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The linear stability of a flow in a channel subject to periodically distri-
buted suction applied at the walls is investigated. The focus is on the
relation between unstable modes observed in such a flow and the stability
properties of the flow without suction (the Poiseuille flow). It is demon-
strated that linearly unstable modes appearing in the presence of suction
can be interpreted as modified Orr-Sommerfeld’s or Squire’s eigenmodes
of the Poiseuille flow. Originally, these modes have the streamwise wave
number cqual to zero, i.e. they are invariant in the streamwise direction.
When the surface suction is applied, the modes are additionally modu-
lated along the channel and they become dependent on the streamwise
variable. In the range of the parameters studied, a pair of such modes,
one Orr-Sommerfeld’s and one Squire’s, can be simultaneously unstable.
Certain properties of these modes are discussed in some details. Specifi-
cally, the influence of non-symmetric suction on stability characteristics
is analysed.
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1. Introduction

Floryan (1997) investigated the linear stability of flows in a channel with
periodically distributed surface suction. The admissible form of perturbations
of the steady state were defined within the framework of the Floquet theory.
Recently, using similar approach, Cabal et al. (2002) analysed the stability of a
flow in a channel with periodically corrugated walls. The important conclusion
from both studies is that the introduction of a space-periodic modification of
the boundary data, either geometric or through surface suction, reduces signi-
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ficantly the critical Reynolds number. The most amplified disturbances corre-
spond to purely imaginary eigenvalues and have a form of three-dimensional
streamwise vortices. In the plain Poiseuille flow, the critical disturbances have
a form of two-dimensional travelling waves (T'S waves), while all eigenmodes
with purely imaginary eigenvalues are damped.

In this work, the channel flow modified by periodically distributed surface
suction is revisited. The objective is to shed light on the following issues:

a) is the eigensolution described in Floryan (1997) the only possible form
of instability predicted by the linear theory,

b) what kind of relation exists between the eigensolutions obtained in the
linear stability analysis of the original Poiseuille flow and the flow mo-
dified by distributed surface suction?

The paper is organized as follows. Governing equations for the main flow
and the equations of the linear stability are presented in Section 2. Numerical
techniques of determination of the main flow and its stability characteristics
are described briefly in Section 3. Results of numerical computations are di-
scussed in Section 4. It is shown that in certain parameter range another
unstable mode can co-exist along with the mode described in Floryan (1997).
Then, the problem of the origin of both unstable modes is addressed. Using
the method of inverse iterations as a tool for "tracing” selected eigenvalues
in the parameter space, we explain the relation between the relevant parts
of the spectra for the Poiseuille flow and the flow modified by the suction.
It is demonstrated that the unstable modes originate from certain universal
(independent on the velocity distribution) class of eigensolutions of the linear
stability problem formulated for a general parallel flow. The properties of the-
se eigensolutions are described in some details. Finally, the crucial role of the
symmetry between the suction distribution at the channel walls is discussed.

2. Problem formulation

2.1. Reference flow

Consider a plane Poiseuille flow confined between flat rigid walls at y = +1
and extending to infinity in the z-direction. The corresponding velocity and
pressure fields are following
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Vo(z) = [uo(z,y),vo(z,y)] = [uo(y),0] = [1 — 3*,0]

2z
Re

(2.1)

po(z) =

where the fluid is directed towards the positive z-axis and the Reynolds num-
ber Re is based on the half-channel height and the maximum z-velocity. This
flow is driven by a constant negative pressure gradient.

2.2. Flow in the channel with distributed suction

Assume that the reference flow is modified by suction applied at both chan-
nel walls. The suction velocity is oriented perpendicularly to the walls. The
distributions of the wall-normal velocity component at the walls are defined
as vr(z) and vy(x) for the lower and upper wall, respectively. These distri-
butions are assumed periodic with the wavelength \; = 27/a. The functions
vr(xz) and vy (z) can be expressed in terms of a Fourier series in the form

ve(z) = ZZ (Va)re™® vy (z) = i (Va)ue™e (2.2)

where (V,,)r, = (V_)} and (V,)r = (V_,)} in order for vy(z) and v (z) to
be real. Additionally, it is assumed that (Vp)r, = (Vo)v = 0 i.e., the volume
flux due to the suction per one geometrical period is zero.

The flow in the channel can be represented as

V(z) = [u(z,y),v(z,y)] = Vo(z) + Vi(z) = [uo(y), 0] + [u1(2, ), v1(z, )]
(2.3)
p(z) = po(zx) + p1(z)

where V; and p; are the velocity and pressure modifications of reference flow
(2.1) caused by the wall suction. Substitution of the above representations of
the flow quantities into the Navier-Stokes and continuity equations results in
the following form of the governing equations

1
ug Oyt + w1 Optuy + v1Dug + v10yu1 = —0zp1 + @(mew + Oyyu1)
1
ugOyv1 + u10,v1 + ’Ulay'Ul = mé)ypl + ﬁ(aw:s'vl + nyvl) (24)
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where the symbols 0 denotes partial differentiation, the subscripts = and y
denote the arguments of partial differentiation, and D = d/dy. Introduction
of the streamfunction defined as

and climination of the pressure entails an expression of field equations (2.4)
in the form

(u0Ds + By W0y — D, W8,) AW — D gyl — %A%p (2.5)

where A denotes the Laplace operator. Since u; and v; are periodic in x with
the period \; = 27 /a, the streamfunction can be represented as

¥(z,y) Z By (y)em (2.6)

Nn=—00

where &, = &*  in order for ¥, to be real.
The following nonlinear system of ordinary differential equations can be
derived for the amplitude functions &,, n = —1,0,1,...

[D? — inaRe(ug Dy, — D?ug)|®, —
(2.7)
+o0
—iaRe > [kD®,_Dy®y — (n — k)P DDy = 0

k=—0c0

where D,, = D?—n?a?. Equation (2.7) has been obtained by substituting (2.6)
into (2.5) and separating the Fourier components. In particular, the equation
for the amplitude function @ can be written as follows

D'y + 20Re - In{ Y k[(D®}) D*&y + (@) D*@y]} =0 (28)
k=1

The boundary conditions are imposed on the velocity modification components
uy(x,—1
vy (z, -1

uy(z,1) =0
vy(z,1) = vy(x)

)) — vy (z) } at the bottom wall
oL (2.9)
} at the upper wall



ON ORIGIN OF UNSTABLE MODES IN VISCOUS CHANNEL FLOW... 851

With the use of the Fourier expansions, conditions (2.9) yield

D&, (~1) = DP,(1) =0 In| >0

The boundary conditions for the amplitude function @y can be defined in
many ways. Here, it is assumed that that resulting flow is characterised by
the mean volume flux equal to the volume flux of the reference Poiseuille flow.
This assumption yields

Po(—1) = Po(1) Dao(—1) = Ddo(1) (2.11)

The other possible choice of the boundary conditions for @ is to prescribe the
value of the mean pressure gradient. The reader is advised to refer to Floryan
(1997) for further details.

2.3. Linear stability problem

Assume that the nonlinear boundary problems defined by differential equ-
ations (2.8), (2.9) and boundary conditions (2.10), (2.11) have been solved.
Then, the modification part of the resulting velocity field is given by

) = Z F*(y) exp(ikaz) = Z Dy (y) exp(ikax)

k=—00 k=—00

(2.12)
00
) = Z IR (y) exp(ikaz) = Z ikopy (y) exp(ikou)
k=—0c0 k=—-00

The complete velocity field of the main flow is a sum of the reference flow and
the modification

Vi(z,y) = [uo(y),0,0] + Z £ (), 5 (), 0] exp(ikax) (2.13)

k=—co

In order to analyse the stability properties of the obtained flow, see (2.13),
a perturbed velocity field is introduced

V = V1(:5‘ ?)-f'Vg(t T, Y, %) (2.14)

The velocity field of the main flow V' is z-periodic, and thus the admissible
form of the disturbance velocity field V' is defined within the framework of
the Floquet theory as
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+o0

Volt,z,y,2) = 3 [0 (v), 90" (), 9 (v)] expli(tma + Bz — At)]  (2.15)

m=—00

In the above expression ¢, = § +ma, 3 denotes the spanwise wave number of
the disturbance and ¢ denotes the Floquet exponent. The reader may notice
that, in general, the disturbance field can be quasi-periodic in the z variable.

The next step is to derive equations governing the evolution of the distur-
bance velocity field Vo(t,z,y, z). Afterwards, the insertion of representation
(2.15) into these equations will yield homogeneous boundary problems for the
amplitudes {g."(y), 90" (v), g (y), m = ..., —=1,0,1,...}.

Following the derivation presented in Floryan (1997), we begin with the
velocity-vorticity formulation of the governing equations for full, disturbed
velocity field (2.14)

% +(VVw — (wV)V = ﬁluv%
¢ (2.16)

V- V=0 w=VxV

The disturbed velocity field is a sum of the main flow and the disturbance
defined by (2.15). Consequently, the vorticity field can be expressed as follows

W =wl($1y) +w2(ta$1y: Z) (217)

Insertion of (2.14) and (2.17) into equations (2.16), and dropping nonlinear
terms yield

Q“Q + (V1V)w2 - (WQv)V] + (VQV)UJ] — (w1V)V2 = ivzwz

ot Re (2.18)
V-VQZU wQ:VXVQ

It is convenient to formulate the stability problem in terms of a different set
of unknowns. Consider the wall-normal component of the disturbance vorticity

field
. Ovaz  Ovo,

= 2% 2.19
w2y 0z ox (2.19)
which can be expressed as follows
+oc
way(t, x,y,2) = =1 > 0™(y) expli(tmz + Bz — At)] (2.20)

mMm=—0o0
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The new set of the amplitude functions {6™, m = ..., —1,0,1, ...} is related
to the formerly defined one as

= —Bgy +tmGuy (2.21)

The inverse relations can be found with the use of the Fourier form of the
continuity equation

itmgy + Dgy' +i8g,, = m=..—-2,-1,01,2, .. (2.22)
in the following form

m 1 T m 1 : m
Gu = kg (lt Dg'u — 30 ) Jw = k_z(lﬂpg:;n + tm0 ) (223)
m
where k2, = t2, + 2.
After rather lengthy algebra, the following (infinite) set of linear ODEs can
be derived (m = ...,—1,0,1,...)

S(m}g + Rez m 1) :}n—l—n G?(Jm.n)gga—n + agm.n)gm_;.n 4 Gém,n}9m+n) -0

- (2.24)
T™g™ 4 RefDFLg"
o0
_|_ReZ(E(m ;) m+n + E(m n) m n Eém,n)9m+n+Eém,n)9m_n) -0
n=1

where the operators are defined in the following way

St = (D? — k2,)% — iRe[(tm FO — A)(D? — k2,) — t,nD?FY)

. 2
ina
G = g (8 = tutmn) DD + 1B+ tontm-20) D +
knon i
+ k2 (2naf? — tmk2,_,) fPD? + g-l—(mtm — k) fo D% +
+ lkmtm onfo + it Dz.)m
. 2
—(m.r 1no n\ Ty
Gin. K - k2 (tmtm+n - )62)(Dfu) D+ }62 (62 + tm-+ﬂtm+2n)(fv ) D+
m—+n m+n
1 *
t (—2n0aB° — tmkimin) (F2)*D? +
m+n
1 * : Ly * I *
g (natm — k) ()" D® + iktmian(£)" + itm(D*£)

m-=+n
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- 1 n nof . inafBk2,
Gé n) = ;]2 QHQﬁtm 'nf D + ;!.2 ( m+tm—n)Dfu - kQ - u
inaf ., o
TP
mn 1 naﬁ Ty
G(() ) - }{:‘3 gnaﬁtm+n(ju) k:2 (tm +tm+”)(Dfu) +
m+n m+n
k2 i
+ DoCm (grye g T oy 2
km+n ]"m—i—n

T = D? — k2, — iRe(t, F2 — \)

ino
E(™™ = BDf7 - 12 ﬁfS'Dg
—(m.n) B . maﬁ ny* 72
E-u = ﬁ(D u) 2 (fv) D
km+n
Eﬂm.n) _ _itmj:;n_ 3 (ﬁz-l-t tm— n).}mD
km—n
Eém«ﬂ) — *—itm( ;”)* — 12 (ﬁz + tmtm+n)( n)*D
m—+n

FY = g+ f2
The homogeneous boundary conditions for the amplitude functions are
g (£1) = Dg'(£1) =0 0" (£1) =0 m=..-1,0,1,... (2.25)

The objective is to solve the eigenvalue/eigenfunction problem for set of
linear ODEs (2.24) subject to boundary conditions (2.25). It means that one
is interested in the determination of such values of the complex parameter A
(eigenvalues), that the considered boundary problem has nontrivial solutions
(eigenfunctions). The imaginary parts of the eigenvalues determine the tem-
poral behavior of the disturbances. If all eigenvalues have negative imaginary
parts all disturbances will eventually decay and the flow is (linearly) stable.
Otherwise, it exists at least one form of the disturbance that will grow expo-
nentially in time, no matter how small its initial magnitude is. In order to
obtain a tractable algebraic eigenvalue problem, discretisation of the differen-
tial boundary problem has to be applied. Some details of this procedure are
given in the following section.
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3. Numerical discretisation method

3.1. The main flow

The problem to be solved numerically consists of the infinite system of
nonlinear ordinary differential equations (2.7) with the boundary conditions
(2.10). The solution method follows closely the numerical technique proposed
in Szumbarski and Floryan (1999) for flows in a channel with corrugated walls.
The main difference is in the treatment of the boundary conditions which, in
the case of wall suction, is much simpler.

The discretisation procedure consists of several steps:

(a) Truncation of the Fourier representation to a finite number of the modes

V(z,y) ~ Z P ()" (3.1)

n—-—M';.

and choosing a finite subset of the differential equations and the boun-
dary conditions so that a complete boundary value problem is defined.

(b) Approximation of the unknown amplitude functions by the finite Cheby-
shev expansions

+00

Pn(y) = > GiT;(y) ZG" (3.2)

j=0

and insertion of them into the differential equations. This step invo-
lves differentiation of the Chebyshev expansions and computing their
products. Both types of operations are performed using exact formulas
derived in the theory of the Chebyshev polynomials.

(¢) Derivation of the nonlinear algebraic equations for the Chebyshev coeffi-
cients {G7}. This step involves separation of the expressions standing
at each Chebyshev polynomial up to the order J — 4 in all equations.

(d) Completion of the system by adding algebraic equations derived from the
boundary conditions. There are four such equations for each amplitude
function.

As a result, the system of J(MF' + 1) nonlinear algebraic equations is ob-
tained. The reader may note that the discretisation described above is simply
a tau-Galerkin method based on the Chebyshev polynomials. In order to find
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the solution, one can apply any of standard tools, e.g. the Newton iterations.
Here, however, a different approach has been taken up. It can be noticed that
the coupling between the equations is only via the nonlinear terms. This pro-
perty is inherited by the corresponding algebraic problem. This means that
one can move all nonlinear terms of the right-hand sides and obtain a system
with uncoupled left-hand sides. Such a structure suggests a solution method
consisting in iterative solving of a sequence of separated linear problems. Each
of these problems is of dimension J and the order is, in essence, arbitrary.
Here, solving in the reverse order has been implemented, i.e. the subsystem
for the amplitude function @) is solved first and eventually the mode zero is
upgraded as the last one in each iteration.

It should be clear that, due to the nonlinearity, the flow response is always
multi-modal, even if the wall suction has a form of a single Fourier harmonic.
Intuitively, the length of the Fourier representation of the approximate solution
should be, say, several times longer than the Fourier representation of the
multi-modal wall suction. In the case of the suction in the form of a single
Fourier harmonic with a sufficiently small amplitude, the linearised model can
be applied (see Floryan, 1997). In the current work, the multi-mode (6 modes)
is used, although the range of the parameters studied is mostly covered by the
linear theory.

3.2. Linear stability equations

Linear differential equations (2.24) are discretised in a similar way as equ-
ations (2.7) for the main flow. First, it is assumed that the disturbance velocity
and vorticity fields can be approximated by a finite number of modes

Mg
Volt,z,y,2) = Y (90 (9): 95" (v)s 9 (v)] expli(tmz + Bz — At))]
m=—M,
g (3.3)
Mg
woy(t, x,y.2) ~ —i Z 0™ (y) expli(tmz + Bz — At)]
m=—Mg
The amplitude functions ¢} and 0" (n = —-Mg,~Ms + 1,...0,...,

Mg — 1, Mg) are approximated by their Chebyshev expansions. Assume, N,
denotes the order of expansions used to approximate the amplitude functions
g, while Ny denotes the order of expansions of the amplitude functions 67,
for n = —Mg,—Mg +1,...,0,..., Mg — 1, Ms. These expansions are inserted
into the stability equations. Some coefficients in these equations are dependent
on the y variable as they involve the amplitude functions of the main flow and
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their derivatives. They are expressed in terms of the Chebyshev expansions
with the previously computed coefficients. Insertion of all Chebyshev expan-
sions into the stability equations and separations of the expressions standing
at each polynomial yield a linear algebraic system. More precisely, N, — 4
algebraic equations are derived from each differential equation of the fourth
order (2.24);, and Ny—2 algebraic equations are derived from each equation of
the second order (2.24),. Boundary conditions (2.25) give six additional linear
equations to each pair of the unknowns g;; and 6". As a result, we obtain a
large set of (2Mg + 1)(N, + Ny + 2) linear algebraic equations, which defines
the generalized eigenvalue problem

Pc = \Qc (3.4)

The flow is linearly stable when no eigenvalue with the positive imaginary part
exists.

Various methods can be used to solve eigenvalue problem (3.4). In the
stability analysis, we are usually interested in the localisation of one or perhaps
several eigenvalues with the largest imaginary parts, as they correspond to
the most "dangerous” forms of disturbances. We are also interested in the
variation of these eigenvalues (and possibly the corresponding eigenfunctions)
with the parameters like the Reynolds number, the suction magnitude or the
wave numbers. Such parameter ”tracing” can be carried out effectively by the
Inverse Iterations Method (see Saad, 1992).

4. Discussion of results

In this section, results of numerical computations are presented. The di-
stributed surface suction is assumed in the form of a single Fourier mode at
each wall of the channel, i.e.

Vi(z) = Sy, cos(ax) Vu(z) = Sy cos(az + ¢)

All results discussed in this section have been obtained for the Reynolds
number Re=5000.

Solving numerically generalized eigenvalue problem (3.4), one can find two
unstable modes. The corresponding eigenvalues are purely imaginary. The first
(more attenuated) mode is the one described by Floryan (1997). The other
mode is unstable in a narrower range of the wave numbers and its amplification
rate is lower. For higher streamwise wave numbers, however, both modes are
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amplified at nearly the same rate. In Fig. 1, we show the imaginary part of
both eigenvalues plotted as functions of the spanwise wave number [, for
different suction wave numbers a. Fig.2 presents the spanwise structure of
the disturbance velocity field of the unstable modes, computed for a = 3,
B =2, ¢ = and the wall corrugation amplitudes S = S;, = Sy = 6.0- 1072,

6

Im{A}-10°
I

Im{A}-10°

Fig. 1. Amplification rates of the first (solid line) and second (dashed line) unstable
modes plotted as functions of the spanwise wave number 4, computed for
S =6-10"%, Re=5000 and (a) symmetric suction (¢ = 0), (b) anti-symmetric
suction (¢ = )

In order to explain the origin of the unstable modes, one should find a re-
lation between the computed eigenvalues and the spectrum of the flow in the
channel without suction, i.e. the Poiseuille flow. Such a relation can be establi-
shed by tracing the variation of the eigenvalues while the suction amplitudes
are decreased to zero. One of possible ways of such magnitude reduction is to
begin with the same amplitudes at both walls and then to proceed towards
zero while keeping them equal. The result of that procedure is presented in
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Fig. 2. The spanwisc structure of the disturbance velocity fields corresponding to the
first (a) and second (b) unstable modes, computed for Re=5000, o = 3, 3 = 2,
S =6-10"% and ¢ = 7 (anti-symmetric suction)

3
f:l:' 5
T o
N
g 1F
O Asy(@=0,5=2)
-1
A fﬂiﬁfﬂ’.&ﬂ
-3 L 1 L 1 1 1 I
0 1 2 3 ; 4
S-10

Fig. 3. Amplification rates of the unstable modes plotted versus the suction
amplitude S, at various values of the suction wave number a. The other parameters
are J =2, Re=5000 and ¢ =0

Fig. 3. Each line in the plot corresponds to a different value of the suction wave
number «, and the value of the spanwise wave number is 3 = 2. When the
suction amplitudes diminish to zero, the imaginary part of each mode achie-
ves a limit value, which is independent on the suction wave number a and
the phase shift ¢. These numbers can be recognized as the eigenvalues belon-
ging to the spectrum computed for the Poiseuille flow with the wave numbers
o =0 and § = 2. The upper limit actually corresponds to the least damped
Squire’s mode, while the lower limit is the eigenvalue of the least damped
Orr-Sommerfeld’s mode (see Appendix for definition of these modes). Since
their streamwise wave number is zero, the corresponding eigensolutions do not
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depend on the streamwise variable x. The description of essential properties
of these modes is provided in the Appendix.

The question arises, which unstable mode originates from Squire’s mode
and which one from Orr-Sommerfeld’s one. It seems to be obvious from Fig. 3
that the first unstable mode is the suction-modulated Orr-Sommerfeld’s mode,
while the second one seems to be the Squire’s mode. This conclusion, however,
is not necessarily correct. It is clear from Fig. 3 that, for any fixed value of «,
two lines actually intersect before they hit the vertical axis. In other words,
there is a value of the suction amplitude when two eigenvalues coincide. The
existence of a double eigenvalue may be a generic property of the problem but it
might be also an effect of the assumed symmetry of the wall suction. To resolve
this issue one has to apply the tracing procedure to a non-symmetric case.
In order to brake the symmetry one can change the phase shift between the
lower and upper wall distributions of the suction, make the suction amplitudes
different, or do both. Actually, the computations show that the phase shift does
not change qualitatively the arrangement of lines in Fig. 3. Thus, breaking the
symmetry means applying the suction with different amplitudes at the bottom
and the upper walls. Figure 4 shows the results. Evidently, in non-symmetric
cases the double eigenvalue does not appear — the lines remain separated all
way long to the limits at S; = Sy = 0.

2
S | = Sy/S=1.0
< ---0.9
3 0.7
E - 0.5

: . .
0 2 3,100 3

Fig. 4. Amplification rates of the unstable modes plotted as functions of the suction
amplitude at the bottom wall Sy,. The suction amplitude at the upper wall Sy is
equal to a fraction of Sy, (non-symmetric suction). The other parameters are fixed

and following: Re=5000,a =1.8, 3=2and ¢ =0

This result shows clearly that the interpretation of the origins of the unsta-
ble modes previously suggested by Fig. 3 is actually opposite to the correct one.
The first unstable mode should be interpreted as a suction-modulated Squire’s
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mode, while the second one, as an Orr-Sommerfeld’s mode. Closer analysis of
the spectrum can establish analogous interpretation for all purely imagina-
ry eigenvalues — all of them are either Squire’s or Orr-Sommerfeld’s modes,
originally streamwise-invariant, "modulated” by the wall suction.

In the remaining part of this section, we discussed some further properties
of the unstable modes. We will investigate the influence of the phase shift
and other variants of the non-symmetric suction. The results will demonstrate
that Squire’s and Orr-Sommerfeld’s modes respond quite differently to various
modes of the suction.

Im{A}-10°

Fig. 5. Amplification rates plotted versus the phase shift ¢. The solid lines
correspond to the Squire mode, while the dashed ones to the Orr-Sommerfeld mode.
The dotted lines refer to the real part of the eigenvalue of the OS mode, showing the

"splitting” effect (details in text). The suction amplitudes at both wall are equal
Sy =Sy=6-10"3

The effect of the phase shift on both unstable modes is shown in Fig. 5.
These results have been obtained for the suction amplitudes S;, = Sy =
6.0 - 1073, The following observations should be made:

e the anti-symmetric suction (¢ = 7) leads to a more unstable flow than
the symmetric one (¢ = 0); any other phase shift gives the amplification
rate in between,

e the effect of the phase shift becomes negligible for higher values of the
suction wave number «,

e when the suction wave is sufficiently long, (or, equivalently, the wa-
ve number « is small) there exists a phase shift value where Orr-
Sommerfeld’s mode splits into a pair of slowly moving wave-like distur-
bances. This means that the purely imaginary eigenvalue is replaced by
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a pair of complex eigenvalues with small, real parts of the opposite sign,
and identical imaginary parts. For instance, such splitting for o = 1 and
B = 1.5 occurs when ¢/ =~ 0.38. The reader may notice that the imagi-
nary part (dashed line) of the eigenvalue changes continuously, however
the variation is not differentiable. On the left side of the splitting point,
the two eigenvalues with opposite real parts (dotted lines) replace the
single, purely imaginary eigenvalue existing on the right side.

Im{A}-10°
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Fig. 6. Amplification rates of the main Squire and Orr-Sommerfeld modes plotted as
functions of the suction amplitude at the bottom wall Sy. There is no suction at the
upper wall (Sy = 0). The other parameters are Re=5000 and = 2. The dashed
lines refer to the real part of the cigenvalue of the OS mode, demonstrating the
"splitting” effect

This splitting (or bifurcation) phenomenon affects only Orr-Sommerfeld’s
mode, at least in the range of the parameters studied in this work. Similar
behaviour characterises Orr-Sommerfeld’s mode in the case of non-symmetric
or one-sided suction. In the latter case, the suction is applied only at the
bottom wall. The results for 3 = 2 and three different values of the suction
wave number a have been presented in Fig. 6. Again, the variation of the eige-
nvalue corresponding to Squire’s mode is smooth independently of the value
of «, while the Orr-Sommerfeld’s eigenvalue experiences the split near the
value S, =~ 1.4-1073. The real parts of the branching eigenvalues are plotted
with a dashed line. Interestingly, the imaginary parts of these eigenvalues de-
pend weakly on the suction amplitude and are negative, i.e. the corresponding
travelling disturbances are always stable.

It can be also demonstrated that the branching phenomenon for Orr-
Sommerfeld’s mode occurs even for symmetric suction providing that the suc-
tion wave is sufficiently long. This is shown in Fig. 7 presenting the results
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Fig. 7. An example of the "splitting” of the OS cigenvalue occurring in the
symmetric (solid lines) and nearly symmetric (dashed line) cases of the wall suction.
There exists a closed interval of the suction amplitudes, where the (stable)
Orr-Sommerfeld mode is replaced by slowly moving wave-like cigenmodes. The
results have been obtained for Re=5000, o« = 1.12 and 8= 1.5

obtained for o = 1.12 and [ = 1.5. The continuous lines correspond to the
symmetric case r = Sy /Sr, = 1, and the dashed lines correspond to the broken
symmetry with 7 = 0.9. Again, the removal of the double eigenvalue by bra-
king the symmetry is visible. The Orr-Sommerfeld mode exists in the spectrum
from S =0 up to Sy ~ 3.55-1072. While S}, increases, the Orr-Sommerfeld
mode is replaced by a pair of slowly moving wave-like modes. They are still
stable and their velocity attains the maximum at Sy ~ 4.36- 1073, The reader
may notice that these waves are indeed very slow - their maximum velocity is
of the order 1073. When the suction amplitude Sj, ~ 5.4 - 1073, the eigenva-
lues coalesce to re-create "ordinary” Orr-Sommerfeld’s mode, i.e. the mode,
whose eigenvalue has the zero real part. According to the computed results,
the splitting and merging phenomena always occur in the stable region.

Consider now the eigenvalue tracing when the suction amplitude at the
upper wall is fixed Sy = 6.0 - 107% and the suction amplitude at the lower
wall Sy, is gradually reduced from the value of Sy down to zero. The results
computed for different combinations of the wave numbers « and [ and the
phase shift ¢ = 0 are presented in Fig. 8. It can be noticed that the eigenvalue
corresponding to the Squire mode rather weakly responds to the decreasing of
the suction amplitude S7. The amplification rates for the one-sided suction
and both-sided symmetric suction are similar. The difference would be more
pronounced for the phase shift ¢ = 7 (see Fig. 4), but the conclusion is similar:
one-sided suction and both-sided suction have nearly the same effect on the
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Fig. 8. Amplification rates of the Squire (solid line) and Orr-Sommerfeld (dashed
line) modes plotted versus the suction amplitude at the bottom wall Sy,. The
magnitude of the suction at the upper wall is fixed and equal Sy = 6-1073. The
results have been obtained for Re=5000, ¢ = 0 and following wave numbers:
(a) a=12,8=15,(b) a=20,0=25,(c) a=5.0,8=235

overall flow stability. In contrast to Squire’s mode, the Orr-Sommerfeld’s one
is highly sensitive to the ratio Sy, /Sy. When the bottom suction is sufficiently
small the Orr-Sommerfeld mode becomes stable and the only unstable distur-
bance form is the Squire mode. With further decrease of the amplitude Sy,
the splitting is observed and the Orr-Sommerfeld mode disappears from the
spectrum.

5. Concluding remarks

The presence of the wall suction essentially changes stability properties
of a viscous flow in a channel. Originally stable disturbance modes respond
to space-periodic modulation of the main flow, become streamwise dependent
and loose their stability at much lower Reynolds number than TS waves in
the original Poiseuille flow.

Two unstable modes of different origin can coexist within a wide parameter
range. Although their geometrical structures are similar, the Orr-Sommerfeld
and Squire modes behave very differently in the presence of non-symmetric
suction distributions.

It is worth reminding that the modes with zero streamwise wave number
appear in the problem of determination of transient growth of the disturbances
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in the Poiseuille flow (see for instance Butler and Farrel (1992) or Reddy and
Henningson (1993)). If the Reynolds number is less than critical, all sufficiently
small disturbances injected into the flow eventually decay in time. However,
due to the non-normality of the underlying differential operator, some forms
of the disturbances can temporarily grow in time achieving magnitudes (in the
sense of the kinetic energy) several orders higher that the initial ones. Recent
studies on the onset of turbulence in shear flows emphasize a crucial role of
this sub-critical energy growth in the initial stages of the transition process.
The most recent survey on this theory can be found in the monograph Schmidt
and Henningson (2001).

Appendix — Special Orr-Sommerfeld and Squire modes

We summarize here the basics of the linear stability theory for parallel lows
(see for instance Schmidt and Henningson, 2001). Consider a flow between two
parallel planes. The direction of y-coordinate of the Cartesian reference frame
is assumed perpendicular to the boundaries of the flow domain, and the range
of the latter in the y direction is [—1,1]. The velocity field of the basic flow
is defined as follows

VU = [uU(y)a 0: wo (y)] (Al)

The disturbance velocity and pressure fields can be assumed in the from of
the Fourier modes

v = [9u(¥), 90 (¥), 9w (y)] exp[i(az + Bz — ot)] (A.2)

p = q(y) exp[i(az + Bz — at)]

The stability equations can be derived in terms of primitive variables. They
will contain the amplitude functions of the Cartesian components of the velo-
city field v and the pressure p. It is, however, possible to obtain the stability
equations in the form involving only two unknowns: the function g, and the
amplitude function for the y-component of the disturbance vorticity field de-
noted as 7. Using the definition of the vorticity, one has

n = i(Bgu — agw) (A.3)

The continuity equation applied to the disturbance velocity field yields another
relation
gy + Pgw = 1Dg, (A.4)

where D = d/dy.
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Hence, the knowledge of the wall-normal components of the velocity and
vorticity fields is sufficient to determine the remaining components of the ve-
locity field. Namely, from (A.3) and (A.4) we have

1. 1.
Gu = ﬁl(ang - fn) Ju = E-g-l(ﬁDg-u + an) (A.5)

In the above the symbol k denotes the length of the disturbance wave vector,
ie. k= a2+ 3.

The stability equation can be written as follows

{(D2 — k2)2 — iRe[(aug + fwy — 0)(D2 - fcg) - Dg(au(] + 5w0)]}gv =0
(A.6)

[D? — k? — iRe(aug + fuwy — )]n — iReD(Buy — awg)gy = 0

The amplitude functions in (A.6) should satisfy the following homogeneous
boundary conditions

gu(£1) =0 Dgy(+1) =0 n(£l) =0 (A.7)

Equations (A.6) accompanied by boundary conditions (A.7) state a differen-
tial eigenvalue problem. There are two classes of nontrivial solutions. If the
wave number o is an eigenvalue of fourth-order differential boundary pro-
blem (A.6); and (A.7); 2 then a nontrivial solution g, to this problem exists.
Second-order boundary problem (A.6)2 and (A.7)3 is then uniquely (modulo
normalization of g,) solvable for the amplitude function 7 (providing that o
is not an eigenvalue of the corresponding differential operator). The remaining
components of the corresponding velocity field can be evaluated from (A.5).
The complete eigensolutions of this kind are called Orr-Sommerfeld’s modes.

The other class of solutions is called the Squire modes. If the wave number
o does not belong to the spectrum of (A.6);, (A.7);,2, then the only solution to
this problem is trivial g, = 0. Then, second-order differential problem (A.6)2
and (A.7)3 becomes uncoupled and has a nontrivial solution when o belongs
to the spectrum of the corresponding second-order differential operator, i.e. to
the Squire spectrum. In contrast to Orr-Sommerfeld’s modes, Squire’s ones de-
scribe purely horizontal motion of the fluid defined by the following amplitude

functions 1

1. .
gu=—gi1  gu=rgiom (A38)
In the remaining part of Appendix, we will focus on the special case arising
in the context of the current study. Namely, we will consider the case of the
standard Poiseuille flow. Thus, we have ug = 1 — y? and wg = 0. Next, we
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will consider the disturbance modes with the streamwise wave number « = 0.
Such modes are dependent solely on two spatial variables y and z. We start
the analysis with the Squire modes. They are defined as eigensolutions to the
following problem

(D? — 3% +iRea)n = 0 n(£l) =0 (A.9)

One should note an important feature of problem (A.9) — the velocity of the
reference flow does not appear in the coefficients of the differential operator.

Assume that ¢ = ig; for a certain o; € R. One obtains the following
differential eigenvalue problem with constant coefficients

D*n— (6% + giRe)n = 0 n(£l) =0 (A.10)

Nontrivial solutions exist only when the following equality

m2n?

-l

-"()32 + o;Re) =

holds for any integer m, which yields the following eigenvalues

463% + m*n?
' e A1l
a; (m) 4Re ( )
The corresponding eigenfunctions are
cos ? for m—odd
om(y) = m _ (A.12)
sin 5 for m—even

It can be shown that formula (A.11) describes all eigenvalues of boundary
problem (A.9). This means that all eigenvalues of (A.9) are purely imaginary
numbers and, since all o;(m) are negative, all Squire’s modes with o = 0 are
stable.

Consider now boundary problem (A.6);, (A.7);2 with the same assump-
tions as in the above. This time we have the following fourth-order eigenvalue
problem

(D? — 3*)(D? - B* + iReo)g, = 0
(A.13)

go(£1) = Dgy(&1) = 0
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Again, the velocity field of the reference flow has disappeared from the equ-
ation, and we deal with a differential problem with constant coefficients. In-
serting the particular solution g¢,(y) = exp(A\y) and assuming that o = io; we
get four characteristic exponents

)\1,2 =+ )\3'4 = :E\fﬁ2 + o;Re

Thus, the general solution has the following form

9u(y) = C1cosh(By) + Cysinh(By) +
(A.14)

+ C3cos \/— (8% + o;Re) + Cy sin \/:(,82 + oiRe)

In (A.14), the inequality /3% + o;Re < 0 has been assumed.

The homogeneous boundary conditions lead to a system of four linear
equations for the coefficients (1, ..., Cy. The symmetry properties of the trigo-
nometric and hyperbolic functions in the range [—1,1] allow for splitting this
system into two separate subsystems for the symmetric and anti-symmetric
eigensolutions, namely

[ cosh (3 cosh /3% + o;Re Cr | _ 0
| Bsinh 3 /(% + o;Resinh /3% + o;Re N
(A.15)

| sinh sinh /3% + o;Re C2 | _q
| Bcosh B /3% + oiRecosh /3% + o;Re N

Consider equation (A.15);. Assuming that 3%+ o;Re < 0, nontrivial solutions
exist only when the following equality holds

V— (8% + o:Re) ta.n( — (32 + crz-Re) + Btanh 8 =0 (A.16)
The above equation has the form
rtanz + H =0 H>0 (A.17)

and it has infinitely many solutions in [0, +00). These solutions determine the
eigenvalues as follows

3%+ xu(m)

=1,2,... A.18
e m (A.18)

oi(m) =
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The smallest solution z.(1) is located inside (7w/2,7). It corresponds to the
least damped symmetric eigensolution.

System (A.15)2 has a nontrivial solution only when the following equality
holds (again, we assume that 3% 4+ o;Re < 0

V= (B2 + aiRe) cot(y/~(8? +o;Re)) — feoth f = 0 (A.19)
The above equation has the following form
zcotx +H =0 H<O0 (A.20)

It is easy to show that actually H < —1. Therefore, the smallest solution
z4(1) is located inside the interval (m,3n/2). Hence, the least damped anti-
symmetric eigensolution has stronger damping than the least damped symme-
tric eigensolution.

It can be shown that if 3% + o;Re > 0 the problem has only a trivial
solution. Thus, boundary problem (A.13) does not have any other eigenvalues.
Additionally, all eigenvalues are purely imaginary and, since all o;(m) are
negative, all Orr-Sommerfeld’s modes with a = 0 are stable.

We will prove that the imaginary part of each eigenvalue of boundary
problem (A.13) attains a local maximum at a certain value of the spanwise
wave number 3 # 0. It is equivalent to show that the function S(3) = 4%+ 2
has a local minimum. Here, x, denotes one of the solutions to the algebraic

equation
xtanx + Ftanh f = 0 (A.21)

At the extremum, the derivative of S(/3) must vanish
S;n(ﬁe) = 20, + 2x*,?n$i,m =0 (AQQ)

The derivative i, can be expressed with the use of the Implicit Function
Theorem applied to the function F(z,3) = ztanxz + 3tanh 3. Hence

,  _ _OF/0B _ tanhfp+B(1 - tanh? 3)

Tom = OF/0x  tanz + (1 + tanx) (A.23)

In the above . denotes the solution to (A.21) corresponding to 3 = . This
way one has a pair of equations for the unknowns (8, z.)

tanh 3. + Be(1 — tanh? fe)

=0
tan z, + z.(1 + tan® x,)

ﬁe"‘xe

(A.24)
ZTetanz, + [ tanh G, =0
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After some algebra, the following relation can be derived from (A.24)
(z2 + 2)(1 — Be tanh 3.) tanh B, = 0 (A.25)
Equation (A.25) holds if:

1) 2. = . = 0 — this leads to the zero value of o;, which is excluded (zero
is not an eigenvalue of the problem),

2) Be = 0 - yields "trivial” solution: the derivative S/,(0) = 0 because of
the symmetry with respect to the spanwise wave number f3,

3) . is a solution to the algebraic equation 3. tanh . = 1.

In the last case, the solution is 3. = 1.199678640... .
We will show that the function S(f) attains its local minimum g = f,.
We need to compute the second derivative

S"(B) =2 + 2z, (B)] + 224 m(B)7 1 (B) (A.26)

at # = f.. By differentiating formulae (A.23), it can be shown that
Ty ;m(Be) = 0. Thus

S(Be) =2+ 2[z, ,,(Be))* >0 (A.27)
ie. S(B.) is a local minimum. The corresponding eigenvalue
gem = —9(8)/Re attains the local maximum. For example, we have

0e,1 = —0.0018540387... for Re=5000.
Similar argumentation can be given for the anti-symmetric Orr-
Sommerfeld modes.

References

1. BuTLER K.M., FARREL B.F., 1992, Three-dimensional optimal perturbations
in viscous shear flow, Physics of Fluids A, 4, 8

2. CaBAL T., SZUMBARSKI J., FLORYAN J.M., 2002, Stability of flow in a wavy
channel, Journal of Fluid Mechanics, 457, 191-212

3. FLORYAN J.M., 1997, Stability of wall-bounded shear layers in the presence
of simulated distributed surface roughness, Journal of Fluid Mechanics, 335,
29-55

4. REDDY S.C., HENNINGSON D.S., 1993, Energy growth in viscous channel flows,
Journal of Fluid Mechanics, 252, 209-238



ON ORIGIN OF UNSTABLE MODES IN VISCOUS CHANNEL FLOW... 871

5. SAAD Y., 1992, Numerical Methods for Large Eigenvalue Problems, Halstead
Press, New York

6. ScumipT P.J., HENNINGSON D.S., 2001, Stability and transition in shear
flows, AMS, 142, Springer-Verlag New York

7. SZUMBARSKI J., FLORYAN J.M., 1999, A direct spectral method for determi-

nation of flows over corrugated boundaries, Journal of Computational Physics,
153, 378-402

O pochodzeniu niestatecznych form zaburzen w przeplywie cieczy lepkiej
w kanale z przestrzennie okresowym odsysaniem/wyplywem

Streszezenie

W pracy rozwaza si¢ zagadnienie liniowej statecznodei przeplywu cieczy w plaskim
kanale, w obecnoéci periodycznie roztozonego odsysania/wyplywu przez sciany. Celem
analizy jest identyfikacja zaburzen krytycznych i objadnienia ich zwigzku z rozwigza-
niami wlasnymi zagadnicnia statecznosci dla przeptywu Poiseuille’a. Stosujac metode
kontynuacji wartosci i rozwigzan wlasnych po parametrze wykazano, ze obserwowane
formy niestabilnosci to zmodyfikowane okresowo w kierunku przeplywu poprzeczne,
symetryczne mody Squire’a i Orra-Sommerfelda, ktérym odpowiadajg czysto urojone
wartosci wlasne. Zbadano numerycznie wplyw parametréw odsysania/wyplywu na
wiasnosci tych modow.
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