell elements were developed on the basis of the discrete
layer theory (Koppe et al., 1998). These elements are more efficient compared
to the conventional isoparametric 3D hexahedron elements. The solution of
the fully coupled thermo-electro-mechanical three-field problem is reported in
Gornandt and Gabbert (2002). Recently, we extended the finite element li-
brary by quadrilateral and triangular curved thin shell elements based on the
classical Kirchhoff-Love hypothesis (see Section 3).

3. Piezoelectric composite shell structure concepts

3.1. Element formulation

The most effective technique to analyze thin-walled structures is the appli-
cation of finite shell elements developed on the basis of the classical Kirchhoff-
Love hypothesis. Among the huge amount of different types of thin shell ele-
ments in our FEM software COSAR the SemiLoof element family, originally
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proposed by Irons (Irons, 1976) is preferred to solve complex engineering pro-
blems. This preference results from a long time of practical experiences in
several fields of application, where the elements have shown good overall ac-
curacy and robustness in comparison with other elements. Consequently, we
selected the SemiLoof element for extension to a smart shell element. The ele-
ment contains the displacements u, v, and w at all 8 nodes, and additionally,
at the two Gauss integration points of the four edges rotations in tangential
direction are introduced which are allocated to the mid-side nodes (i.e. a mid-
side node has the dofs u, v, w, ¥; and ¥3). Two families of shape functions
are defined for the finite element formulation. Lagrangian polynomials are used
for the displacements and Legendre polynomials for the rotations. Due to the
definition of the rotations and displacements the element includes 32 dof's.
The classical laminate theory is applied to simulate thin composite structures.
Consequently, the stresses vary linearly over the thickness direction. To inclu-
de the electromechanical coupling into this element we have developed three
different approximations which result in the following element types:

Element S1: The electric influence is taken into account in terms of distri-
buted forces and moments only.

Element 52: The difference of the electric potential of each active layer is
taken into account as additional element dof's (poling in normal direc-
tion).

Element S53: Each element node has as many additional electric dof’s as
there are active layers in the composite (in-plane electric poling).

The test results demonstrate that in thin shell structures these elements
provide sufficient accuracy in the analysis of the global structural behavior of
smart piezoelectric composites at a drastically reduced total number of dof’s
compared with a 3D analysis (see Seeger et al., 2001).

Element S1

In the first step the forces and moments on the edges of each active element
are introduced to simulate the influence of the electric field at the structure.
These equivalent forces and moments are calculated in such a way that they
result in the same strain field as caused by the electric field. Only the electric
field normal to the shell mid-surface is regarded because thin actuators with
electrodes applied at the top and the bottom surface of an active layer are
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considered here. Additionally, the electric field E3 in the thickness direction z
is assumed to be constant over the thickness h; of the active layer ¢
1

Ea = Etﬂﬁf’i (3.1)
1

Fig. 1. Electric forces and moments of smart SemiLoof element S1

The integration of the element stresses over the thickness direction results
in forces and moments which are oriented in the normal and tangential direc-
tion to the element edges, respectively. These forces and moments can be split
into an electric and a mechanical part. Due to the above given assumption
the electric part of the active layer results in membrane forces f; only (see
Figure 1). The reduction of these forces to the mid-plane of the shell results in
additional moments. The electric membrane forces and the electric moments
acting on the mid-plane of the element can be calculated as

€31
.fi = —/ETE:,; dz = — | ezs | Ad;
z 0
(3.2)
€31
m; = fzi = — | ez | 2A¢;
0

where z; is the distance of the ith active layer (i = 1,...,n) from the mid-
plane of the shell element. In this formulation no electromechanical interaction
is included. The electric influence is only taken into account on the right hand
side of equation of motion Eq. (2.5). The element stiffness matrix K. of Eq.
(2.6) consists of the original SemiLoof stiffness matrix only.
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Fig. 2. Smart SemiLoof element S2

Element S2

In this extension of the SemiLoof element the electromechanical coupling is
taken into account. In comparison to element S1, this results in an extension
of the element stiffness matrix K. as given in Eq. (2.6). The electric field is
assumed to be the same as in element S1 which results in Eq. (3.1). Again, a
complete metalized and electrodized surface of each active PZT element layer
is assumed. The electric field is represented by the difference of the electric
potential A¢ between the bottom and the top of the active layer, which is
assumed to be constant over the whole active element layer, and consequently,
no shape functions are required to approximate the electric field in the finite
element. The element is enhanced by additional dofs — electric potential dif-
ferences Ag¢; — per each active layer i. These additional dofs can be added to
the midpoint of the element as given in Figure 2. The stiffness matrix of the
extended SemiLoof element consists of the original pure mechanical stiffness
matrix KE;”"‘) of the SemiLoof element, the new pure electric stiffness matrix
K(¢®) and the coupling matrix K™ which can be derived on the basis of the
classical Lagrangian finite element formulation as

K™ K (o, £im
{ } _ (3.3)
Ap, £

K(eme)T nge)
K{mm) — / B 'CB™ 44 K(me) = / B "eB®) 44
Ae Ae

with

(3.4)

K = [ B kB dA
Ae
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In Eq. (3.3) A, contains the voltage differences of each active element layer.
Consequently, the quadrilateral SemiLoof element consists of (32 + n) dof’s
finally, where n is the number of active layers. It should be mentioned here,
that also an improved version of this element type has been developed, im-
plemented and tested, where we assumed a linear electric field distribution
(rather than a constant one) via the thickness direction of the active layer
(quadratic potential). But it could be shown that in thin shell applications
the assumption of a constant electric field results in sufficiently accurate re-
sults (see Seeger et al., 2001). Consequently, this element is prefered due to
the lower computational cost.

Element S3

Another way to couple the electric and the mechanical fields of the Se-
miLoof element is to neglect the field normal to the shell-midsurface and to
simulate the field in the plane of the active layer only. In this case at each ele-
ment node one electric dof per active layer has to be added. These additional
eight dof's per each active layer are used to approximate the distribution of
the electric field in the ¢th layer by quadratic shape functions N,

®;(61,62) = Z Np(61,&2)biL (3.5)

L=1

With these shape functions the electric part B(®) of the matrix B, which
contains the derivatives of the shape functions with respect to the in-plane
local co-ordinate system (z1,z3), can be calculated. The stiffness matrix is
then calculated as given in Egs. (3.3) and (3.4). This element has (32 + 8n)
dof’s in total, if n is the number of active layers (Figure 3). Element S3 was
especially developed to analyze smart structures with interdigitated electrodes.

3.2. Comparison of elements

Three different types of active SemiLoof shell elements were presented in
Section 3.1. These elements are based on the same basic shell element for
the approximation of the mechanical field. But there are some differences re-
garding the approximation of the electric field. Comparing two elements S1
and S2, no differences can be observed if the actuator layer is driven by a
given electric voltage. Element S1 can not be used to calculate the sensor
voltage, because there is no direct coupling between the mechanical and the
electric field. Of course, it is possible to calculate an electric potential caused
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Fig. 3. Nodal degrees of freedom (dofs) of smart SemiLoof element S3

by a given deformation, but without taking into account the coupling of the
strain field and the electric field the calculated potential is higher than the
real value calculated correctly by element 52. Element S3 was developed for
applications, where the electric field is oriented parallel to the mid-plane of the
shell. Such behavior is typical in active layers with interdigitated electrodes.
It is possible to use elements S1 and S2 to simulate those structures too, but
only to study global effects. Element S3 allows one to handle interdigitated
electrodes directly and to study local effects. But here the main problem of
the analysis is the unknown direction of the polarisation vector which can
differ at each point of the structure. Of course, in principle, the polarisation
vectors can be calculated by applying nonlinear models including the domain
switching and domain wall changes under a high electric and mechanical field
(Kamlah and Tsamakis, 1999). For the purpose of an approximate determina-
tion of the final poling direction a very simple approach is used here. At first,
the electric potential alone is calculated in an isotropic dielectric medium. We
assume that in an ideal case the vector of the poling direction at each point
(we have used the integration points of the finite elements) corresponds with
the direction of the gradient of the electric potential field. Finally, the material
properties known for a given poling direction are transformed to the calculated
new poling direction at each integration point. These data are then used in
the calculation of the coupled electromechanical field.

In the following a simple test structure — a clamped plate (Figure 4) with a
pair of bounded active layers (Gabbert et al., 1999, 2000b; Kdppe et al., 1999)
-~ is used to compare the new active thin shell elements with solid elements.
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Fig. 4. Plate with applied actuators
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Fig. 5. Comparison of the shell and solid

The bending deformation results from contraction and elongation of the pie-
zoelectric actuators glued at the upper and lower side of the plate. Figure 5
shows the deflection calculated with different element types. Table 1 shows the
differences in the deflection of the tip of the plate. In the second investigation
the thickness of the plate was varied. The results are shown in Fig. 6 and Fig. 7.
These different approaches show very small variations in the results only. But,
of course, the shell type solutions were calculated with a considerable lower
amount of costs, because the preparation of the input data is much simpler
and the computer time to calculate the solution is much less than in the 3D
case due to a lower number of dofs. This is mainly important in dynamic
applications, where a time integration schema, such as the Newmark method,
is used (see Seeger et al., 2001) to simulate the behavior of a smart structure
in the time domain.
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Table 1. Tip deflection of the plate

Element type 3D S1 S2 S3
ug(z = 110mm) | —0.8262 mm | —0.8371 mm | —0.8371 mm | —0.8375 mm

0
U

-0.4

0.8

/ —8-3D ¢52 AS3|
1.2
-1.6_l/
0 I 2 3 PEE

Fig. 6. Displacement at = 110 mm as function of the plate thickness
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Fig. 7. Error between solid elements and element S2 as function of the plate
thickness in %
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4. Example of using composite shell elements for piezoelectric
fiber structures

The discrete concept is useful for the simulation of problems with a low
fiber volume fraction (fuf) and for an investigation of local structural effects
(e.g. fracture, damage, delamination, etc.). In the following, 3D models are
used to study piezoelectric fiber composites. We consider a structure conta-
ining a series of one-dimensional piezoelectric fibers embedded in the surro-
unding matrix material. As the passive matrix material preferably an epoxy
resin is used which is assumed to be isotropic. The fibers may lie parallel to
each other. By varying the distance between the single fibers different fufs
can be achieved. In this way it is possible to adjust a special fvf, i.e. the vo-
lume percentage of the fibers related to the volume of the whole fiber/matrix
compound structure. In our example we have chosen a relatively small fuf of
about 6%. In this case the fibers are arranged in one layer and the main pa-
rameters of the cross-sectional area perpendicular to the fiber axis are: fiber
diameter: 0.03 mm; distance between the single fibers: 0.0676 mm; thickness of
the matrix material layer: 0.35 mm. At this point it is necessary to come to
a further important constituent as a part of the above described compound
structure — the so called interdigitated electrode. That means that we have to
consider electrodes which consist of thin metal wires arranged in a comb-like
shape (see Fig. 8). The adjacent wires have a distance of about 1 mm. Now we
can imagine the whole compound structure in such a way that the fibers are
aligned in the x3 direction, whereas the thickness of the structure stretches in
the z9 direction. This is shown in a simplified manner in Figure 8.

In the numerical simulation we have compared the solutions between two
discrete finite element models and one smeared concept with shell elements
based on the models presented in Section 3. Both discrete element models are
different by their various element approaches (linear and quadratic shape func-
tions). The linear model consists of hexahedron elements with eight nodes and
piezoelectric truss elements with two nodes whereas the quadratic model con-
sists of hexahedron elements with twenty nodes and truss elements with three
nodes. The passive hexahedron element has three dof's per node (u,usg,us)
and the active truss element has four dof's per node (uj,us,us,@). The fiber
or truss elements were integrated into the matrix structure by assigning the
edge nodes of the volume elements to the nodes of the truss elements by a pe-
nalty method. Furthermore, the electrodes were contacted to voltages of 100 V
and 0V, respectively. Displacement boundary conditions were introduced in
the z;x, plane. Figure 9 shows a characteristic section between two adjacent



U. GABBERT ET AL.

X2

fiber X
X3
matrix material

electrode

Fig. 8. Fiber/matrix composite with an array of interdigitated electrodes
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Fig. 9. Mechanical model of the fiber/matrix compound structure
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clectrodes of the finite element model. Over the thickness of the structure two
rows of volume elements were arranged, each of them having half the thickness
of the structure. The structure was divided into 240 hexahedron elements for
the matrix material and 132 truss elements for the piezoelectric fibers. The
resulting mesh is presented in Figure 10. To compare the results of the discrete
method with the smeared concept the mesh with shell elements of type S3
(see Section 3.1) was prepared (see Figure 11).

Xy

X3

truss element

hexahedron element
012345

Fig. 10. Finite element mesh for the discrete model

X 3

shell element §3

Fig. 11. Finite element mesh for the smeared model
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Table 2 represents the displacements wug of the fiber ends. It can be seen
that the displacement wug which describes the total length change of the fiber

is almost constant over the whole range of the fibers regarded.

Table 2. Displacements of the fiber end points at 3 = 12 mm

Fiber No. 7 0 1 2 3 4 )
Position z7 [mm] ||—0.3380|—0.2704|—0.2028 | —-0.1352|—0.0676| 0
lug- |Linear model 0.1484 | 0.1479 | 0.1477 | 0.1476 | 0.1475 [0.1475
.10% [Quadratic model|| 0.1496 | 0.1485 | 0.1482 | 0.1481 [ 0.1480 [0.1480
mm | Smeared model 0.1381 | 0.1381 | 0.1381 | 0.1381 | 0.1381 |0.1381
5. Conclusion

Recently, thin piezoelectric fibers with diameters between 10 xm and 30 pum
have been manufactured and used as sensor/actuator components of smart
composite structures. In the paper different approaches to simulate the active
behavior of smart structures controlled by such active fibers are presented and
compared. The basis of this investigation is the finite element simulation and
design tool COSAR which has been extended to coupled electromechanical
problems. A theoretical foundation of this extension is presented briefly. The
main focus of the paper is on the modeling of piezoelectric fibers as a part of
an active composite. At first a smeared concept is proposed, where each active
layer consisting of piezoelectric fibers embedded in a matrix material is mode-
led as an anisotropic coupled electro-mechanical continuum and analyzed by
special finite shell elements which have been developed recently on the basis of
the classical SemiLoof element. Three different extensions of this shell element
are presented and compared. Test examples demonstrate that thin composi-
tes controlled by voltage induced piezoelectric actuators can be modeled with
sufficient accuracy by equivalent forces and moments. In sensor applications a
direct electromechanical coupling is needed, where one additional electric dof
per active element layer is sufficient. The homogenized material data which
are required to model active layers in a composite have to be determined by
measurements. The high effort of such measurements can be drastically redu-
ced if additionally analytical and numerical methods are used, e.g. based on
the mean field approach. Wafers with inerterdigitated electrodes can also be
simulated with shell elements, where an additional electric dof per active layer
is required at each element node. Thus, any in-plane distribution of the electric
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field can be taken into consideration, where especially variable poling direc-
tions can be taken into account as well. Secondly, a discrete concept is used,
where the piezoelectric fibers are modeled as one-dimensional truss like finite
elements which are embedded into conventional finite elements by a penalty
technique. Therefore, it is also very simple to vary the fiber volume fraction. It
is shown that even in the case of small fiber volume fractions the accuracy of
the smeared concept based on the shell theory results in a sufficient accuracy
in comparison with a more expensive 3D analysis, where each fiber is taken
into account by single truss elements. This approach is more interesting in the
modeling of local effects such as fiber cracking or delamination.
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Modelowanie ”inteligentnych” powlok kompozytowych

Sreszczenie

Ostatnie osiggniecia w dziedzinie konstrukcji ”inteligentnych” zwracaja uwage
na zastosowanie cienkich folii i wlékien piezoeclektrycznych o grubosci 10-30 um jako
czujnikow i elementéw wykonawczych w aktywnych kompozytach. W pracy zawarto
matematyczna analize i wyniki symulacji numerycznych dla takich wlasnie kompo-
zytow. Wprowadzono koncepcje powlokowych laminowanych elementéw skoticzonych
z warstwami aktywnymi i pasywnymi oraz zaproponowano trzy rézne podejscia, kto-
rych mozliwo$é zastosowania i przydatnosé¢ przedyskutowano dla badanego przypad-
ku. Przy weryfikacji adekwatno$ci zaprezentowanego algorytmu do analizy aktywnych
ukladéw kompozytowych postuzono si¢ praktycznym przykladem laminatu zawieraja-
cego wiokna piezoelektryczne osadzone w materiale osnowy. Poczatkowo uzyto wpro-
wadzone powlokowe elementy skonczone, gdzie wldkna piezoelektryczne zamodelowa-
no jako aktywne warstwy w formie rozmytej. Nastgpnie zastosowano koncepcje uktadu
dyskretnego, w ktorym wilékna piezoelektryczne przedstawiono w formie jednowymia-
rowych kratowo-podobnych elementéw skonczonych wbudowanych w konwencjonalne
elementy skonczone przy uzyciu techniki funkcji kary. Te dwie metody przedyskuto-
wano i poréwnano.
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