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A unified and general approach to modeling and simulation of aircraft
prescribed trajectory flight is presented in the paper. The program of mo-
tion is composed of a specified trajectory in space (two constraints on the
aircraft position), a required fuselage attitude with respect to the trajec-
tory, and optionally, a specified flight velocity. For an aircraft traditionally
controlled by aileron, elevator and rudder deflections and thrust changes,
a tangent realization of the trajectory constraints arises, which yields two
additional constraints on the fuselage attitude (which thus becomes fully
specified). The governing equations of the programmed motion are de-
veloped in the form of differential-algebraic equations, and a method of
solving the equations is proposed. The solution consists of variations of
the aircraft state variables and the required control that ensures realiza-
tion of the prescribed motion program. This gives a unique opportunity
to study simulated control strategies and evaluate feasibility of modeled
aircraft missions. Some results of numerical simulations are reported.

Key words: inverse dynamics, inverse simulation control, prescribed tra-
jectory flight
Notations

Axr - matrix of transformation between (L) and (K) reference
systems
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Bryant’s angles that orientate the reference system (K)
with respect to the reference system (G) (Fig.1)

angle of attack and sideslip angle, respectively (Fig.2)
vector of absolute angular velocity of the reference system
(K), wg =wg/c
vector of angular velocity of the reference system (K)
with respect to the non-inertial reference system (L)
matrices defined in Eqs (2.2) and (2.4)
components of aircraft angular velocity expressed in the
reference system (B), wga) =[p,q,7]"
vector of aircraft velocity with respect to the air
wind velocity vector
angles that orientate w with respect to axes of the sys-
tems (I) and (G) (Fig.8)
vector of aircraft absolute velocity (with respect to the
ground), vo=v+w
control surface deflections (aileron, elevator, rudder),
6= [50., Oes 5T]T
jet thrust value
inclination angle between T and the Ozp axis
distance between the point O and line of the force T
moment of inertia and angular velocity of rotating jet
elements
applied forces and moments, expressed in the systems
(A) and (B)
aerodynamic force coefficients (drag, side, lift),

(4) _ T
Crp' = [CD, Cs, CL]
aerodynamic moment coefficients (roll, pitch, yaw),

(B) _ T
CN - [C{, Cm,» Cn]

aircraft mass
3 X 3 matrix of aircraft moments of inertia in (B)
acceleration of gravity
lifting surface area
wing span
mean aerodynamic chord
air density
radius of trajectory curvature
position vector of aircraft (point O) in the reference sys-

tem (1), 190 = [z,9,2]7
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s — arc length parameter
Y,z,u - vectors of algebraic, differential and control variables
t - time

1. Introduction

Inverse simulation techniques are computational methods in which control
inputs to a dynamic system that produce desired system outputs are deter-
mined. The governing equations that result after coupling the equations of
motion of the system with the equations of program constraints (= desired
motion specifications) are differential-algebraic equations (DAEs) in the sys-
tem state variables and control parameters. The numerical solution to these
governing equations provides a bagis for studying the system dynamic charac-
teristics in the specified motion and evaluating the required control effort.

Though the inverse dynamics simulation is a legitimate analysis tool in
problems concerned with flight maneuvering (Etkin, 1972), it is only recently,
with the increased availability of powerful small computers and their associa-
ted software, that the technique has gained practical significance. The appli-
cations range from the theoretical studies on aircraft space maneuvers to the
design of aircraft flight control systems (see e.g.: Kato and Sugiura, 1986; Lane
and Stengel, 1988; Kato, 1990; Thomson and Bradley, 1990; Hess et al., 1991;
Wang and Hu, 1993; Azam and Singh, 1994). Most of the attempts use fuse-
lage attitude prescribed time histories as the starting point of their analysis,
replaced sometimes by specified variations of the body-axis angular rates and
supplemented by a flight velocity specification. Different four-element sets of
program constraints of these types are then used to model the desired maneu-
vers of planned missions.

The program of motion involved in this contribution is based on specify-
ing a flight path directly, which is the most natural way to prescribe flight
maneuvers. A specified trajectory means two program constraints imposed
on position in space of the aircraft centre of mass. An important observation
stated by Parczewski and Blajer (1989) and then by Blajer (1997) is that
the realization of these constraints is tangent. Namely, the primary effects of
control surface deflections are the aerodynamic moments, and their direct in-
fluence on aerodynamic forces is usually small. The jet thrust induced by the
fourth control parameter, the throttle setting, is normally nearly tangent to
the trajectory (and is used to enforce realization of a possible flight velocity
specification). In other words, the available control reactions cannot direc-
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tly regulate the balance of the applied and inertial forces in the constrained
(orthogonal to trajectory) directions, and as such cannot directly assure the

_realization of trajectory constraints (the orthogonal realization of the constra-
ints is not feasible). The realization can however be achieved by appropriately
adjusting the fuselage attitude with respect to the trajectory — the force ba-
lance in the constrained directions can then be assured by the induced changes
in aerodynamic forces. Now, the required attitude variations can directly be
regulated by control surface deflections.

The tangent realization of the trajectory constraints yields two additional
requirements on the fuselage attitude — the trajectory constraints are thus
»redoubled”. Only two supplementary constraints can then be added to fully
specify the aircraft motion. One of the constraints must specify the aircraft
position on the trajectory, which is usually achieved by making use of the
required time history of flight velocity. The other constraint is on the fuse-
lage attitude, and most often it is the coordinated turn condition (8 = 0)
or a prescribed bank angle variation. The realization of the supplementary
constraints, as well as the fuselage attitude constraints consequent on tan-
gent realization of the trajectory constraints, is orthogonal (see Parczewski
and Blajer, 1989; Blajer and Parczewski, 1990; Blajer, 1997). Concluding, no
more than four program constraints (including the two "redoubled” trajectory
constraints) can be imposed on aircraft motion. The observation explains also
the ”paradox” that aircraft, a six-degree-of-freedom system, can be explicitly
governed by four control inputs.

In this paper, a unified and general approach to the modeling and simu-
lation of aircraft prescribed trajectory flight is developed. The solution to the
derived equations of program motion consists of variations of the aircraft state
variables and the required time histories of control parameters. This gives a
unique opportunity to study control strategies of the modeled maneuvers and
to evaluate their feasibility, which may be very valuable in analysing extreme
flight conditions (e.g. aerobatic maneuvers) or planning missions of unman-
ned aerial vehicles (UAV). Moreover, the possible flight control systems based
upon the non-linear inverse dynamics may offer the potential for providing
improved levels of performance over the conventional flight control designs
developed using linearizing assumptions.

For clarity reasons in presenting the principles of the mathematical model,
it has been assumed in the paper that the planned maneuvers are performed
in windless conditions. Then, in Appendix the formulation is extended to the
case including the wind drift.
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2. Reference coordinate systems

The following reference coordinate systems are used:

(I) - inertial Orzryrzr, with the Orzr axis pointed vertically and
downward

(G) - gravitational Ozgyczg, with its origin at the mass center (0]
of the aircraft and always parallel to the reference system (I)

(A) - aerodynamic Oz ayaza, with the Oz, axis directed along
the flight velocity vector v

(B) - body-fixed Ozpypzp, with the Ozpzp plane being the fu-

selage symmetry plane.

The three angles that orientate the reference systems (A) and (B) with
respect to the system (G) are, traditionally, Bryant’s angles $K, Ok and g
(K = A, B), shown in Fig.1.

Fig. 1. Angular orientation of the reference systems (K) and (G)
The transformation matrix between the systems (K) and (G) is

cocy oSy -3¢
Axc(dk,0k, k) = 8¢80Cy — CpSy  S3SpSy + Cocy  S4cp (2.1)
CpSeCy + SpSy  CySpSy — spcy CyCo
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where the abbreviations ¢y = cosfk, sy = sintk, ... are used for compact-
ness. The absolute angular velocity of the system (K), wk (" absolute” means
here with respect to (G), i.e. wx =wg/g), expressed in (K), is

) 1 0 -3 $x $x
Wy = 0 Co S¢Co HK = BK(¢K,0K) H_K (2.2)
0 —s¢ copco (e (e

Fig. 2. Angular orientation of the reference systems (B) and (A)

The angular orientation of the reference systems (B) and (A) is described
by the angles o and ( (see Fig.2), and the transformation matrix between
these systems is

CaC8 —CaS —Sa
Asa(B)=| ss s O (2.3)
SaC8 —SaS8 Ca

where the abbreviations ¢, = cosa, sg = sinf, ... are used again. The angular
velocity of the reference system (A) with respect to (B), wya/p, expressed in
(4), is

Wiy = I‘ZZ?) ‘:O:l:\EBA/B(ﬂ)[O?:l (2.4)
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Based on Eqs (2.1) + (2.4) two other useful relations can be derived. The
first one is

ABG(48,08,98) = Apa(c, B)Aac(da,04,1.4) (2.5)

and can be used to determine the classical roll $B, pitch 0p and yaw p
angles in terms of «, 8, ¢4, 04, % 4. The other relation is the matrix re-
presentation of the vector formula for the aircraft absolute angular velocity,
WB =W4 +Wp/y =wWA —wyp. Expressed in (B), the formula reads

Wi = | g | =Apaw - wis =

T
(2.6)

4 :
= Apa(a, ﬁ)(BA(¢A,9A) 6:’A ~By4/5(0) [ g J)
Y4

and can serve to determine the aircraft roll, pitch and yaw rates, p, ¢ and r
in terms of «, B, da, 04, Y4 and &, B, 4, 04, Pa.

Finally, the other important features of the transformation matrices intro-
duced in Eqgs (2.1) and (2.3) are

Akt =Arg = Ak
2.7)
Agr = &’%)LAKL = AKLHNJ(LL/)K

where the superscript (-) in Eq (2.7)y denotes a skew-symmetric matrix (a
cross product operator), which for the vector w = [wg, wy,w,]T is defined as

0 —w, wy
w=| w, 0 —w; (2.8)
—Wy Wy 0

3. Dynamic equations

The aircraft is modeled as a rigid body of six degrees of freedom, sym-
metrical with respect to the Ozpzp plane. The control parameters are the
values of the control surface deflections § = [0a;8e,0,] T and the value of the
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jet thrust T (active only if a specification on flight velocity is imposed). It is
assumed that the main effect produced by the deflections 4 is on the aerody-
namic moments, while their direct effect on the aerodynamic forces is small.
The vector T is contained in the Ozpzp plane.

For the purpose of the present formulation, it is convenient to use the
equations of translatory motion expressed in the reference system (4), and
the equations of rotational motion expressed in the reference system (B). In
matrix form the equations are

m\'IE)A) + mng)v(OA) = F(4)

(3.1)
Jd:(lf) + w%B)JwSBB) = N&B)

where 0(54) = [1,0,0] T v is the representation of the absolute velocity of the
point O in (A) equal to the aircraft air velocity for windless conditions. The
components of the applied forces F(4) and torques N(B ), in the reference
systems (A) and (B), respectively, are

1 ¢D cos(a + ar)cos B —sinfy4
FA4) = - —2—;),5‘112 cs | +T | —cos(a+ar)sinf | +mg | singycosfy
cr, —sin(a + or) cos ¢4 cos B4
(3.2)
1 be 0 —gsinar
N(B) — §p8112 Colm | +T | d | + Jrwr | psinar —rcosar
bey, 0 q cos ar

Tt is assumed that wr and T are closely related, and the relationship

wr = wp(T) is known. Then, the coefficients of aerodynamic forces
c&fl) = [ep,cs,cC r]T and moments CS\I,B) = [c1,Cm, ¢n) T are the following
functions of state variables and controls

CD =CD(C¥,,8,(53) q =cl(a,,3,p,r,6a,5,-)

cs = Cs(Ol, ﬂ:pv'ra 57‘) Cm = cm(a,q’56) (33)

L = CL(aaq7ae) Cp = Cn(Ol, ﬂ:p) T aa,ar)

4. Equations of program constraints

4.1. Prescribed trajectory

A desired trajectory is defined in the reference system (I), Fig.3, and its
most convenient representation has the following parametric form with the arc
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length s as the parameter

(I _«D ()
ro’ =%5'(s) = | 7(s) (4.1)
2(s)

—

where the superscript (-) means ”specified”. For the purpose of this mo-
del, 'rg)(s) must be at least twice differentiable function. In applications, a
trajectory is first sketched by a set of successive points in space, and then
interpolated/approximated by spline functions of appropriate order. The fo-
undations of such a procedure were described by Blajer and Parczewski (1990)
and Blajer (1991). Trajectory specification (4.1) is equivalent to two program
constraints on the aircraft (point O) position in space.

s
/ \_ trajectory

/

/

Fig. 3. Prescribed trajectory flight of the UAV

4.2. Specification on fuselage attitude

As mentioned previously, only one program constraint can originally be
imposed on the fuselage attitude with respect to the trajectory (the two other
constraints of this type consequent upon the tangent realization of the trajec-
tory constraints, and will be introduced in the next section). In the modeling
of specific maneuvers (see Blajer and Parczewski, 1990; Blajer, 1990, 1991);
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the mentioned constraint is either

B =B(s) or $a = dals) (4.2)

Most often the first of (4.2) is B =0, and characterizes a wide range of
maneuvers that assume coordinated turns, while B(s) # 0 can serve for the
modeling of possible side-slipping flight phases. The other specification of Eq
(4.2) can serve for the modeling of some special aerobatic maneuvers like roll
or bunt (Blajer, 1991). The constructing of linked aerobatic maneuvers may
require making use of both of requirements (4.2) alternately in different flight
phases.

4.3. Velocity specification

The most natural specification of this type is
vo = Do(s) (4.3)

which prescribes the aircraft motion along trajectory (4.1). For the purpose of
this formulation, however, a more convenient form of the constraint is

s = 8(t) (4.4)
where 9o = § and vo = 5. In the simple cases, e.g. wvo = const, the

formulation of Eq (4.4), based on Eq (4.3), may be evident. In a more general
case, Eq (4.4) can be obtained as a solution to the following integral equation

(t)
/ ds__, (4.5)
0

o(s)

As the analytical solution of Eq (4.5) may be quite complex, it is suggested
that it should be solved numerically. It is then assumed that the specification
of aircraft motion along the trajectory is given in the form of Eq (4.4), and
5(t) must be at least twice differentiable.

4.4. Programs of fully and partly specified flights

As it will be shown in the next section (see also Parczewski and Blajer,
1989; Blajer and Parczewski, 1990; Blajer, 1997), the tangent realization of
trajectory comstraints (4.1) yields two additional requirements on the fuse-
lage attitude with respect to the trajectory path. Having given the required
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trajectory and complementary constraint (4.2) we fully specify the aircraft an-
gular motions. The angular motion specifications are regulated by appropriate
control surface deflections. The trajectory constraints originally impose two re-
quirements on the aircraft (point O) position in space, and the realization of
the induced requirements on the fuselage attitude assures the realization of
the original constraints as well. Then, constraining the aircraft position on the
trajectory path according to Eq (4.4) makes the aircraft translational motion
fully specified, and the realization of constraint (4.4) is assured by changes of
the thrust. However, while imposing complementary constraint (4.2) is neces-
sary, demand (4.4) can be treated as optional. When the "velocity” constraint
is imposed or not, we can respectively say that the programs are fully specified
(F'S) or partly specified (PS) and, accordingly, the thrust control is active or
not. In the modeling of particular phases of an aircraft mission, the PS and FS
programs can be used alternately. The definitions relating PS and FS motions
are summarized in Table 1.

Table 1. Types of constraint realization

| Program constraints | Control ]

2 constraints (4.1)
1 constraint (4.2)
2 constraints (4.1)
FS motion | 1 constraint (4.2) | 8,,d.,6,,T
1 constraint (4.4)

PS motion g, Oe, Or

5. Conditions induced by trajectory constraints

Differentiating trajectory constraint (4.1) with respect to time one obtains

(1 NIOHY . .. .
v(OI) = 'r‘(o) = rlg)s, where (-)' denotes differentiating with respect to s.
This condition means that the aircraft absolute linear velocity vector o is
tangent to the postulated trajectory. In windless flight conditions we have
Yo = v, where v is the aircraft velocity with respect to the air, and vp =

v = 3§ (see Appendix for the case including the wind drift). As in the case
vg) = v(OG) = Agav and vi4) = [1,0,0] o, the tangency of 9o to the

trajectory is equivalent to ?ICSI) = Agj)“, where Ag,)q denotes the first column
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of Aga = A} defined in Eq (2.1). In the full form the condition reads

cos B4 cosa z'
cosfOusins | =17 (5.1)
—sinf4 z

As 64 € (—7/2,7/2) and 4 € (0,27), Eq (5.1) serves for the explicit deter-
mination of the angles 64 and 14 that orientate the vector Vo with respect
to the reference systems (G) and (I). The above can thus be interpreted as
conditions imposed on the angles.

Differentiating the trajectory constraint at the ” velocity level” (Ag aviA) =
?’O(I)) with respect to time once more, we obtain the trajectory constraint
condition at the "acceleration level” which, after using Eq (2.7)s, takes the
following form

AcaW) + Ny =705+ 74508 (5.2)
Then, premultiplying Eq (5.2) by Aag, and using the dynamic equation (3.1)1,

we arrive at , ,
—FAD 4 mAueFD)E +T D)%) =0 (5.3)

The right-hand side of Eq (5.2) is the representation of the tangent a,
(a&G) = ?O(I)Ls') and normal a, (a%G) = ?O(I).é2) accelerations, both with
respect to the trajectory path.

It is easy to ascertain that T (0 — [@,7,2]" is the representation of the
unit vector 7 ([Fp| = VZ2 + 72 + 22 = 1 pointed along the direction of .
<'(I)

According to Eq (5.1), in windless conditions ¥ is also equivalent to the
first row of A4g (the first column of Ag 4), and as such ?’O is pointed along
the first axis of the reference system (A) as well (see Appendix for the case
including the wind drift). Then, ?Z(I) = [",7",2"]" is the representation of
the vector 7 pointed at the center of the trajectory curvature, and its value
is (fb) = VB2 +72+2°2 = p;', where pc is the curvature radius at a
given position on the trajectory. The vector ?'é is thus represented in the
plane orthogonal to the trajectory, which, for the case in hand, is equivalent
to the Oyaza plane of the reference system (A). On this basis we can write

1 0
AscFiD = 0 AucF ) = | x (5.4)
0 X

where (x) denotes a non-zero element.
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Using peculiarities (5.4), the first relation of matrix equation (6.3) is
1 . ..
§pS1}2cD —Tcos(a+ ar)cos B+ mgsinbs +ms =0 (5.5)

and it expresses the balance of the applied and inertial forces in the direction
tangent to the trajectory. In the PS motion case, Eq (5.5) denotes the aircraft
motion equation on the trajectory, and 7 is an inactive control parameter
(can be an arbitrary function of time and state variables). In the FS motion
case we have v = 5(t) and § = §(t), and Eq (5.5) expresses the condition
imposed by specification (4.4) on the aircraft motion on the trajectory. The
realization of the requirement is assured by appropriate changes of value of T
(which is now the active control parameter). Note also that, according to Eq
(14), condition (5.5) is influenced by &, as well, but the induced drag force
effects are usually small (negligible).
The two other relations of matrix Eq (5.3) are

1
§pSv2cs + T cos(a + ar)sin B — mgsin g4 cos 4 +

+mé?*[3"(sin d4 sin 64 cos 4 — cos dasingg) +
+§"(sin pasinb 4 sintps + cos pa cosp4) + 2" sin b 4 cos 04] =0
(5.6)

1
EpS’UZCL + T'sin(a + ar) — mgcos ¢4 cos by +

+ms? [2"(cos ¢ 4 sin B4 cos Pa+singgsinga) +
+7"(cos pasinfasing s — sing 4 cos9a) + 2" cos g4 cos O] = 0

and they express the balance of the applied and inertial (centrifugal) forces
along the Oy and Ozy axes, i.e. they are the conditions of a vanishing motion
in the plane orthogonal to the trajectory. For both the PS or FS motion cases,
the conditions cannot be explicitly governed by the available control reactions
— the direct influence of the control surface deflections 0r and &, on the side
and lift aerodynamic forces is small (negligible) and T (the effect of which on
Eqgs (5.6) is also small) is either inactive or set aside for controlling condition
(5.5). Therefore, the only way to meet the requirements is to appropriately
change the fuselage attitude with respect to the trajectory, by controlling the
angles & and, according to which of (4.2) is used, ¢4 or B (note that 64
and 94 follow from Eq (4.4) and do not relate the fuselage attitude with the
trajectory). Conditions (5.6) can thus be treated as two further restrictions on
the aircraft angular orientation. It can also be interpreted that the trajectory
constraints are "redoubled” due to their tangent realization (Blajer, 1997).
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The required variations of the fuselage attitude can now be directly controlled
by adequate control surface deflections, and the realization of conditions (5.6)
ensures the realization of trajectory constraints (4.1). In this indirect way the
trajectory constraints can be realized, and the six-degree-of-freedom aircraft
can be controlled by the four control inputs.

6. Equations of program motion

The governing equations of aircraft prescribed trajectory flight can conve-
niently be written in the following differential-algebraic form

0=F(y,zu,t)
z=G(y,y) (6.1)
z=H(y,z,u,t)

where y,z and u are the vectors of algebraic (position), differential (velocity),
and control variables, respectively. As shown in the following, Eqs (6.1); are
the algebraic equations induced by program constraints, Eqs (6.1)2 are the
kinematic differential relations, and Eqs (6.1)3 are the dynamic equations.
The index of differential-algebraic equations (DAEs) (6.1) is three (Brenan et
al., 1989; Blajer, 1997).

The above general DAE form is common for both the PS and FS motion
cases. However, the explicit forms of the equations as well as the definitions
of y, 2 and u vectors are slightly different for the two cases.

6.1. Equations of PS motion

The state variables y and 2z, and the control variables u of the PS
motion are

y= [aa ﬂ) ¢A7 0A1 ¢Aa S]T
z= [v,p,q,r]T (6.2)
u= [5(1,7 681 6’/‘]T

and Egs (6.1) are thirteen DAEs composed of:
e Five algebraic equations

— One specification (4.2) on B or ¢4
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— Eq (5.1), which denotes two requirements on 64 and 14

— Two conditions (5.6), which can be written symbolically as

Fy(aa 137 ¢Aa aAa'lpAa $0U,p, 7, 67'1t) =0
Fz(av ¢A, 9A7 ¢A13aU7Qa 6e7t) =0

e Four kinematical equations
— One obvious equation, v = §
— Three equations (2.6), the symbolic form of which is

[pa q, T]T = Gw(aa /B: ¢A, 0A7 d: Ba (ﬁAa BA, ¢A)

e Four dynamic equations

— One equation of the aircraft motion on the trajectory, according to
Eq (5.5)
V= H:L‘(a: B, 0A) 18,7V, 58: t)

— Three equations of rotational motions, see Eq (3.1),
[ﬁ’ q‘) f‘]T - Hw(&, /37 37 ,07p7 q7 T? da’ 567 67‘7 t)

6.2. Equations of FS motion
The variables y, z and u are now
y= [Ol, ﬂa qu, eAa ¢A}T
z=[p,q,7]" (6.3)
u= [60,) 58, 6’!‘, T]T
and Egs (6.1) are twelve DAEs composed of:
e Six algebraic equations
— Eqs (4.2) and (5.1) as before (= three equations)
— Three conditions (5.5) and (5.6), which can now be written as
Fm‘(a) IH’ HAaT7 5evt) =0

Fy(aa :87 ¢Aa0A71/)A’p7 7, T, 57‘,t) =0
FZ(OZ, ¢A79Aa¢A,Q7T, 6e’t) =0
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e Three kinematical equations (2.6)
[p1 q, T]T = Gw(a7 67 ¢A, HA: da Bv GiSA, BA, ¢A)
e Three dynamic equations (3.1)7

[15’ q‘) ”;]T = Hw(a’ ﬁ7p’ q7 ’rl T7 5@)667 67"t)

7. Numerical procedure

The solution to DAEs (6.1) are the program variations of the state varia-
bles y(t) and 2(t), and the variation of the control signal u(t) that ensures
the realization of an assumed program of motion. Various DAE solvers can be
used to solve the governing equations; see e.g. Brenan et al. (1989), Gear and
Petzold (1984), Petzold (1990). Most of the methods originate from Gear’s ap-
proach. Using the simplest Euler’s backward difference approximation method
for demonstrative reasons, the procedure is as follows. Having given y,, z,
and u, at time ty, the values Y, 1, Zn41 and Upy1 at time ty41 = o + Al
can be found as a solution to the following set of non-linear algebraic equations

0= F(ynﬂ, Zp41,Up+1, tn-{—l)

y — Y,
Zny = G(Yn+17 lirlzt;&) (7-1)
y 4 - Z
En—j-lATri = H(yn+1,2n+17 un+11 tﬂ+1)

In this way the solution can be advanced from time %, to #p41. In order to
improve numerical accuracy, the Euler method is usually replaced by higher-
order backward difference approximation methods (Brenan et al., 1989; Gear
and Petzold, 1984; Petzold, 1990).

It may be worth noting that the first three algebraic equations (6.1);, com-
posed of Eqs (4.2) and (5.1), can be solved independently for B(t) (or ¢a(t)),
04(t) and ta(t). An important observation is also that there is only a weak
coupling by the control variables u between the remaining algebraic equations
and dynamic equations (6.1)3. Namely, the pivotal effect of the control surface
deflections ¢ is manifested in dynamic equations (3.1)z of rotational motions,
included in Eq (6.1)3, while, in the case of F'S motion, the control T' affects
chiefly condition (5.5), included in Eq (6.1);. Confining ourselves to the FS
motion case, the solutions ¢4 (or ((t)) and «(t) are then consequent mainly
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on algebraic equations (5.6), and the solutions p(t), ¢(t) and r(t) are determi-
ned from equation of kinematics (2.6) based on the program variations «f(t),
B(t), pa(t), 04(t) and v4(¢t). Finally, T(t) and 4(t) mainly originate from
condition (5.5) and dynamic equations of rotational motions (3.1)3, respec-
tively, after using the program variations of the state variables. This means
the exact numerical solution for y(t) at a given time, and the approximated
numerical solutions for 2z(t) and u(¢). Note also that neither the numerical
error accumulates in simulation time nor the current approximations in the
obtaining of z(¢) and u(t) influence the subsequent solution of the governing
equations of motion. In the case of PS motion the situation differs in one re-
spect only — v(t) and s(t) are integrated using the dynamic equations given
by Eq (5.5). The numerical errors may thus accumulate during the simulation
time, which will influence the solution with respect to the other variables in
the governing equations of PS motion.

8. Case study
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Fig. 4. Path points and the specified trajectory

The mission of an Unmanned Aerial Vehicle (UAV), outlined in Fig.3,
was to pass successively through five way points indicated in Fig.4. Based on
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the points, the required trajectory has been interpolated using cubic spline
functions; see Blajer (1990, 1991) for details. The UAV was then forced to
fly along a modeled trajectory at the constant speed v = 180 km/h, and the
condition of coordinated turns (8 = 0) was assumed.
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Fig. 5. Variation of the aircraft state variables

The results of numerical simulation are shown in Fig.5 and Fig.6. As can
be seen in the graphs, the programmed flight is characterized by five phases
of practically steady motion, separated by three highly non-linear phases in
the neighborhood of the inner way points. The extreme flight conditions at
those places partly result from the fact that cubic spline functions have been
used to interpolate the trajectory. The produced variations of the trajectory
curvature can be seen in Fig.7, and their maximal values are at the inner way
points. The obtained program variations of the state variables and the control
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parameters are consequent on the trajectory setting. The using of fifth or-
der splines to construct the trajectory would smooth the trajectory curvature
and, consequently, the changes of the state variables and the control parame-
ters. Similar effects can be achieved by setting additional points to sketch the
trajectory more ”rounded”, and using additional points as the approximation
points (Blajer, 1990, 1991). All these improvements would make the results
more realistic, however this was not the purpose of this study.

9. Conclusion

The paper presents a concise and general mathematical model of aircraft
prescribed trajectory flight. The program of motion is introduced in the most
natural way, setting the required trajectory path directly. It is then demon-
strated that the realization of the trajectory constraints is tangent, and this
yields two additional constraints on the fuselage attitude. The observation is
very interesting from the theoretical point of view — the trajectory constraints
can be interpreted as "redoubled” constraints, and the realization of the indu-
ced attitude constraints assures the realization of the original constraints as
well. In this way, the aircraft, a six-degree-of-freedom system, can explicitly
be governed by three or four control parameters (respectively the case of PS
or 'S motion is considered).

The developed governing equations make it possible to predict the varia-
tions of the aircraft state variables and the desired control in the programmed
motion. Such results can be useful for at least two reasons:

e The nature and feasibility of a wide range of aircraft missions, including
aerobatic maneuvers and extreme flight conditions, can be studied. On
this basis the missions can be improved/ optimized.

e Flight control systems based upon the non-linear inverse dynamics can
be developed, providing an improved level of safety and performance
over the conventional designs.

A. Conditions induced by trajectory constraints — the case
including the wind drift

It is assumed that the wind velocity and its direction are constant in the



PREDICTION OF THE DYNAMIC CHARACTERISTICS... 99

area of a given maneuver, w = const. Having defined angles 6,, and Yy that
orientate w with respect to the reference systems (I) and (G) (see Fig.8),
we obtain

€05 By, COS 1y,
wD = w(@) = cos Oy sinthy, | w (A.1)
—siné,,

Fig. 8. Orientation of the wind velocity vector

The vector of aircraft absolute velocity (with respect to the ground) is now
%o = v +w, which, when expressed in the reference system (G), is

z' cos @4 cos 1y €08 By, 08 1Py,
¥ | 8= cosfasingpy v+ | cos Oy siney, | w (A.2)
z —sinf4 — 8in 6y,

For the given value § = vg, using z'2 +72+72 = 1, Eq (A.2) can be resolved
for v

v =1/82 — 25w (7' cos By, cos 1y, + Y’ cos By, sin 1), — 2’ sin Ow) +w?  (A.3)

Consequently, Eq (5.1) modifies to

cos B4 costhy 1 7' €08 By, COS 1y
cosfysinty | == ( 7 | $— | cosfy,sin Yo w) (A.4)
. v ~ .
—sinf4 2 —sinf,,
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Due to the wind drift, neither the Oz4 axis i8 in general tangent nor the
Oyaza plane is orthogonal to required trajectory (4.1). As a consequence, rela-
tions (5.4) do not hold true any more, and expressing Eq (5.2) in the reference
system (A), which leads to Eqgs (5.5) and (5.6) for windless flight conditions,
is useless. In that case, Eq (5.2) should be expressed in the trajectory refe-
rence system (T'), the axes of which are defined by the versor T tangent to
the trajectory G = ?I(()I), the normal versor n pointed at the center of
the trajectory curvature n(® = pc?lcl)m, and the binormal versor b= T Xn,
b(& = FOp(6) = pc?l(l)(I)?lé)(I), where

pot(s) = \/’;“’2 + 42 +7"2 (A.5)

The transformation matrix Arg between the reference systems (G) and
(T) is

(renT 7 7 5
Arg = (n(G))T = pcfE\” Pc?//\” Pc?" ‘
(BNT 0§ — 2T pFE - TE") pl@F" - T
(A.6)
Using the above definitions, we can then write
1 0
Arctd) = | 0 Argt D = | o3t (A7)
0 0

Now, according to dynamic equation (3.1)1, Eq (5.2) can first be mani-
pulated to AgaFW = m(?’O(I)).'s' +?I(I)(I))é2), and then, premultiplying the
obtained relation by Arg, we arrive at FD) = ArgAg AF(A) = mlar, an, 0],
where a, = § and ap = §%/p. are the tangent and normal (with respect
to the trajectory) accelerations. The corresponding three scalar equations can
finally be written as

—F)TAGAF 4+ mi =0
—peF o) TAGAFY) +ma%pt =0 (A.8)
_pc(;’o(f)?’(’)(f))TAGAF(A) -0

which correspond to Egs (5.5) and (5.6) derived for windless flight conditions.
For brevity, the explicit forms of Egs (A.8) are not reported here.
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Equation (A.8); expresses the balance of the applied and inertial forces in
the direction tangent to the trajectory, and the case of PS or FS motion is con-
sidered, respectively — it can be used as the equation of dynamics transformed
to

v = Hx(aa B, ¢Aa HA, ¢Aa $v,p,q,T, 687 57‘7 t)

or the algebraic equation

F.'L’(aa ﬁa ¢Aa 0A7¢A7p7 q,7, T7 (Se: 67‘1t) =0

Then, Eqs (A.8)2 3 express the balance of the applied and inertial forces in the
plane orthogonal to the trajectory (along the m and b directions), and should
replace the algebraic equations Fy =0and F, =0 in the equations of the
programmed motion. For the PS motion the algeraic equations are functions
of a, B, da, 04, Y4, s, v, p, q, 7, 8, 6, and ¢, while for the FS motion they
are functions of «, B, ¢4, 04, 14, p, g, 7, T, d¢, 6, and t.
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Predykcja wlasnosci dynamicznych i sterowania samolotem w ruchu
programowym po zalozonej trajektorii

Streszczenie

W pracy przedstawione jest uogdlnione i zmodyfikowane podejécie do modelowa-
nia i symulacji programowego ruch samolotu. Program ruchu budowany jest za po-
mocg zatozone] trajktorii przestrzennej (dwa warunki wiezéw nakladane na polozenie
samolotu), narzuconych zmian konfiguracji platowca wzgledem tej trajektorii oraz,
opcjonalnie, zmian predkoéci lotu. W przypadku samolotu sterowanego klasycznie za
pomocg wychylef powierzchni sterowych (lotek oraz steréw wysokoéci i kierunku)
oraz zmiany sily ciggu, realizacja wiezéw trajektorii lotu jest styczna, co implikuje
dwa dodatkowe warunki na zmiany konfiguracji platowca wzgledem trajektorii. W ten
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$poséb zmiany konfiguracji katowej platowca staja si¢ w pelni okre§lone (zaprogramo-
wane). Réwnania ruchu programowego generowane sg w postaci réwnan rézniczkowo-
algebraicznych. Proponowana jest metoda, numerycznego rozwigzania tych réwnan.
Jako rozwigzania sg zmiany w czasie zmiennych stanu ruchu samolotu oraz przebiegi
sterowania samolotem wymagane dla §cislej realizacji wiezéw programowych. Otwiera,
to nowe mozliwoéci analizy symulowanych manewréw samolotu oraz oceny ich reali-
zowalnosci. Przytaczane s wybrane wyniki symulacji numerycznej.
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