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A nonstatistical methodology is introduced for eigenproblems of cracked
cross-sectional beam systems with random parameters. The formalism is
based on a combination of the second-order perturbation technique and
mean-centered second moment analysis. The system random parameters
are defined by their first two probabilistic moments. Hierarchical equ-
ations are obtained and solved for the first two probabilistic moments
for the cigenvalue field. As the system matrix is nonsymmetric, a pro-
cedure for the exact solution of the sensitivity equations is proposed
with each eigenvalue derivative solved for separatively. Analytical and
numerical aspects of the problem are discussed and illustrative results
are given. The approach presented is general and may be employed for
a wide class of problems of fracture mechanics.
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1. Introduction

In structural analysis damages of beams and frames are frequently con-
sidered in terms of the system parameter behaviour. Useful information for
improving the strength of a beam can be obtained on the basis of the eigen-
problem sensitivity by evaluating the change of a natural frequency to varia-
tions of system parameters, the size and position of a cross-sectional crack for
instance. This issue has been discussed extensively in the literature (Kobay-
ashi, 1971; Nowacki, 1972; Tada et al., 1973; Knott, 1976; Drewko and Sperski,
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1991; Drewko, 1999a,b, [9]). In most of those formulations, however, the mate-
rial and local geometric parameters such as Young’s modulus, Poisson’s ratio,
cross-sectional area, crack length, etc., are assumed to be deterministic quan-
tities. Since the natural character of the system parameters are irregularity
and uncertainty, a problem formulated in the framework of simplified, deter-
ministic modelling may in some cases be misleading in interpretation of the
given system. A model regarding the randomness of the system parameters
should be adequate in this context.

Recently, an approach based on the mean-based second-moment analysis
in combination with a first- or second-order perturbation technique has been
investigated, verified on a number of engineering systems with random para-
meters as in Hishada and Nakagiri (1981), Vanmarcke and Grigoriu (1983),
Liu et al. (1986), for instance, and proved to be much more efficient than stati-
stical techniques typical of Monte Carlo simulation (Tocher, 1968). The main
advantage of this non-statistical methodology is that only the first two pro-
babilistic moments of random parameters, i.e. spatial expectations and cross-
covariances or cross-correlations, are required on input, while in the statistical
approach the whole probabilistic structure, i.e. probability density or probabi-
lity distribution functions, and a large number of samples generated randomly
are needed. Shortcomings of the approach are typical of any perturbation-
based techniques - the method is effective for systems with relatively small
fluctuation in random parameters and described by unique and smooth
solutions.

Various classes of uncertainties have been incorporated into a system de-
scription in a natural manner by means of stochastic variational principles. We
may mention the stochastic version of the minimum potential energy princi-
ple (Liu et al., 1986), multi-field principles (liu et al., 1988; Kleiber and Hien,
1992), Hamilton’s principle (Hien and Kleiber, 1990), virtual temperature prin-
ciple (Hien and Klieber, 1997, 1998), for instance. The most important feature
of these developments is that the random parameter problems are formulated
so that the differential operators acting on the left-hand sides of the resulting
hierarchical equations are the same, all the probabilistic features being trans-
lated into the right-hand sides as easily computable functions. On the basis of
these stochastic statements a large number of engineering problems, structural
statics and dynamics in particular, have been formulated and many numerical
algorithms have been implemented into computer codes. In the literature such
non-statistical stochastic formulations related to eigenproblems are still rather
scarce (Kleiber and Hien, 1992, 1997; Collins and Thomson, 1969), while for
a wide class of problems of fracture mechanics are seemingly nonexisting,.
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Expanding the above-mentioned developments in this paper, an analyti-
cal methodology is put forward for eigenproblems of cracked cross-sectional
beam systems with random parameters. A second-order perturbation second-
centered moment formulation is employed and a hierarchical equation system
is obtained, Section 2. On account of the unsymmetrical character of the sys-
tem matrix a procedure for the exact solution of the sensitivity equations is
introduced and each eigenvalue derivative with respect to a random variable
is solved for separatively. Standard algorithms worked out and implemented
for beam systems with crack length defined as random variables are described
in Section 3. Section 4 illustrates the proposed formalism via two numerical
examples. Concluding remarks are given in the last section.

2. Problem statement. Stochastic formulation

It is well-known (Nowacki, 1972) that the equation of motion of a prismatic
beam with the rotation inertia and shear deformation effects taken into account
can be expressed in terms of the transverse vibration w(z,t) at the abscissa z
defined along the beam axis and at time ¢ in the form

dw 0%w E\ 0w Jo? 9w
Blo +0Amy ~ QJ(I + E) 5758+ 5o o =" (2.1)
which, by using the variable separation w(z,t) = y(2)Z(t) with
My pAwW?K? E\0% pAW? 0Aw?K?
it gy (1t Z’E)az2 -5 (- TOA Ju=0 (22

can be integrated for the general solution written in terms of the deflection
amplitude y(z) as

y(z) = @1 cosh kyz + posinh kyz + @3 cos koz + g sin ko z (2.3)
with
0Aw?K? E 0Aw?K? E\12 pAw? 0Aw?K?
2 \}:F 2F.J ( +kG)+\/[ 2F.J ( +kG)] YRy ( EGA )
(2.4)
J ~  K%b
2 _ 2 e m—
K = ) k 5
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where the symbols ¢, o = 1,4, denote the system coefficients to be determi-
ned, w - frequency, ¢ — mass density, £ and G ~ Young’s and shear moduli,
S - static moment and of the upper (or lower) part of the cross-sectional area
with respect to the cross-section neutral axis, J - moment of inertia of the
cross-sectional area with respect to the neutral axis, b - length of the part of
the neutral axis on the cross-section, A — cross-sectional area. It is noted that
the above four integration constants ¢, take various values for each beam
section between the cracks.

If the beam is assumed to be weakened by cross-sectional cracks, a crack of
the length a of the cross-section at x can effectively be modelled by employing
an elastic hinge of stiffness being a decreasing function of the crack length,
K = K(a) (Drewko, 1999a,b, 2000). In this case, the system at hand requires
additional conditions to be satisfied at the crack coordinate z = z as follows
— equilibrium condition

[ETy"], = K@)y, —v'],_) (2.5)

-— deflection continuity condition

Yo = Yla, (2.6)
~- bending moment continuity condition
(ETy"],_= [EJy"],, (2.7)
— shear force continuity condition
meo I

By employing the initial parameter technique and on account of the specific
boundary constraints, Eq. (2.3) becomes (cf. Drewko and Sperski, 1991)

Qw)p =0 (2.9)

where ¢ = {1, p9,... ,c,o,_l(N+])}, with N being the number of the cracks, cf.
Eq. (2.3). Equation (2.9), typical of the Sturm-Liouville problem, is solved for
the natural eigenpair(s) (w?,¢), each unknown w being an argument of the
matrix functions (w) entered this nonsymmetric matrix.

By employing a combination of the second-order perturbation technique
and second moment analysis, Eq. (2.9) serves as the basis for the stochastic
formulation discussed below.
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Let us assume ¢ = {¢ (z)}, » = 1,2,..., R, to be a set of R random
variables (parameters) which can represent spatial randomness in the cross-
sectional area or its dimensions, static moment and moment of inertia, Young’s
and shear moduli, system mass, crack length, z-abscissa, etc. Clearly, the
unknowns (w?, ¢) are implicit functions of the random variables. The first two
probabilistic moments for the random variable field ¢, are defined as

+o0
Elg)] =¢¥ = / ¢rPR dqidqs . .. dqr
— 00

—~—
R—fold
(2.10)

+oo
Cov (¢r, qs) = / (ar — a°)(as — O)prdardgs . . . dar

—00
——
R—fold

The latter definition corresponds to (from now on an indicial notation is used,
and twice-repeated indices imply summation)

Cov (qr,qs) = Qr0rsGqo pirs (2.11)
with

/ Var (q,)

abs(q?)

(2.12)

+0o0
Prs = / arqsPr dqidqs . .. dgr (no sum on R)
—00

——
R—fold

where Elg.], Cov(gr,qs), Var(q;), prs, @ and pr = pr(q1, 92, . ..,qr) are the
spatial expectations, cross-covariances, variances, cross-correlation functions,
coefficients of variation and R-variate probability density function, respec-
tively.

The nonstatistical formalism embodies the probabilistic distributions, as
reflected in the first two probabilistic moments for the random field variables
¢-(z) to obtain the first two moments for the natural frequency w(q(z),z)
and eigenvector ¢,(q(z),z). The basic idea behind the second moment ana-
lysis, when combined with the second-order perturbation technique, involves
expanding all the functions of the random variables g, (z) included in Eq. (2.9),
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L.e. the ones explicit in g(z), i.e. cross-sectional area A(q(x),x) or its dimen-
sions b(g(x),z) and h(q(zx),x), static moment S(g(z),z) and moment of iner-
tia J(q(z),z), Young’s and shear moduli E(g(z),z) and G(q(z),z), Poisson’s
ratio v(q(x),x), mass m(q(x),x), crack length a(q(x),x), etc., and two ones
implicit in ¢(x), i.e. w(g(z),z) and ¢(g(x), z) around the spatial expectations
of ¢ = {g-(2)}, i.e. ¢ = {¢°} = {¢%(x)}, via Taylor’s series and retaining
terms up to the second order. These expansions are written symbolically in
the variational form as

1
0 r r
N=()+ () 6qr + = ()" 6qr0qs 2.13
()= O+ O] _dar + 5007 00:50 2.1
where
dgr = eAqr = e(qr - q?) (2'14)

is the first variation of g, about ¢, while
8qr0qs = €2 Agr Ags (2.15)

is the mixed second variation of ¢, and g5 about ¢?, and ¢? and ¢ is a given
small parameter. The symbol (-)° represents the value of the functions taken
at the expectations ¢ while (-)" and (-)"* denote the first and mixed second
partial absolute derivatives with respect to ¢, evaluated at 2, respectively.
In accordance with the philosophy of the perturbation approach, expan-
sions (2.13) are now substituted into Sturm-Liouville system (2.9). Since the
first and second variations are arbitrary and mutually independent, equating
the variational terms of equal orders in the resulting expression yields the
following hierarchical equation system:
— zeroth-order (one equation)

205(w")% =0 (2.16)

— first-order (R equations, 7 =1,2,..., R)

0 0 T — 3 0 g 0
— second-order (one equation)
2
Rp@)o| = {0 wtw®)| 65+
qa=q q9=q°
(2.18)

+2[r2£xrﬁ(w01 w‘t)qbg]qzqo Cov (QT: qs)}
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where a, =1,2,...,4(N +1) and the symbol (-)?) denotes the double sum
(-)"* Cov (gr,qs) with r,s,t =1,2,... ,R.

We observe that (i) all the quantities included in Eqs (2.16)-(2.18) are
deterministic functions - evaluated at ¢, = q,?, and (ii), except for the unk-
nowns ¢°, ¢ and ¢, all the entries on the left-hand side of Egs (2.16)-(2.18)
are identical, i.e. the same operator 29 acts on the left-hand sides of all the
equations, all the probabilistic characteristics of the problem being translated
entirely into the effective loads on the right-hand sides.

An aspect, particularly important in terms of computational implementa-
tion, should be made here that by employing the second moment analysis we
have to deal with only one second-order equation, instead of R? equations as
required traditionally in the ‘deterministic’ perturbation approach. (In fact,
the total number of the second-order equations to be solved is R x (R+1)/2
since the second derivatives are symmetric with respect to ¢, and g¢s, i.e.
(-)"™ = (-)*".) It is because Eq. (2.18) is obtained by averaging the second-
order variation terms. More specificly, the second-order term involving the
mixed derivatives of the eigenvector ¢, for instance, is averaged as, cf. Eqgs
(2.13)-(2.15)

E[‘ﬁ”rséqr"s‘%] = 52¢’TSE[(9‘T — qg)(qs - qg)] =
(2.19)

_ e'zd),'rs Cov (Qm%) _ CQQI)(?)

Zeroth-order equation (2.18) is seen to be in aform identical to governing equ-
ation (2.9) and as such it can serve as the basis to obtain the zeroth-order
natural frequencies w® = w{ and shapes ¢% = ¢9, i = 1,2,...,00. Once
(w?,¢°%) are known, the higher-order pairs (w”,¢") and (w(z),c;b(g)) can be
solved for from R independent first-order equations (2.17) and single second-
order equation (2.18), in succession. Since the system matrix (2,4 is singular,
the first- and second-order nonhomogeneous equations are generally solved for
(w",@") and (w(z), #?)) by using an approximate procedure. As an exceptio-
nal case, however, the exact values of the first-order natural frequencies w’"
can be calculated in a simple way. This issue will be discussed in detail in the

next section.

Having solved the equation system (2.16)-(2.18) for (w’,¢°), (w",¢") and
(w?), ¢?)) probabilistic distributions of the random fields w and ¢ may, for
a given €, be computed (setting e = 0 yields the deterministic solution). In
our case, the formal solution is obtained by setting ¢ = 1 which, of course,
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stipulates that the fluctuation of the random field variables g, is small. Thus,
by averaging the expanded equation for w, cf. Eq. (2.13)

1 Ts
g=g2 " T 5

0 T
w=w" +w Ag,Ags 2.20

the second-order accurate expectations for the natural frequencies read

) 1
Ew] =« + w"E[g, — ¢°] + 5w El(gr — a)(gs — 49)] =
(2.21)

1 1
= w40+ 5w Cov (grgs) = &’ + Ew@)

Clearly, if only the first-order accuracy is losked for Eq. (2.21) reduces to
Ew] = u° (2.22)

In order to determine the second probabilistic moments for the natural
frequencies, expansion (2.20) is used without the second-order term, i.e.

wi(z) = Wl (z) + W (m)|Q=qﬂ Agy i=1,2,... (2.23)

so that the first-order accurate cross-covariances for (w;(z;),w;(z2)) take the
form, cf. Eq. (2.22)

Cov (w;(z1),wj(2)) = Bl(wi(z1) — wi(21))(wj(z2) — w(22))]=
(2.24)

_ w;r (3_;1 )w;.s (3;2) Cov ((h'a QS)

It is pointed out here that the second-order accurate expectations and
first-order accurate cross-covariances for eigenpairs fields are consistent with
the second moment strategy, since the output second-order accurate cross-
covariances would require the probabilistic moments for the random variables
gr up to the fourth order on input.

Following the same lines as for the natural frequencies, the first two pro-
babilistic moments for the eigenvectors can be expressed as

E[g] = ¢° + 56
(2.25)

Cov (pi(x1), j(x2)) = ¢ (1)} (2) Cov (gr,qs) i=12,...
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3. First-order sensitivity of natural frequencies with respect to
random variables

Putting forward the procedure introduced in Nelson (1976), a simple algo-
rithm for the exact solution of the first partial absolute derivatives of natural
frequencies with respect to random variables is discussed in this section. Recall
that in contradistinction to standard nonsymmetric eigenproblems, where eige-
nvalues stand for independent terms consisting only in the diagonal elements
of a system matrix (2,3, in our case the natural frequencies are arguments of
almost all functions entering (2,3, i.e. are involved in off-diagonal elements of
the system matrix as well.

Let us start with pre-multiplying Eq. (2.16) by the right-handed eigenvec-
tor 1), transposed to get

Vo Lap pp =0 (3.1)

that, differentiated with respect to the random variables ¢,, yields

'd)g af ﬁbﬁ + Yo Q;:g ﬁbﬁ + Ya Qaﬁ Qﬁg =0 (32)

Since the first and last terms on the left-hand side vanish by the definition
of eigenproblems, we obtain

Yo ‘Qaﬁ ¢ =10 (3.3)

that stands for the basic formula and can be employed directly to compute the
first-order sensitivity of each natural frequency w = w;, with fixed i = 1,2, ...,
to a change of the random parameter ¢, 7 =1,2,..., R. To be bpeciﬁc let a
crack of the length a be assumed random with the expectatlon a®. Equation
(3.3) reading now (o, 3 =1,2,...,4(N + 1))

000 K (0005 Oky  O0ap Okp\dw)
Yol 5 da * ( Ok, Ow | Ok 5) )% =0 (34)
implies
do 00005 Okt 00 Ok 002, dK
2 = [l Ok, 0w | Oky 5 )98 (5 5 da ) (3.5)

with all functions being evaluated at a = a°. We remember that the solution
of type (3.5) can be treated as the exact result only in the context of the
zeroth-order natural frequencies w? obtained approximately before.
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4. Illustrative examples

Two prismatic beams with the rectangular cross-section A = b x h of the
length [ are discussed in this section. The first one is a simple cantilever, Fig. 1
while the second is fixed at one edge and hinged at the other, Fig. 2.

E h%x
l —

Fig. 1. Cantilever beam

ﬁ T
/ _ b

Fig. 2. Fixed-hinged beam
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The SI measure units (N;mm,s) will be used throughout for input and
output data. The crack length on the cross-sectional surface at z-coordinate,
a = a(x), is assumed to be random, defined by the first two probabilistic
moments and considered for two cases:

(a) expectation E[a] = a® = 10 and standard deviation o, = 1.5 and

(b) E[a] = a® = 24 and o, = 3.6.

All the other input data are considered as deterministic quantities: cross-
sectional dimensions b x h = 7 x 40, length [ = 600, Young’s modulus
E = 2.06 x 10°, Poisson’s ratio v = 0.3, mass density o0 = 7.83 x 10~°. The
problem is to find the first two probabilistic moments for the system natural
frequencies.

The number of cracks is equal to one of the elements of the system matrix
2u0p, a,8=1,2,...,8. Reducing the matrix to a (4 x 4)-matrix, yields:
— first two columns, §2i, and {25, for both the cantilever and fixed-hinged
beams
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211 = sinksx — (ko/k1)sinh k1

291 = k2 sin kox + k1ko sinh kyx

231 = 291 EJ/ K + ko(cosh kyx — cos ko)
241 = k3 cos kox + k?ky cosh ki (4.1)
{219 = cos kox — cosh k1 x

(299 = k3 cos kyx + kf cosh ki x

(240 = (290 EJ/ K + ko sin kyx + ky sinh k1 x

49 = ki sinh kyjz — k3 sin kg

— last two columns, (23, and (244, for the cantilever beam only

213 = —sinksx — ycos kox — Y cosh ki x

(293 = —k% sin kox — 'yk'% cos kox + ﬁk% cosh k1 z
(233 = ko cos kox — 'ykg sin ko + 9k sinh kyx
43 = '—k‘% cos kox + ")’k‘% sin kox + 191?3% sinh k1 z
214 = ncos kyx — sinh kjz + ( cosh k1 z

294 = nk3 cos kox + k? sinh kyz — k% cosh k1 z
234 = nko sin kox + ky cosh k1 — (ky sinh kyx (4.2)
44 = m?}kg sin ko + k':f cosh kjz — Ck'f sinh k1 z
~v = &(ko cosh kil cos kol — ky sinh k1l sin kol)

¢ = &(kq cosh kql cos kol + ko sinh kil sin kyl)

n =&k} /k3

9 = Ek3 /K

¢ = (ky sinh kil cos kgl + kg cosh kil sin kol) ™1

— last two columns, (23, and (24,, for the fixed-hinged beam only

(213 = —sin kox + cos kox tan kol
93 = k383

233 = ko(cos kox + sin kox tan kol)
Q3 = —k3 253

. (4.3)
214 = —sinh kyx + cosh kyz tanh k1l

94 = —k#(4
234 = k1 (COSh ki1x — sinh kjx tanh &, l)
44 = ki34
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Fig. 3. Cantilever beam. First two probabilistic moments for first four natural
frequencies; a/h = 0.25
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Figures 3 and 4 present curves of the spatial expectations for the first four
natural frequencies, Elw;], i = 1,2,3,4, versus the dimensionless z-distance
(the running position of the crack), x/l, for both the crack cases Fig.3 and
Fig. 4, respectively. The first probabilistic moments (continuous curves) are
compared with the finite element-based, deterministic solutions (star sym-
bols) obtained by using [9] with the crack length a considered as a determini-
stic parameter, i.e. with zero value of the second moment. The finite element
model consists of 960 conventional 8-node rectangular elements and one two-
dimensional crack element. It can be seen that the relative differences between
the mean values and deterministic finite element-based solutions are up to
about 2% for a®/h = 0.25, and from 9% to 18% for a°/h = 0.60; the authors’
analytical deterministic solutions and finite element ones nearly coincide. The
behaviour of the spatial standard deviations given for the natural frequencies
shows that the values of these probabilistic second moments w; decreases slow-
ly down to zero at the free-end of the cantilever. In other words, the nearer
the crack approaches the beam free end-point the less the natural frequencies
are sensitive with respect to variations of the crack length a, becoming zero
at the free end-point. This effect is also illustrated in Fig. 5 and Fig. 6 descri-
bing the random response of the first four frequencies, w;,ws,ws and wy. It is
shown that with the variation a, of the random parameter a given as 0.15
on the input its counterpart o, generated on the output is of the same order
— a range from about 0.2 down to 0.05, decreasing with the position of the
crack along the axis of the fixed-hinged beam and with the domination level
of the successive natural frequencies. The latter aspect can be interpreted in
the system energy context, as lower frequencies are more dominant and more
sensitive to the fluctuation of the crack length rather than higher ones (the
frequency terms are involved in the denominator of Eq. (3.5)).

5. Concluding remarks

The formulation discussed in the paper demonstrates that nonlinear, ill-
conditioned and nonsymmetric eigenproblems for (not only beam) systems
with spatially random parameters can be effectively analysed by using a non-
statistical technique, basing upon the second-centered moment analysis of a
function expanded through second-order power series. The strategy introdu-
ced may be considered as a general formulation for this class of homogeneous
governing equations. Also, it may be put forward, with appropriately minor
modifications, to cover other problems of fracture mechanics.



A STOCHASTIC EIGENPROBLEM OF BEAMS... 1015

380
/ | 2 AN
370 \ . 1
0 05w L0 05 o 10
|
1270 ! 16
I A A\ S 12\ - ~
m * \/, \ /
1220 r N/ 8 ]
-
-
1195} LS 4l )
1170 l |
0 0.5 o Lo 0 05, Lo
2550 30 l
g /\ / g
= 2500 20 / \ //\\
2450} /,q - 10 \/[ \\/ \/
2400 .
0 o 10 0.5 o 1.0
4150 40
y 3
S 4100l A\ Caob
6q]
40504 20 i
4000 10 \/ \/
3950 . /

0 0.5 10 o Lo

Fig. 5. Fixed-hinged beam. First two probabilistic moments for first four natural
frequencies; a’/h = 0.25
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Despite the versatility enjoyed by the perturbation approach, we should
be aware that certain subtle questions about this method remain unanswered.
In particular, the power expansions are valid only if the response is analytic
in ters of € and the series converge. Criteria for convergence must include
the magnitude of the perturbation parameter ¢, especially for such an ill-
conditioned system of eigenproblems - no such criteria have been established
in the present context.

The scheme for discretization of random variables employed in the paper
follows the spatial averaging method proposed in Vanmarcke and Grigoriu
(1983). Alternative approaches to the approximation of random fields are:

e interpolation method (Liu and Der Kiureghian, 1986; Der Kiureghian
and Jyh-Bin Ke, 1988), in which the random field is approximated thro-
ugh deterministic shape functions and the random nodal values of the
field

e midpoint method (Vanmarcke and Grigoriu, 1983; Der Kiureghian and
Jyh-Bin Ke, 1988), in which the element random variable is defined as
the value of the random field at the centroid of the element, and

e series expansion method (Lawrence, 1987), in which the random field is
modelled as a series of shape functions with random coefficients.

A comprehensive discussion of these methods can be found in Der Kiureghian
and Liu (1988).

The analytical algorithm worked out appears to be accurate and cost-
effective in particular for complex systems with correlated random parame-
ters. There are no special difficulties in implementing stochastic options into
existing source versions of conventional ‘deterministic’ computer codes, tho-
se like the existing packages written in the framework of the finite element
methods or finite differentiation method. Adaptation of the procedure as a
post-processor to commercial proprietary codes is possible but would be much
more costly.

As shown above, the complete solution of the eigenproblem requires inte-
gration of R + 2 equations. Since the number of matrix operations is propor-
tional to Rx (R+1)/2 due to double summations, the computation cost would
be high for large complex systems. To reduce the double summations to single
ones, so that the number of the matrix operations is proportional to R, the
standard normal transformation from the set of the input correlated random
variables to a set of uncorrelated random variables may be applied (cf. Liu et
al., 1988; Hien and Kleiber 1990; Kleiber and Hien, 1992), for instance. This
aspect will be discussed in a forthcoming paper.



1018

10.

11.

12.
13.

14.

16.

J. DrREWKO, T.D. HIEN

References

. CoLLINS J.D., THOMSON W.T., 1969, The cigenvalue problem for structural

systems with statistical propertics, AIAA J., 7, 4, 642-648

DER KIUREGHIAN A., JYH-BIN KE, 1988, The stochastic finite element method
in structural reliability, Probab. Engrg. Mech., 3, 2, 83-91

DErR KIUREGHIAN A., Liv P.-L., 1989, First- and second-order finite element
reliability methods in structural reliability, in: Liu W.K., Belytschko T. (eds.),
Computational Mechanics of Probabilistic and Reliability Analysis, Elmepress
Int., 281-298

DREWKO J., 1999a, Elastic hinge modelling in vibration analysis of beams with
cross-sections weakened by cracks, Marine Tech. Trans., 10, 93-103

. DREWKO J., 1999b, Vibration analysis of beams with cracks, Visnyk Lviv Univ.,

Ser. Mech. Math., 55, 30-34

DREWKO J., 2000, Analysis of models of clastic-plastic hinges, Marine Tech.
Trans., 11, 107-114

DREWKO J., SPERSKI M., 1991, Vibration of multi-chamber shell structures
with discontinuously variable cross-sections, Eng. Trans., 39, 163-180

Hien T.D., KLEIBER M., 1990, Finite element analysis based on stochastic
Hamilton variational principle, Comput. & Structures, 37, 6, 893-902

Hien T.D., KLEIBER M., 1997, Stochastic finite element modelling in linear
transient heat transfer, Comput. Meth. Appl. Mech. Engrg., 144, 111-124

Hien T.D., KLEIBER M., 1998, On solving nonlinear heat transient heat trans-
fer problems with random parameters, Comput. Meth. Appl. Mech. Engrg., 151,
287-299

HisapA T., NAKAGIRI S., 1981, Stochastic finite element method developed
for structural safety and reliability, Proc. 3rd Int. Conf. on Struct. Safety and
Reliability, 395-402

KLEIBER M., HIEN T.D., 1992, The Stochastic Finite Element Method, Wiley

KLEIBER M., HIEN T.D., 1997, Parameter sensitivity of inelastic buckling and
post-buckling response, Comput. Meth. Appl. Mech. Engrg., 145, 239-262

KnorT J.F., 1976, Fundamentals of Fracture Mechanics, Butterworth

KoBayasHI A.S., 1971, Photoclastic studies of fracture, in: Liebowitz H. (ed.),
Fracture, Vol. 3, Chapter 5, Acad. Press

LAWRENCE M.A., 1987, Basic random variables in finite clement analysis, Int.
J. Num. Meth. FEng., 24, 1849-1863



17.

18.

19.

20.

21.
22.

23.
24.

25.
26.

A STOCHASTIC EIGENPROBLEM OF BEAMS... 1019

Liu W.K., BELYTSCHKO T., MANI A., 1986, Random ficld finite elements,
Int. J. Num. Meth. Eng., 23, 1831-1845

Liv W.K., BELyTscHKO T., BESTERFIELD G.H., 1986, A variational princi-
ple for probabilistic mechanics, in: T.J.R. Hughes and E. Hinton (eds.), Finite
Element Method for Plate and Shell Structures. Vol.2: Formulations and Algo-
rithms, Pineridge Press, 285-311

Liv W.K., BESTERFIELD G.H., BELYTSCHKO T'., 1988, Variational approach
to probabilistic finite elements, Engrg. Mech., 114, 12, 2115-2133

Liu P.-L., DER KIUREGHIAN A., 1986, Multivariate distribution models with
prescribed marginals and covariances, Probab. Engrg. Mech., 1, 2, 105-112

MSC, 1994, NASTRAN. Reference Manual, ver. 70, MacNeal-Schwendler

NELsON, R.B., 1976, Simplified calculation of eigenvector derivatives, AIAA
J., 14,9, 1201-1205

Nowackl W., 1972, Dynamika budowli, Arkady

TApA H., PaAris P.C., IRwIN G.R., 1973, The Stress Analysis of Cracks.
Handbook, Hellertown

TocHER K.D., 1968, The Art of Simulation, McGraw-Hill

VANMARCKE E.H., GRIGORIU M., 1983, Stochastic finite element analysis of
simple beams, J. Eng. Mech., ASCE, 109, 5, 1203-1214

Stochastyczne zagadnienie wlasne belek ze szczelinami

Streszczenie

W pracy przedstawiono niestatystyczna metodologie w zastosowaniu do zagadnien
wlasnych ukladéw belkowych oslabionych szczelinami i opisanych parametrami loso-
wymi. Problem sformulowano na podstawie kombinacji metody perturbacji drugie-
go rzedu i analizy drugich centralnych momentéw statystycznych. Parametry losowe
ukladu zdefiniowane sg przez ich pierwsze dwa momenty statystyczne. Otrzymany hie-
rarchiczny uklad réwnaii rozwiazano dla pierwszych dwéch momentéw statystycznych
czestotliwosci i wektorow wlasnych. Ze wzgledu na niesymetrycznosé macierzy uktadu,
zaproponowano algorytm $cislego rozwigzania dla pierwszych pochodnych czestotli-
wosci wlasnych wzgledem zmiennych losowych. Aspekty analityczne, numeryczne oraz
przyklady ilustrujgce sformulowanie przedyskutowano szczegdlowo. Podejécie ma cha-
rakter ogblny i moze by¢ stosowane do szerokicj klasy zagadnien mechaniki pekania.
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