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In the paper we demonstrate a neural network-based controller design
and prototyping following the mechatronic approach. A unified treat-
ment of all system components (mechanical, electrical and computatio-
nal) is made possible thanks to the integrated software-hardware plat-
form. The neural network in the presented approach is used to provide a
linearising feedback loop for friction compensation in a robot drive. The
efficiency of the experimental friction identification is improved thanks
to dedicated network architecture. The proposed solution is implemen-
ted in DSP hardware and the simulation results are verified through
laboratory experiments.
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1. Introduction

Increasing demand for systems and devices meeting stringent criteria re-
garding high precision positioning as well as trajectory tracking lead to gro-
wing research activity in the field of motion resistance compensation. It is
reflected by numerous publications in many scientific journals and also fric-
tion modelling and compensation issues being the key thematic sessions at the
most significant control and robotics conferences. kriction can hardly be ne-
glected it introduces highly non-linear and discontinuous dynamics. It is also
very difficult to identify and model analytically. A comprehensive survey of
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friction effects in control tasks and compensation techniques can be found in
Armstrong-Helouvry et al. (1994).

In the field of nonlinear control systems many researchers use neural ne-
tworks as advanced nonlinear controllers. Some properties of neural networks,
such as their inherent computational parallelism, fuzzification of knowledge
represented by particular patterns along with the effective neural net training
algorithms made this new tool attractive for control of robotic manipulators.
Among neural control techniques for manipulation robots the most often are
reported: controller parameters tuning (gain scheduling) via neural look-up
table (Hunt eta al., 1992), adaptive control with neural parameters adapta-
tion (Khemaissia and Morris, 1993), inverse dynamics modelling with a neural
model (Kawato and Wada, 1993), inverse dynamics and PD controller realised
as neural network (Uhl and Szymkat, 1992), model predictive control scheme
with neural prediction (Kawato and Wada, 1993) and other.

Neural network-based friction compensation has attracted increasing in-
terest. Many researchers report successful experimental implementation of
neural-based controllers. Neural networks for friction compensation are used
to control current pulse width (Yang and Tomizuka, 1988), dither-like signal
generation (Deweerth et al., 1991), as a compensation look-up table based on
CMAC architecture (Larsen et al., 1995) and also as nonlinearity identifiers
(Ciliz and Tomizuka, 19995; Du and Nair, 1999). Funahashi (1989) theorem
guarantees for any nonlinear function the existence of a nonlinear, multilayer
neural network with a sufficient number of neurones able to approximate it
with arbitrary precision. The general problem, however, with doing neural-
based identification is that Funahashi theorem is not constructive in the sense
that it does not state necessary and sufficient conditions for the optimal ne-
twork structure design for a given task. A usual approach involves substantial
trial-and-error efforts (based on past experience) with training set selection
and training process convergence as the principal problem areas.

2. Problem formulation

The effect of friction upon mechanical systems can be assessed from ma-
nifold perspectives: mechanical design, wear processes, kinematics, dynamics,
simulation, control, etc. Its analysis requires diverse analytic treatment and
software tools usually hindering a synergetic approach. The mechatronic me-
thodology largely applied in this study offers a unified treatment of all sys-
tem aspects — mechanics, drives, control electronics, sensors and numerical
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processing — within common analysis and simulation environment of Matlab-
Simulink-dSPACE. Its effective use requires diversity of research competencies
ranging from robotics, through sensors, theory of drives, digital signal pro-
cessing, control systems, optimisation methods, systems identification, digital
simulations, until systems modelling, programming and artificial intelligence.

This study aims at the development of a theoretical concept and technical
implementation of an intelligent controller for a typical industrial robot drive.
The controller uses artificial intelligence tools to provide friction modelling
and compensation. This goal is achieved with the use of mechatronic design
methodology consisting in iterative execution of the following research tasks:

e problem formulation, draft solution proposal, CAD design, sensors and
actuators selection

e classical friction modelling and identification (reference data)
e experimental model verification and validation

e dedicated neural architecture design and training for friction compensa-
tion

e controller synthesis (neural-based and reference classical) - analysis and
optimisation using simulation

e DSP-based prototyping — experimental testing of the neural control-
ler, control quality and robustness assessment, iterative parameters fine-
tuning

e final hardware implementation — dynamic performance verification of
actuators.

Another mechatronic aspect of this work consists in the use of tribology
foundations for design of control algorithms for mechanical systems with fric-
tion. It features marginal scope of analytic treatment for friction modelling
but instead significant contribution of experimental knowledge about the mo-
delled phenomenon. A dedicated neural network architecture was developed
using known qualitative properties of the friction model. The neural network
is specifically designed to yield qualitative characteristics of the modelled non-
linearity. This way, the neural network does not operate as a ”black-box”, but
rather as a "gray-box” i.e. it makes explicit use of the knowledge about the
physical properties of the controlled object.
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3. Dedicated network design for friction compensation

In general, robot dynamics can be expressed in the form
M(6)8 + F(0,0) = T (3.1)

where 0 denotes angular position, M is inertia matrix and F denotes all
nonlinear torque components, including friction and 7 is the driving torque.

The proposed control algorithm is based on the nonlinear feedback lineari-
sation (NFL) scheme (Uhl et al., 1994). Two control loops are used: the inner
loop with a model of nonlinearities to cancel out the system nonlinearities and
the external loop with the standard linear PD control to cancel uncertainty of
model parameters and unmodelled disturbances. The overall control signal is
given by means of the following equation

7= M(0)[8y + Kyé + Kpe] + F(6,0) (32)

where dashed symbols denote estimations of the inertia and nonlinearities,
respectively, @, denotes the desired (set) angular position and Kp, Ky are
proportional and derivative gains of the PD controller. Assuming that lol(ﬂ) =
M(8), F (9,9) = F(G,é) (i.e. there are no modelling errors), the control error
dynamics is governed by (where e = 0, — 8)

é+Kyé+Kpe=0 (3.3)

The applied control structure is depicted in a block diagram (Fig. 1).
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Fig. 1. Scheme of nonlinear feedback linearisation control

The role of the neural network is to provide a nonlinear friction model in
the inner control loop. The proposed solution relies on the network architecture
design according to the modelled nonlinearity properties.
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In this study the exponential friction model (3.4) and (3.5) of Tustin-
Armstrong-Helouvry was used (Armstrong-Helouvry et al., 1994). The neural
model synthesis consists in embedding three basic properties of static friction
characteristics (velocity vs. friction force) into the network architecture: fric-
tion force sign reversal with velocity sign change, Stribeck’s effect (friction
force drop at low velocity) and viscous friction component linear to velocity
change beyond certain threshold velocity (Stribeck’s velocity), which reads

Fi(w) = Fg+ + Fgpr(w) + Fyw w>0
Fs(w) = Fs + sgnw (3.4)
Fsir(w) = (Fo = F){1 = exp[~ (2)"] } sems

s

and

’ FS
F(w) = [sgnw, {1 - exp[n(i)z]}, w] FCI;— Fs | =0 (w)d (3.5)

where w denotes the angular velocity, ws is Stribeck’s velocity, F, is the
viscous friction coefficient, Fy and Fg denote the static and Coulomb friction
torques, respectively.

The exponential model of Tustin-Armstrong-Helouvry was reformulated
into a form linear with respect to certain parameters: a linear combination of
a set of the nonlinear basis functions ¥(w) (corresponding to the three friction
components) and a vector of the coefficients ¥, Eq. (3.5). It can be shown
that both Stribeck curve and linear viscous friction can be approximated with
hyperbolic tangent functions with a proper selection of the parameters 7.
For example, the linear viscous friction component is modelled by scaling the
velocity input (by the input connection weight w;, where the index i denotes
ith neuron) to stay within a quasi-linear portion of the hyperbolic tangent
characteristics

Vi=1,2,3 V;(w) = y;(w) = tanh(w;w) (3.6)

Model (3.4) and (3.5) can be realised as a nonlinear, unidirectional, two-
layer neural network with hyperbolic tangent activation functions, given by
Eq. (3.7), where y;(w) denotes the output of the ith hidden neuron that
corresponds to the ith component of the basis function ¥(w)

y(w) = Z wa,Yi(w) = Z wy,; tanh(wy ;w) = ¥(w)e (3.7)

i=1
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Thence, each hidden layer neuron is dedicated to model certain distingu-
ished friction phenomenon: ”sign neuron” (signum), ”Stribeck neuron” and
"viscous neuron”. It should be noted that in general each basis function can
be modelled by more than one neuron.

The proposed two-layer network architecture is shown in Fig. 2.
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Fig. 2. Dedicated neural friction approximator

The proposed neural friction model has the advantage that the learning
convergence is improved because the qualitative features (e.g. overall shape)
of the modelled nonlinearity are embedded into the network architecture. For
the same reason it was possible to a use smaller set of training data and the
network did not need to detect the discontinuity because it was already there,
embedded in its structure. Neural connection weights have a direct relation
to qualitative features of the static friction characteristics — e.g. tuning one
weight adjusts the slope of the linear portion related to viscous friction. As the
network training progresses the changes of connection weights result in neural
friction model adjustments as depicted graphically in Fig. 3.

Friction forces in real mechanical systems are not discontinuous function of
time but show hysteretic behaviour. When the mass motion comes at rest, the
friction forces counteract the external torque that is too small to sustain the
motion (Dahl effect, see Armstrong-Helouvry et al. (1994)). This phenome-
non is approximated in the proposed approach by a relay-type static friction
dependence on the velocity. When the velocity crosses zero the static friction
does not change the sign instantaneously but after a certain period of time, in
proportion to the speed of the velocity change. To account for this phenomenon
the second input to the network is the velocity signal delayed by one sample
period. In this way the proposed network captures the hysteretic behaviour
around zero velocity known from experimental work (Armstrong-Helouvry et
al., 1994).
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Fig. 3. Neural friction model adjustments with weights changing
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This solution is in fact only an approximation of stiction dynamics as in
general the friction force is known to be a function of the external force applied
to the interface and, at the motion rest, may not necessarily drop down to ze-
ro. Besides when the motion stops for longer than one sample period then the
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actual function realised by ”sign neuron” is different from the plain hysteresis
and is shown in Fig.4 (actual output magnified for demonstration purpose).
Thence, the proposed neural friction model cannot yield the ideal friction cha-
racteristics at the motion start. Experiments (Korendo, 1999) revealed though
that it is not a major constraint as eventual hardware implementation imposes
actuator bandwidth constraints anyway.

Prior to actual network training it is essential to initialise weights with
heuristic values known to yield the required qualitative network performance
(e.g. velocity scaling factor for viscous friction modelling should be on the level
of le-4). Then selective weights pruning is applied during the training (note
incomplete network connections, Fig. 2). In this study it was implemented into
standard training procedures.

The training data were collected experimentally during the identification
phase. In practical implementation it can precede the actual trajectory trac-
king task (i.e. the system operates according to the sequence: update nonline-
arities model — perfom the task). It consisted in driving the controlled object
at a number of desired constant velocities (with a PI controller) to collect the
corresponding motor torque (current) data (Fig.4a). The motor current me-
asurement was assumed to be the only source of friction torque data. Because
the required velocity was kept constant the motor torque was approximately
equal to the friction torque at this velocity. The thus obtained set of velocity-
torque pairs describes the static friction characteristics to be modelled by the
neural network. Because the network, by its structure, kept the quasi-linear
viscous friction characteristics, a relatively small number of data samples was
required to model viscous friction well (to adjust the slope). Additionally, the
training set was extended manually with data points related to static friction
(stiction torque approximation).

The network weights, Eq. (3.8), were adjusted by the training with a mo-
dified Levenberg-Marquardt algorithm (batch mode with pruning) on the tra-
ining set obtained experimentally (136 bi-directional wvelocity-torque pairs —
Fig. ba)

3.12 0 —0.018
W, = | 0.0006 0 Wo=| 205 (3.8)
0 11308 0.11

The network converged after 236 epochs and its performance was verified
with the validation set of input data. Good quality of the neural model of
static friction characteristics was confirmed with experimental data (Fig. 5b).
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4. Controller simulations and experimental prototyping

The proposed neural controller performance was tested by a numerical
simulation in Simulink. The block diagram used for simulations is shown in
Fig. 6a. Also the standard PID control scheme was simulated for comparison.
The model of the controlled object used in the simulations including friction
was obtained by an extensive identification process (Korendo, 1999). All si-
mulations were carried out with the fixed-step Euler integration method (step
value: le-4). The analytical friction model was simulated using Karnopp ap-
proach (Armstrong-Helouvry et al., 1994; Korendo, 1999) to simulate systems
with discontinuities. The PID gains were adjusted with NCD Toolbox and
were set to Kp = 0.01, K; = 0.07, Kp = 0.005 for the standard PID and
Kp = 1000, K; = 0, Kp = 500 for the neural based NFL.
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Fig. 6. Simulink diagram for controllers evaluation by simulations (a) and
experimental DSP implementation (b)

The case study object was a prismatic link of the SCARA-type robot (built
at Dept. of Robotics and Machine Dynamics, AGH, see Korendo (1999)),
Fig. 7a. It consists of a mass (an end effector) sliding along a linear path over
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four stiff driving rods. The mass is driven via steel string transmission by
a geared DC motor. The system is equipped with a position sensor (linear
potentiometer), motor shaft rotary encoder and motor current measurement.
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Fig. 7. Experimental setup — prismatic link of a SCARA robot (a) and DSP-based
prototyping setup (b)

The effector was controlled to follow the commanded velocity trajectory
given by the equation: wel_d = 12sin(2.5¢). According to expectations, the
PID controller could not cope with the velocity control around zero velocity.
The assumed criterion for the comparison of the control performance was RMS
velocity error per one trajectory cycle, averaged over 20 cycles. The simulation
results proved the expected superiority of the NFL controller over the standard
PID. The RMS of the velocity error was equal to 3.17 rps (rotations per second)
with the PID control whereas the NFL controller yielded 0.87 rps.

The motor was controlled in a torque control mode with the use of a high-
gain current servo loop. The control and measurement feedback signals were
provided by a DSP board (dSPACE DS1102) running at 40MHz. The DSP bo-
ard was fully integrated with Matlab/Simulink environment from which it was
controlled. A general model for DSP- based prototyping is shown in Fig. 6b.
The controllers prototyping (simulations and experimental validation) was car-
ried out with the use of Matlab/Simulink real-time environment RTW /RTI.
Data acquisition and parameters tuning on-line during the experiments was
performed using dSPACE COCKPIT and TRACE applications. The overall
DSP-based laboratory setup for rapid prototyping is shown in Fig. 7b.

The performance of the new controller was verified experimentally in the
laboratory with the use of the dedicated neural controller hardware implemen-
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tation on a DSP board. The actual dSPACE model used for the experiments is
shown in Fig. 8. Such neural network implementation allows through dSPACE-
MLIB module for effective adaptation of synaptic weights in the training stage,
because all parameters are available on-the-fly in DSP program memory.

The user interface was designed in COCKPIT environment to control the
experiment status, adjust the system parameters on-line and monitor the per-
formance (Fig.9), including numeric displays and graphs as well as saving
selected signals with TRACE module.

Fig. 9. COCKPIT experiment control panel

In both control schemes the PID gains that were used for simulation had to
be significantly reduced for the experimental implementation. They were set
to Kp = 0.005, K; = 0.04, Kp = 0.001 for the standard PID and Kp = 600,
K; =0, Kp = 250 for the neural based NFL.

The system performance was tested for the same velocity trajectory as
the one used in the simulations. Figure 10 shows experimental results of both
experiments (PID control and neural-based NFL).

The proposed neural-based nonlinear feedback linearisation scheme clearly
outperforms the standard PID controller in the presence of friction. The expe-
rimental results obtained using the fast prototyping DSP based technique also
confirmed the system behaviour predicted by simulations.
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Experimental results - PID controller - neural friction model with NFL controller

!\ ..... - ey - Pia N

ToIA AL A },_.\ _-
A/ AN/AWY F N /NSNS
\ \ i RN IRV ELY.

10 v v L= : el o -
-20

i TR LR TR M R it '

1 2 3 4 5 6 7 8 9100 1 2 3 4 5 6 7 8 9 10
Time [s] Time [s]

-10
0

Vel. error [rps] Velocity [rps]

Fig. 10. Friction compensation by PID and NFL - experimental results (velocity
control, dashed line: desired velocity)

Table 1. Experimental velocity control error — results summary — PID
and NFL comparison.

Control Experiment results
algorithm | RMS [rps] | improvement [%]
PID 4.06 -
neural NFL 1.08 73.4

Again, the comparison criterion was RMS velocity error per one trajectory
cycle, averaged over 20 cycles. In the velocity control experiment the PID
controller yields the RMS of the velocity error equal to 4.06 rps, whereas with
the neural network control it was possible to decrease the velocity error to

1.08 rps, which gives 73.4% improvement (Table 1).

5. Conclusions

In the paper a new neural-based friction identification and compensation
scheme is proposed. The neural network structure was designed to obtain the
qualitative features of friction characteristics based on empirical knowledge
("gray box” approach). In general, model-based friction compensation algori-
thms outperform the common linear PID control substantially. It should be
noted, however, that practical friction modelling requires a very difficult and
complex identification process, often infeasible in the industrial environment.
The proposed friction compensation with a neural friction model allows for
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friction identification through training with experimental data that can be
repetitively collected at the time of the desired task trajectory change or pay-
load replacement (e.g. tool). The neural network allowed one to model friction
on-line with modest requirements for the training data. The neural controller
design and prototyping was very effective thanks to the applied mechatronic
design methodology and DSP hardware. The laboratory experiments confir-
med the suitability of the proposed approach.

It should be noted that the friction characteristics embedded into the ne-
twork might not hold for any friction interface. In particular, viscous friction is
modelled as a linear function of velocity, which does not apply to dry friction
(e.g. friction gearbox). It is als assumed that neural friction model parameters
do not change with the direction of motion i.e. the static friction characteristics
is indeed odd-symmetrical. Furthermore, the proposed neural model does not
capture the dynamics of frictional forces (e.g. hysteresis, static friction chan-
ge). The using of static friction characteristics (i.e. without dynamics) might
lead in certain cases to wrong results (e.g. with rapid desired velocity changes
or velocity pulsation). The proposed controller performance should also be ve-
rified in other control tasks (e.g. low- velocity tracking) to prove its robustness.
These problems will be addressed in the frame of the future research.
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Projektowanie struktury sieci neuronowej dla celéw eliminacji tarcia

w napedach robotow

Streszczenie

W pracy przedstawiono oparty na sieciach neuronowych uklad sterowania napeg-
dem robota. Przedstawiono proces projektowania i prototypowania oparty na podej-
Sciu mechatronicznym. Sie¢ neuronowa w proponowanym rozwiazaniu spelnia role li-
neryzujacej petli sprzezenia zwrotnego. Jej podstawowym zadaniem jest kompensacja
wplywu tarcia w napedzie robota. Zaproponowano specjalizowang architekture sieci
neuronowej dostosowana do modelowania tarcia. Uczenie sieci odbywa si¢ na podsta-
wie danych eksperymentalnych. Zaproponowang sieé neuronows zaimplementowano
z zastosowaniem techniki szybkiego prototypowania z wykorzystaniem procesorow sy-
gnalowych. Wyniki symulacji poréwnano z wynikami eksperymentu na rzeczywistym
obickcie. Przedstawione podejscie, jak wykazaly uzyskane rezultaty, daje dobre wyniki
w zakresie linearyzacji ukladéw sterowania robotami z uwzglednieniem tarcia.
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