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The paper is concerned with the numerical flow computation using the
method of Smoothed Particle Hydrodynamics (SPH). Fundamental con-
cepts of the method are briefly recalled. Physical aspects of the incom-
pressibility and its mathematical formulation are described. A new pro-
posal for the incompressibility constraint is put forward in the SPH con-
text. Numerical implementation of the method is described and main
parts of the algorithm arc presented, including the issue of boundary
conditions. Some validation cases and examples of results for viscous
flows are presented.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a particle simulation method
developed in astrophysics (Monaghan, 1992) where the classical computatio-
nal fluid dynamics (Eulerian) methods are not sufficiently effective. Being a
Lagrangian approach (and basically grid-free), the SPH is able to naturally
treat highly-varying density, deformable boundaries and free surfaces, propa-
gation of discontinuities, multiphase flows and other physically complex flow
situations.

In the SPH, the flow continuum is discretised by using particles. The par-
ticles, which can be thought of as Lagrangian fluid elements, carry all the ne-
cessary information about flow variables; in this feature lies the main strength
of the method. For a more detailed description of the SPH, see Monaghan
(1992), Morris (1996), and Morris et al. (1997). From the very beginning, the
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method finds more and more application areas, such as its native astrophysics,
materials science (Libersky et al., 1993), and fluid mechanics, including free
surface flows (Monaghan, 1994), creeping flows (Morris et al., 1997), shock wa-
ves (Monaghan and Gingold, 1983; Morris and Monaghan, 1997), and, partly
(for computation of statistics only), also turbulent flows in the PDF approach
(Welton, 1998).

The SPH has originally been formulated for compressible flows, with the
pressure field linked to the fluid density through an equation of state. In-
compressible flows have been computed with this compressible formulation,
assuring that the flow velocity scale be a small fraction of the sound velocity
(often using an artificial equation of state, cf. Morris et al. (1997)). An alterna-
tive, "truly” incompressible approach has first been proposed only recently by
Cummins and Rudman (1999). In the authors’ opinion, however, an important
aspect of the incompressibility has to be accounted for in the governing equ-
ations of the SPH approach. Hence, a new formulation of the incompressible
SPH is proposed in the present paper.

This work considers the aspects of implementation of the incompressibility
in the context of the SPH method for viscous flows. The paper is structured
as follows. The SPH method is introduced in Section 2. Then, the existing
formulation of the incompressibility is recalled and a new proposal is detailed
(Section 3). Next, we describe a numerical algorithm of the SPH method we
have developed (Section 4). Some results for test cases illustrate the validation
of parts of the algorithm (viscosity, incompressibility, boundary conditions);
first computational studies of viscous incompressible flows are also reported
(Section 5). Conclusions and perspectives for further works are contained in
Section 6.

2. Basics of the formalism

Now we present some fundamental concepts of the SPH method. This will
help to understand the ”philosophy” of this approach and to get some flavour
of its technical aspects; however, the review paper by Monaghan (1992) and
references therein are recommended for a full coverage.

2.1. Summation interpolants

Formally any function A(r) can be approximated by an integral interpo-
lant Aj(r)
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Al(r) = fA(r’)W(r — 1/ h) dr’ (2.1)

where A(r') are values of the function at points 7 and W is a weighting
function (so called kernel) with a parameter h that can be thought of as
a smoothing length or a linear dimension of the kernel; the integration is
over the entire space (or over the kernel support, if compact). Obviously, the
approximation error is kernel-dependent, with A;(r) — A(r) = O(h2VZ2A).
Eq. (2.1) can be thought of as a coarse-graining formula for any hydrodynamic
variable (e.g.density, velocity components, or energy). The kernel is a function
that must satisfy the normalisation condition [W(r —+/,h) dr' = 1 and,
secondly, in the limit of small smoothing length, h — 0, it must tend to the
Dirac delta W (r,h) — &(r).

In particle methods, instead of the field A(r), with its argument 7 being
continuous in space, a fine-grained (particle) representation of A is introduced
(cf. Gingold and Monaghan, 1982). The integral interpolant (2.1) becomes then
a discrete, or summation, interpolant Ag(r) defined by a sum over all particles
b in the system, with the volume element replaced by the specific volume (the
inverse of the particle number density)

Ag(r) = ZmbéW(r — 1y, h) (2.2)
b Pb

where the index b denotes the values at the locations 7y, my is the particle
mass, p is density. In the following, we will skip the subscript ”S” in the
summation formulae. It is to be remembered that the variables r,, m; are
attached to the particles while the density p, and A, (which is a generic
name for any variable describing the flow field: velocity, internal energy, etc.)
should be understood as field values that are computable at any point 7, (in
particular: at the particle location).

Now, the crucial point is that a differentiable approximation of a function
can be constructed by using interpolants with the differentiable kernel. Such
a concept allows one to avoid the use of a discrete mesh and finite difference
formulae, which is otherwise unavoidable in many methods for solving partial
and/or ordinary differential equations (finite volume, particle-mesh, particle
in cell, to name only a few). For example, the gradient of A in Eq. (2.2) is

VAs(r) = Zmb%VW(r -1y, h) (2.3)
b

Any differential operator can be constructed in a similar way. Consequently,
no finite difference approximations are needed to compute spatial derivati-
ves because this operation is shifted to the kernel which is a known function.
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Obviously, the kernel must be quite easily differentiable to make the method
computationally efficient. The efficiency constraint also applies to the summa-
tion process. Formally, the sum is done over all particles, for the integration in
(2.1) is over the whole flow domain. For a large number of particles, this can
become prohibitively time-consuming. Therefore, the kernel is usually chosen
as a function with a compact support; this limits the computation of sums to
particles from some part of the whole domain only.

Remembering these constraints we can, in principle, construct a kernel of
our choice, which adds to the flexibility of the method. In practical applications
of the SPH, kernels are most often based on polynomial functions like the cubic
spline (also used in the present work)

(3, 3

— 51 +Zq3 if 0<¢g<1
0 otherwise

.

where ¢ = |r|/h and C is a normalisation constant. This choice is convenient
for numerical purposes: the kernel is sufficiently smooth for most applications,
easy to compute, and has a compact support. Another possible choice is the
Gaussian kernel W (r,h) = Cexp(—r?/h?). The undesirable feature of this
kernel is that the support is not compact, though values of W are very small
for r greater than 3h, say. The modified Gaussian kernel with some cut-off
distance, quartic or quintic spline kernels are also used; generally, the choice
often depends on the computor. Recently, a thorough stability analysis of the
SPH equations with various kernels has been performed (Morris, 1996).

2.2. Governing equations

The SPH is a particle method; so the physical system is treated as built of
particles (real or notional) and the whole set of governing evolution equations
should be expressed in the SPH approach using the above-presented forma-
lism. In other words, the dynamics of the system results from a certain form
of particle interaction, responsible for any process occurring in the system
we wish to describe, like momentum and energy transfer. Such an approach
involves the calculation of the sums as (2.2) or (2.3). For viscous flows, the
governing equations are as follows.

First, the continuity equation

W _ .U (2.5)

dt
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can be discretely represented as

dpa ZmbUGb VWa (2.6)

Alternatively, the fluid density can be computed from its definition formula

Pa = ZmbWab (2.7)
b

In the above expressions, some shorthand symbols have been introduced:
Wap = W(rap, h), Tap = 74 — 1 and Uy, = U, — Up; moreover, V, deno-
tes the gradient operator with respect to r,.

Next, the momentum equation for the incompressible fluid (the Navier-
Stokes eq.) is

dU 2

E=pg—VP+uV U (2.8)
where P is the pressure, g is the mass forces, and g is the dynamic viscosity.
In the SPH formalism, it takes the form

dU = —Z[mb(Pb %)vawab “‘Hab] (2.9)

a

where g, = g(r,). Moreover, I, is the viscosity term equal to (Morris et al.,
1997)

(Ua + Ub)‘rab : Vu,Wab
PaPb (Tib +n?)
where a small correction 7 in the denominator (usually 7 ~ 0.1h) is meant
to avoid the singularity (if needed for a given W). It should be noted that
the above expression approximates the true (physical) viscosity term. It has
been a common practice to use an artificial viscosity term in compressible SPH
formulations, in order to obtain a better resolution of shock waves; this will
not be considered here. Moreover, let F';;, denote the expression in the square
bracket in Eq. (2.9). It is thus easily seen that particle momenta change due to
the inter-particle interactions F,, and external influences g, (like mass force

or imposed mean pressure gradient driving the flow).

In the following, we will assume that fluid properties (density and viscosity)
are temperature-independent, so the equation for the internal (thermal) energy
will not be needed here.

The particle equation of motion

Hab = my Uab (210)

dr,
"'?d"'t‘" — Ua (2.11)
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completes the system. Although very simple, it implies that the convection is
treated exactly in the SPH.

It is worth saying a few words about the smoothing length h. It deter-
mines the local spatial resolution and also specifies the number of particles
treated as near neighbours. The choice of this quantity is determined by two
opposing aspects. If h is too small, due to a small number of contributing
particles the approximations tend to be noisy. On the other hand, if A is too
large, the resulting fields become over-smoothed, and the computation of the
interpolation sums over many particles is less efficient. A compromise usually
consists in taking h equal to several times the average inter-particle distance.

3. Incompressibility in SPH

A simple way to present the concept of incompressibility is to imagine the
fluid as a set of hard spheres (which represent the particles). Suppose these
spheres are contained in some volume; by applying a force, we can then de-
crease the volume to some extent, limited by the size of the spheres. When
the spheres touch each other, the system is in its most compact configuration.
Now, if one particle is displaced, all other will react instantly in the whole
system, immediately changing their positions. This implicates the infinite ve-
locity of the transfer of information and the elliptic character of the governing
equations.

The condition of constant density, p = const, put to continuity equation
(2.5) results in

V-U=0 (3.1)

The condition p = const and Eq. (3.1) are a mathematical formulation of
the fact that the system is incompressible. Basically, they can be numerically
implemented in two ways. The first one uses the high sound speed which is the
measure of the propagation of perturbations in the system. Roughly speaking:
a non-uniform density will relax to its equilibrium value through the propaga-
tion of pressure waves that will drive the particle motion. The liquid equation
of state is usually modified to avoid prohibitively small time steps due to the
CFL constraint. This approach is close to the classical artificial compressibility
method used in Eulerian solvers. The second approach (detailed below) is to
enforce condition (3.1) through the projection method, as first proposed by
Cummins and Rudman (1999).
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3.1. Projection theory — zero-divergence constraint

The projection method enables introducing the incompressibility by ca-
sting the velocity field on the divergence-free space; it is possible because every
vector field A can be written as the sum of a potential field and a solenoidal
one

A=Vo+ Ay (3.2)

where V- A; = 0. So, the velocity field computed in the SPH at a current
time step can be decomposed in the above way by finding the curl-free part of
the field and leaving only the divergence-free part.

Practically, the decomposition is performed by finding the curl-free compo-
nent from the momentum equation and subtracting it from the original vector

field
At

U,=U-—VéP (3.3)
p
As seen in Eq. (2.8), the velocity is linked with the pressure. We want basic
incompressibility condition (3.1) to be fulfilled during all calculation. However,
this condition is generally not satisfied at the beginning of each time step At.
By local corrections to the pressure field JP(I), obtained from the equation

1 1
v.(vspm) - Lo,
p(vap ) V.U (3.4)

condition (3.1) can be fulfilled. The projection method is akin to the so-called
pressure correction widely used in Eulerian solvers, too.

3.2. Constant density constraint

At the same time we must also remember that condition (3.1) comes from
the assumption that p = const in the whole domain. This equation is at
the origin of the second correction term. The pressure field is related to the
density, which should be constant. The density is calculated on the basis of the
masses and positions of the particles. The masses are constant, so we have to
change the positions to make the density uniform in the domain. The second
correction, used also in the PDF computation of turbulent flows (Minier and
Pozorski, 1999), relates to the deviations of density from the mean value (cf.
Pope, 1985). In the context of the SPH, an analogous formula, Eq. (3.12)
below, can be proven as follows. Consider a flow of an incompressible fluid
with a constant density pg imposed at the beginning of the computation. At
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any time instant ¢, the fluid density at any point r in the flow domain is
computed out of the particles (we suppose they all are of equal mass my)

p(r,t) =mo Y W (r —ry(t) (3.5)
b

At the time step t", the fluid density p™(r) in the domain (possibly close to
po) is known. Now, at t"*! = " 4 At, a numerical integration scheme yields a
set of particle velocities Up™! and locations 7. The flow density computed
out of these locations is generally no longer uniform

= mGZW (r—7"1) # const (3.6)
b

In order to satisfy the constant density constraint, the pressure gradient field
ViP® is computed and used to correct the particle locations at ™!

n+1 _ *T—'n,-+-1 _ "—V5P(2) At?

3.7
Ty b p 5 (3.7)

This pressure gradient is meant to produce the constant density at t"*! again

o) = my ZW (r—rp*™) = po = const (3.8)
b

Substituting (3.7) and expanding into the Taylor series around r— 7" yields

_ At?
pPo = Mo ? W(T — f‘}?_l_]' + gVﬁP(m)

(3.9)
— Wir — ~n+1 A_tg V’JP(2) VIV ( ~n+1
?TL[}Z (r )+2p0moz A r—1," )
b

Consider now the SPH formula (cf. Eq. (2.3)) for the following derivative

p" p V5P(2)
v-(p—ovap<2)) moy Fe—b

~n+1
D YW (r 7Y+ 0L (3.10)

it is exactly the expression appearing in the second RHS term of (3.9). Hence,
using (3.6)

po ="t 4+ éf»v (f’mvapf?)) (3.11)
P0
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The above formula directly yields the (generalised) Poisson equation for the
pressure correction

i 41
1y (E-vop®) = iz( ) (3.12)
P0 £0 At P0

To sum up: the introduction of the incompressibility involves two Poisson’s
equations. The first one is the consequence of incompressibility condition (3.1)
and the second one is related to the perturbations of the density. Given appro-
priate boundary conditions, the solution of these equations is unique. One only
has to remember that the boundary-value problem consisting of the Poisson
eq. V26P = q with homogeneous (zero) Neumann’s condition is well posed
when the additional compatibility constraint [ ¢ dV = 0 is satisfied.

4. Numerical algorithm of the method

4.1. Generalities

Using the basic SPH equations recalled in Section 2, the zero-divergence
constraint and the new proposal to preserve a constant particle density (Sec-
tion 3), we constructed an algorithm to compute both incompressible and
compressible flows. The algorithm can be written as follows:

e initialize the particles in the computational domain; create an auxiliary
mesh
e for each time step:
— update particle-mesh data (linked lists)
— compute the densities, Eq. (2.7)
— compute the pressures from the equation of state (for compressible
flows only)
— compute the right-hand sides of the equations of motion
— advance the equations of motion by a time step, Egs. (2.11) and
(2.9) -
— solve the correction related to the density, Eq. (3.12), update par-
ticle positions
— solve the correction related to the velocity divergence, Eq. (3.4),
update particle velocities

e save and/or process the results.
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The corrections to particle velocities and positions are computed only in the
incompressible case which is of main interest for us at this time. The smoothing
length A is chosen so that the number of neighbours within the kernel support
be roughly in the range of 10-20.

Initially, the particles are located uniformly in the computational domain,
either in a regular rectangular array or using the pseudorandom generator
with the uniform distribution. The particle velocity components are assigned
from given initial profiles.

4.2. Calculation of the interpolant sums

One of the important features of the SPH are the summation formulae ob-
tained from the interpolation procedure. Each sum appearing in the governing
equations must be calculated for every particle. Therefore, the summation pro-
cedure takes a considerable part of the actual simulation time. For this reason,
a great amount of effort has been devoted to the increase of the effectiveness of
this part of the algorithm. To this aim, an auxiliary mesh has been introduced
and symmetry of the summation terms has been used.

As stated before, the SPH is basically a grid-free method. However, we
use the auxiliary mesh to find the nearest neighbours (particles). With choice
(2.4) of the kernel formula, the "nearest neighbour” should be meant as one
for which the interparticle distance satisfies 7r,, < 2h. For a regular mesh
of size 2h superimposed onto the simulation area, it means that for a given
particle only the particles from the same cell and the nearest neighbouring
cells contribute to the sum.

To make the task easier, we use the so-called linked lists to store particle-
mesh data (Hockney and Eastwood, 1981) using two integer arrays. The first
one (of size equal to the number of cells) is called fpc, ie. first-particle-in-cell.
In £pc(i) we store the index of the first particle found in the cell z; fpc(7) is
equal to zero only if the cell 7 is empty. The second array (of size equal to the
overall number of particles used in simulation), is called spc, ie. subsequent-
particles-in-cell. For a particle n, the array element spc(n) stores the pointer
to the particle (in the same cell) next to the particle n (if any). For example:
suppose that particles 3 and 5 (out of five) are in the cell number 1, the
remaining are in the cell number 2, and the cell number 3 is empty. We perform
a loop over the particles to find their respective cell numbers, so fpc(1) = 3.
The indices of the subsequent particles found in same cell are stored in spc,
so in our example spc(3) = 5 (particle 3 "points” to particle 5 in the same
cell) and spc(5) = 0 (particle 5 is the last in the cell). After assigning all
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particles to the cells, the arrays in our example will look like fpc= (3, 1,0),
spc= (2,4,5,0,0).

The computational effort can also be considerably reduced by making use
of the intrinsic symmetry of the terms of the interaction force between the
particles. Because F,, = —Fp, for any pair of particles a and b, the two
contributions can be computed at a time. We only have to assure that the
summation over all particles is made in such a way that the force is computed
only once for any two interacting particles. In order to do this, the summation
is organised with a loop over the cells and not over the particles. This part of
the algorithm is constructed as follows:

— loop over cells

— loop over particles in a given cell

— compute and store self-interaction term Fy, for a given par-
ticle a

- compute interactions with subsequent particles b in cell; store
F,, and Fp,

- compute interactions with particles b in subsequent cells; store
F,, and Fy,.

In practice, the above algorithm becomes somewhat more complicated because
boundary conditions have to be accounted for (cf. below).
4.3. Time evolution

In the current approach, the first order explicit (Euler) scheme is used for
solving ordinary differential equations (2.11) and (2.9) for time advancement.
The time-discrete form of the evolution equation for velocity is

Urtt =UL - At Fy — AtVRY (4.1)
b
time evolution of positions
n+l1 n n+1 At2 (2)
T, =T, + Ua At — TV(SPa (42)

with the pressure corrections 5P and §P given by (3.4) and (3.12), respec-
tively. For the explicit integration scheme, like the one applied, a constraint
for the maximum allowed time step applies, and this should be checked in
all simulations. The advantage of this kind of integration scheme as applied
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to the particle method is that the problems with detecting particle collisions
with walls and double application of boundary conditions (a debatable issue
in predictor-corrector type schemes) are avoided. However, in unbounded do-
mains or for flows with periodic boundary conditions, second-order schemes
are definitely recommended. The integration scheme, however important, is
not considered crucial at the actual stage of the development, but it should
be improved to increase the computational efficiency.

4.4. Boundary conditions

Boundary conditions are vitally important in any physical problem. For a
given geometry and governing equations, they determine the solution. Their
numerical implementation, however, is often not so obvious and straightfor-
ward. Boundary conditions supplement equations of time evolution, compu-
tation of physical quantities of a system and they also appear in the problem
of solving the Poisson equation. The summation takes place over particles in
the system. Such expressions can create asymmetries near the boundaries. For
example, a particle placed far from walls in a homogeneous medium can see
(statistically) the same number of neighbours in every direction. But if it is lo-
cated near the wall, the asymmetry will appear, and the number of neighbours
will be different in various directions.

One of the ways to cope with this problem is to add a number of immobile
particles that simulate the presence and influence of the walls. Here, however,
we decided to use a more flexible approach. We applied the idea of mirror
particles, already known in the SPH context (Morris et al., 1997) and in the
probability density function method for turbulent flows (Minier and Pozorski,
1999). Their idea is based on the fact that all physical variables in the SPH
are calculated by using sum interpolants. The problem is illustrated in Fig. 1.
There, to any particle located at 7, at a distance not greater than A from the
flat boundary (let 7, stand for the boundary point closest to particle b), we
introduce its mirror particle located at ry = 2r,, — 7, i.e. symmetrically with
respect to the boundary; hence W(r, —r,) = W(r, — ry). Mirror particles
are not a part of the system, i.e. their dynamics is not computed, but they
possess features like mass, velocity etc. Their role is limited to ”simulate” the
vicinity of the flow domain boundaries and to enforce the boundary conditions
for velocity and other quantities (if present in computations). For example, to
ensure the no-slip boundary conditions for velocity, the density at b’ is taken
as py = pp, the mass of the mirror particle is taken as my = my, and its
velocity Uy = 2U,, — Uj. Then, Eq. (2.2) results in
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U, -U
U(ry) —Zmb?W _rb)+Zmb: o bW(rw—rb:) =
(4.3)
m
=2U,, Z ——EW(rw —1y) =Uy
y Pb
°
o
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Fig. 1. Influence of boundaries in summation formulae: particles (o) and
corresponding mirror particles (o), introduced in the boundary zone. Here, the
velocities of the mirror particles are chosen to satisfy the no-slip wall boundary

condition

The issue of boundary conditions shows up in a different way in the Poisson
equations for pressure correction (e.g. normal derivatives equal to zero on the
walls, given pressures at flow inlet/outlet). In the simulation we also consider
the fluid flow with inlet/outlet. In that case, new particles are generated at the
flow inlets to simulate the flux of mass into the domain. The new particles get
randomly generated positions in the inlet area and velocities from a prescribed
profile. The particles leaving the computational domain through the outlet are
removed.

5. Computation results

The results can be divided into two categories: first, the tests which perform
the basic checks of the algorithm and of the Poisson module; and second, the
simulations of two-dimensional viscous flows.

5.1. 1D test of viscous damping

To test the method, we chose first a one dimensional problem with periodic
boundary conditions to allow the density (and pressure waves) to propagate
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freely. For that simulation, 500 particles are pseudorandomly distributed on
the interval. The initial velocities are set to zero and the system is let to damp
the initial perturbation in the density (created by leaving one of the cells
empty). For such tests, a compressible version of the algorithm was used, with
an equation of state in the form p/p = const. We calculated the density and
its rms value (or standard deviation) over the interval. A temporal rms density
record is presented in Fig. 2. It is readily seen that the initial perturbation is
damped; the remaining residual density fluctuations, mainly due to somewhat
disordered arrangement of particle locations, are an inherent feature of the
SPH method. For the same initial configuration, Fig. 3 shows velocity records
of a chosen particle in both inviscid (plot a) and viscous case (plot b). As
expected, the initial perturbation repeats infinitely in the inviscid periodic
system while it gets damped in the presence of viscosity. The plots also show
the classic feature of developing numerical instability if the time step of the
simulation is too large (cf. discussion in Section 4).

0.02f

RMS density

0.01

0 10 20 30 pime 40

Fig. 2. RMS fluid density - response to initial perturbation; two different viscosity
coefficients

5.2. Tests of the pressure correction algorithm

Next, we performed a test of the incompressibility constraint to check the
performance of Poisson equation (3.12). A wall-driven cavity flow (cf. below) at
Re = 1 with particles initially at rest was taken as the test case. Fig. 4 shows
temporal evolution of non-uniformity of the density in the whole domain,
computed out of the densities at the centres of the auxiliary mesh used to



SPH COMPUTATION OF INCOMPRESSIBLE VISCOUS FLOWS 931

1 0.10
(a) (b)
U, (1) U, (1)
0.05}
|- l N -] ol :
-0.05} :
W 1
-1 : . : ! -0.10 .
0 5 10 15 20 0 5 10 ..
l'ime

Time

Fig. 3. Velocity record of a chosen particle — response to initial perturbation in the
density field: (a) inviscid flow, (b) viscous flow. Solid lines: sufficiently small time
step; dashed lines: too large time step (unstable computation)
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Fig. 4. Evolution of the density rms in the whole flow domain (lid driven cavity at
Re = 1) with applied correction of particle locations (solid line) and without it
(dashed line)

solve the Poisson equation. The density rms on the plot is normalised by the
constant flow density, and the time is normalised by the convective time scale
for the cavity. It is readily seen that the incompressibility correction does a
good job: after the initial transient due to flow acceleration, the density rms
attains a plateau; its level decreases with the number of particles used in the
computation. On the other hand, in the case when no correction of particle
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locations is applied, apart from the increasing non-uniformity of the density,
also the results of the flow velocity field (not shown here) become degraded.

5.3. The Couette and Poiseuille flows

Two different cases of unsteady, initially at rest, two-dimensional viscous
flows were considered: an impulsively started Couette’s flow and Poiseuille’s
flow with suddenly applied streamwise pressure gradient. SPH results were
obtained with only 20 particles in the cross-stream direction; the time step was
1073Tp, with a characteristic time scale of the flow being equal to Ty = h2/ V.

Temporal evolution of the velocity profile in the wall-driven Couette flow
(with the upper wall velocity U,,) in the channel 0 < y < h was compared
with the analytical formula after Schlichting and Gersten (1997)

U(n) = Uy Z erfc (2kny, + n) + erfe (2(k + 1)np — 1) (5.1)
k=0

with 1 = 0.5y/v/vt and 1, = 0.5h/+/vt. The computed and analytical velocity
profiles are in good agreement for several time instants, as shown in Fig. 5a.

In the case of Poiseuille’s flow, the developing velocity profile is known
from a theoretical formula (cf. Morris et al., 1997)

Ul(y,t) = %y(y —h)+
(5.2)

> 4G h?
>,

2k + 1)27rzut]
vm3(2k 4+ 1)3

sin [iy—(% + 1)} exp [—( 2

k=0 h
where G is the driving kinematic pressure gradient (or body force). As shown
in Fig.5b, the accordance of the computations with theory is satisfactory

again.

5.4. The lid-driven cavity flow

This is one of the standard test cases used for validation of numerical algo-
rithms for viscous flows. The geometry is very simple, but the flow structure
becomes fairly complicated with the increasing Reynolds number, with more
and more vortical regions appearing. It is also a genuine 2D flow where the
implementation of incompressibility constraints is essential in order to obtain
satisfying results. Another fairly difficult point in the SPH implementation is
the correct statement of boundary conditions and the correct management of
the mirror particles in summation formulae.
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Fig. 5. Velocity profiles in developing (unsteady) viscous flows: (a) Couette flow;
(b) Poiseuille flow. Results are plotted for several values of non-dimensional time
4/ut/h = 4\/t/Ty, equal to 0.25, 0.5, 1.0, 1.5, 2.0, and oo, respectively. Solid line:
analytical formula, circles: SPH computation

Fig. 6. Lid-driven cavity flow: computed streamlines at Re = 100 and Re = 1000;
streamlines not equidistant for enhancing the visibility of secondary vortices

We simulated a flow in the rectangular domain 0 < z < 1, 0 < y < 1.
The flow was driven by motion of the upper boundary (y = 1). Results have
been obtained for the Reynolds numbers up to Re = 1000 using up to 80 x 80
particles at Re = 100 and up to 240 x 240 particles at Re = 1000. Computed
streamlines in the cavity flow for two different Reynolds numbers are presented
in Fig. 6. Profiles of velocity components: U, for = 0.5 and U, for y = 0.5
are shown in Fig. 7. They coincide reasonably well with Eulerian computation
results on a fine grid (Ghia et al., 1982) which are taken here as the reference
data.
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Fig. 7. Velocity profiles for the lid-driven cavity flow: (a) U,(y) at = = 0.5;
(b) Uy(z) at y = 0.5. Solid line: SPH computation at Re = 100; dotted line: SPH
computation at Re = 1000. Reference results of Ghia et al. (1982): e (at Re = 100)
and o (at Re = 1000)

5.5. The Rayleigh-Taylor instability

The R-T instability-induced unsteady flow (its initial development at least)
was numerically simulated in a square box of the size L, filled in the upper
half with the heavier fluid of the density p2, and in the lower half with the
lighter fluid of the density p;, with pa/p; = 2, placed in the gravity field g.
The linear stability analysis predicts this configuration to be unstable when
(cf. Faber, 1995)

Tl 9% (5.3)

L\ (p2 —p1)g

where o stands for the surface tension coefficient. We note the first known
attempt to model the surface tension in the SPH formalism by Morris (2000).
We do not account for the surface tension here (o = 0), so instability criterion
(5.3) is always met. However, to simulate the R-T instability numerically, we
disturbed the initial configuration slightly in a kind of cosine wave (but initial
particle velocities were still kept zero) in order to trigger the motion. The
results show particle locations (Fig.8a,b) and velocity field (Fig.8c) in the
initial phase of the developing instability. In the course of time, they become
physically incorrect as the flow gets disordered with important diffusion of
two fluids across the internal material interface which loses its identity pretty
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quickly. It is difficult to comment on this behaviour now; however, the question
arises whether the account for the surface tension would be sufficient to prevent
this. Therefore the presented R-T results are of a qualitative character for the
time being, suggesting directions for further improvement.

Although Fig. 8 looks like presenting typical results obtained with molecu-
lar simulation methods (as MD or DSMC), it should be emphasised here that
the SPH approach is based on a Lagrangian discretisation of a macroscopic
continuum, so the simulated particle system should behave as a continuum
when the time goes on and not just as an ensemble of molecules, so the mi-
xing phenomenon (mutual penetration of two fluids) should not occur when
the molecular transport of mass is switched off (cf. Monaghan, 1989).

(a) (©)
5% STIEeT ¥ 1.0
" d e ..
..............
081 /oL L i Ly
.
i : i R A :
S
: 0.6 R
b E . .~
LOOBOCO o /‘1 Jhbeie '\
CEEEEE] as SEECELEE 1 7 O O A A LN
RO0CBOA sese oocod AR -7
o co00000) ? P ‘ T
£0DDO00DDEE000GA0DD0I0D08000000D 0.4 * -
Fonnooa68800000000600000000000000) -\ I‘ LY J J’ l l P ;
Po00A060D90D000TEUOR0URYVBTVUIT A N
Poo0oD00000000300000000N0G0G000g ¥ J \ u
AH006600000000000E000AHEGGEN00 IR 4 e
0000000000000a000DEVD0N00000000])
Lo00C090200092000000000000000600d] LI T S . e !
L 0000000000000 002000000006020000) 0.2 LA R T T B
00000000000 00000000000R000CT00) L N P
AA0000H0A0NEA00R00006GE0000000J b
00000000000 00000000000U00T0000] P R B
[0000000000000000065006000000G0T) -
b0G000C000000006900000000G00000
1s] nn [alalala

0 0.2 04 06 08 1.0

Fig. 8. Rayleigh-Taylor instability: (a) initial particle locations; (b) later particle
locations; (c) velocity field at a later instant. Light fluid (e) and heavy fluid (o)

6. Conclusion and perspectives

The aim of the paper is to report the application of the SPH method in
the area of incompressible viscous flows. The algorithm has been developed for
incompressible case, scrutinized in a selection of validation tests and applied
to two non-trivial 2D flow cases. Although there are other well-developed me-
thods in numerical fluid dynamics (including finite element and finite volume
methods) that are able to deal in a more efficient way with the type of flows
tested to date, the point here is to validate the SPH algorithm before going
further into more physically-complex flows where the potential advantages of
the method are expected to show its full value. The incompressible formulation
proposed here is currently being developed and, as a next step, will be used
for cases of free-surface flows and the near-wall turbulence.
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Obliczenia niesScisliwych przeplywéw lepkich metodg czgstek rozmytych

(SPH)

Streszezenice

Praca dotyczy numerycznych obliczen przeplywow z wykorzystaniem metody cza-
stek rozmytych (ang. SPH ~ Smoothed Particle Hydrodynamics). Przypomniano po-
krétce podstawy metody, a takze fizyczne 1 matematyczne aspekty niescisliwosci.
Przedstawiono nowg propzycje spelnienia warunku niescisliwosci w podejsciu SPH.
Opisano numeryczna implementacje metody i podstawowe elementy algorytmu, w tym
spsOb stawiania warunkéw brzegowych. Przedstawiono wyniki testow metody oraz
przyklady obliczen przeplywéw lepkich.
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