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In the paper discrete-continuous models with a local nonlinearity are pro-
posed for the dynamic investigations of low structures subject to kinematic
excitations caused by transverse waves. The models consist of rigid bodies
and of elastic elements which only undergo shear deformations, while the
local nonlinearity is represented by a damper and a nonlinear spring. It is
assumed that the nonlinear characteristic of the spring is of a soft type.
In the paper this characteristic is described by four nonlinear functions. In
the discussion a wave approach is used. Numerical calculations are perfor-
med for the models with two, three and four rigid bodies for a harmonic
kinematic excitation. They focus on the investigation of the effect of the lo-
cal nonlinearity expressed by various functions on displacements of selected
cross-sections of the elastic elements in the considered models, and on the
determination of the application ranges of these functions.
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1. Introduction

The paper deals with the dynamic analysis of low structures subject to
kinematic excitations caused by transversal waves using discrete-continuous
models with a local nonlinearity. The discrete-continuous models consist of
rigid bodies and elastic elements, while the local nonlinearity is represented
by a damper and a nonlinear spring. It is assumed that ponderable elastic
elements in these models only undergo shear deformations and their motion
can be described by the classical wave equation.

Linear discrete-continuous models of low structures subject to shear defor-
mations were studied in the paper by Pielorz (1996). The aim of the present
paper is to generalise the results obtained by Pielorz (1996) by including the
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local nonlinearity in the appropriate discrete-continuous models. The inclusion
of that type of nonlinearities is justified by many engineering solutions for low
structures, see e.g. Humar (1990), Mengi and Diindar (1988), Okamoto (1973),
Sackman and Kelly (1979), Su et al. (1989).

In the present paper the approach used by Pielorz (1996) for linear models
of structures undergoing shear deformations is adopted to the discussion of
discrete-continuous models with the local nonlinearity represented by a spring
having a nonlinear characteristic. This characteristic can be of a hard as well
as of a soft type. The case of the hard characteristic was considered by Pielorz
(1998). Here, the discussion is focused on the case when the spring characte-
ristic is of a soft type. In the paper such a nonlinearity is described by four
nonlinear functions including a polynomial of the third degree. In numerical
calculations a harmonic kinematic excitation is assumed and the effect of the
parameters of the local nonlinearity described by these nonlinear functions on
the amplitude-frequency curves for selected multi-mass systems is considered.
Also the application ranges of these functions are discussed and determined for
selected parameters of the studied systems. The numerical analysis is done for
two-mass, three-mass and four-mass systems undergoing shear deformations.

2. Forces in the nonlinear spring

In the discrete-continuous systems considered below, the local nonlinearity
can be introduced in an arbitrary cross-section. Such a nonlinearity can be ge-
nerally described by an arbitrary nonlinear function. In the discussion of the
dynamics of nonlinear discrete systems the polynomial of the third degree is
exploited most widely for the description of the considered nonlinearities, cf
Hagedorn (1981), Mickens (1981), Szemplifiska-Stupnicka (1990). This polyno-
mial was used by Pielorz (1998) in the case of the local nonlinearities having a
hard type characteristic. In the present paper it is assumed that the nonlinear
characteristic of the spring is soft, and now the polynomial of the third degree
can be also used. Analogous to the nonlinearities in discrete systems, the force
in the nonlinear spring with a symmetric characteristic could be described by
the following function

F(t) = kyyi + ksyi (2.1)

where y; is the displacement in the appropriate cross-section of the ith elastic
element, and the constants ki and k3 represent linear and nonlinear terms
in function (2.1), respectively. Polynomial (2.1) includes the linear case for
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ks = 0, the hard characteristic for ks > 0 and the soft characteristic for
ks < 0.

In many nonlinear discrete systems, where function (2.1) with k3 < 0
(soft characteristic) is used, phenomena such as escapes from potential wells
may occur, cf Steward et al. (1995). In order to avoid the divergence of the
numerical solutions to infinity in the case of the soft characteristic, apart from
polynomial (2.1) with k3 < 0, the following three functions are proposed for
the descriptions of forces in the nonlinear spring

F(t) = Asin(By;) (2.2)
F(t) = Atanh(By;) (2.3)
() = { A[-1 + exp(By;)] for 3 <0 24
A[l — exp(—By;)| for 3 >0
FZ'O ky=1.0
ky=-1/6

L linear case

Fig. 1. Diagrams of nonlinear functions (2.1) + (2.4)

The constants A and B are selected in such a way that the expansion of
functions (2.1) + (2.4) in series gives the same linear case and that polynomial
(2.1) and functions (2.2) + (2.4) have maximum values close to each other.
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Then
AB =k AB3 = —6k; (2.5)

Below, for convenience nonlinear functions (2.1) + (2.4), will sometimes be
called functions (1) + (4), correspondingly.

Exemplary diagrams of nonlinear functions (2.1) <+ (2.4) are shown in Fig.1
in the interval y €< —3.9,3.9 > for ki = 1, k3 = —1/6 together with the
linear case obtained for k3 = 0. It can be seen that all the functions are linear
in the neighbourhood of the origin of coordinates and have similar maxima.

3. Assumptions and governing equations

The paper concerns dynamic investigations of low structures subject to
kinematic excitation caused by transverse waves. The kinematic excitations
can be of a seismic type or can be caused by highway traffic, surface and
subsurface railways, and by machinery in a nearby location. In the literature,
engineering structures subject to various kinematic excitations are discussed
using discrete as well as continuous models, ¢f Okamoto (1973), Sackman and
Kelly (1979), Gasparini et al. (1981) and Mengi and Diindar (1988).

The elastic elements of the structures considered in the present paper have
the transverse dimension, alongside of which shear forces act, close to the
length of the element, i.e. they have a low slenderness ratio. To such structures
belong, e.g., machine supports, bridge piers and low columns in buildings.
Many structure elements subject to transverse excitation can be modelled by
means of a Timoshenko’s beam. In the work by Pielorz (1996) it is shown
that in the case of short beams, in which shear forces are predominant, the
Timoshenko equations can be replaced by the classical wave equation.

The studied model consists of n elastic elements connected by rigid bodies,
see Fig.2. When subject to external excitations all cross-sections of the ela-
stic elements remain flat and parallel to the cross-sections where rigid bodies
are located. The elastic elements only undergo shear deformations. They may
have different mechanical properties, however for simplicity it is assumed that
all the elements are characterised by the shear modulus G, cross-sectional
area A, shear coefficient k, density p and the length [. A discrete element
with a nonlinear spring can be attached to the rigid body mg. Such an ele-
ment may represent various parts of the considered structures, which ought to
be described by local nonlinearities. For example, it may represent an elastic
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Fig. 2. Nonlinear discrete-continuous model

segment of an isolation type, cf Su et al. (1989), Humar (1990). The charac-
teristic of the nonlinear spring is assumed to be of a soft type, and the spring
force is expressed by nonlinear functions (2.1) + (2.4) with k3 < 0, correspon-
dingly. Now, the displacement y; in formulas (2.1) + (2.4) is replaced by the
displacement y; of the first elastic element in the cross-section z = 0.

The rigid body my is subject to the absolute acceleration 82[y;(0,t) +
Year(t)]/ 0%, where y1(0,1) is the displacement of the rigid body my in relation
to the ground and y.q(t) is the ground displacement in relation to the fixed
spatial system.

In the model damping is described by means of an equivalent external and
internal damping expressed by

Ry = diyiz Ryi = D;yi,ut i1=0,1,..,n (3.1)

where the constants d; and D; are coefficients of external and internal dam-
ping, respectively, and the comma denotes partial differentiation. The equiva-
lent damping is taken into account in boundary conditions. It is assumed that
the z-axis direction is normal to the direction of the displacements y;, its
origin coincides with the location of the rigid body myg in an undisturbed
state, and that the velocities and displacements of the cross-sections of all the
elastic elements are equal to zero at the time instant ¢ = 0.

The problem of determining the displacements, strains and velocities in
the cross-sections of the elastic elements for the analysed model is reduced to
solving n classical wave equations

Yijit — C2yi,m =0 for 1=1,2,...,n (3.2)
with the following initial conditions

Yi(2,0) = 4;4(,0) =0 for 1=1,2,...,n (3.3)
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and the nonlinear boundary conditions:
—for =10

—mo[Fear(t) + y1,6) — dotr,e + AkG(D1y1,at + y1,2) — F(2) =0 (3.4)

—for z=14l, 1=1,2,...,n—1

Yi = Yi+1 (3.5)

—for z=1l, 1=12,..,n—1

—AkG(D;yi gt + Yiz) + ARG(Dig1Yiv1,0t + Yit1,e) — MiYir1,tt — diYit1,t = 0
(3.6)
— for z =mnl

_AkG(Dnyn,wt + yn,x) — MpYn,it — dnyn,t =0 (3.7)

where ¢ = kG/p. Relations (3.4) + (3.7) are the conditions for displace-
ments and forces acting in the contacting cross-sections of neighbouring ela-
stic elements of the considered model, and Yy is a given time function
representing the external excitation which can be either irregular (cf Oka-
moto, 1973; Sackman and Kelly, 1979; Mengi and Diindar, 1988) or regular.
Relations (3.4) + (8.7) differ from the appropriate boundary conditions for
discrete-continuous models discussed by Pielorz (1998) by the nonlinear func-
tions F(t). When function (2.1) is taken into account they coincide with the
appropriate relations in the paper by Pielorz (1998). However, now the non-
linear characteristic of the spring is of a soft type and the coefficient k3 in
(2.1) is negative,
Upon the introduction of the nondimensional quantities

T = E = 9.5 Kr — ﬂ).l_
l l My
— D;c = d;l — Yi
D- = P - , e
/4 l dZ mrc yz yr (3'8)
. . Fl2
Ri=" F=—=—
my C"YrMy

where m, and g, are the fixed mass and displacement, respectively, relations
(3.2) = (3.7) are as follows:
— fOI‘ i = 1, 2, ,-.-,n

Yigt — Yijoz = 0
(3.9)

4i(2,0) = yi4(z,0) =0
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—for z=0

RO?./'cal(t) + ROyl,tt + dOyl,t - Kr(Dlyl,mt + yl,w) + F(t) =0 (3'10)

—for z =1, 1=1,2,...,n—1

Yi = Yit1 (3.11)

—for z=14, i=1,2,..,n—-1

K (Diyi,ot + ¥iz) — Kr(Dip1¥it 1,0t + Yit1,e) + Rithig 1,0 + dityiy1 = 0 (3.12)

—for z=mn
K, (Dnyn,zt + yn,z) + Rnyn,tt + dnyn,t =0 (313)

In equations (3.9) + (3.13) the bars denoting nondimensional quantities are
omitted for convenience.

The solution of equations (3.9);, taking into account initial conditions
(3.9)2, are sought in the form

yi(z,t) = filt — z) + gi[t + = — 2(i — 1)] i=1,2,..,m (3.14)

where the unknown functions f; and g; represent the waves, caused by the
kinematic excitation, propagating in the 4th elastic element of the discrete-
continuous model in a direction consistent and opposite to the z-axis direction,
respectively. In sought solution (3.14) it is taken into account that the first
disturbance occurs in the ith element at the time ¢ = ¢ — 1 in the cross-
section £ =14¢—1for i =1,2,...,n. The functions f; and g; are continuous
and identical to zero for negative arguments.

Upon substituting solution (3.14) into boundary conditions (3.10) + (3.13)
and denoting the largest argument of the functions appearing in each equality
by 2, the following nonlinear equations are obtained for the functions f;
and g;

9i(2) = fir1(z = 2) + gi11(2 = 2) = fi(2 = 2) i=1,2,.,n~-1
Tnt1,19n(2) + Tna1,20n(2) = Tna1,3fn (2 = 2) + Pag14fn(2 — 2) (3.15)
r11f1 (2) = —Rofeat(2) + 71297 (2) + 113 f1(2) + 71491 (2) — F(2)

rifi (2) +riofi(2) = riagi (2) + r1agi(2) + ris fily (2) +
+riefi_1(2) i=2,3,...n
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where
T11:K7-.D1 +R0 7'12=K7-D1-—R0
ri3 = —K, — dp rig = Ky — dg
rit = Ko Dy + Ky Dj1 + Ri1 rio = 2K, + di_1
ri3 = Ky Dy — KpDj1 — Ry Tig = —di_1 (3.16)
ris = 2K, Dy rie = 2K, i=2,3,...,n
Tn4+1,1 = KTDn + RO Tn+1,2 = Kr + dn
Tn4+1,3 = K,.D, — Ry Tn+l,4 = K, —d,

Equations (3.15) are nonlinear differential equations with a retarded ar-
gument. Although appropriate equations for linear models can be solved ana-
lytically or numerically by means of the finite difference method, cf Nadolski
and Pielorz (1980) and (1992), Pielorz (1996), nonlinear equations (3.15) can
be solved only numerically using e.g. the Runge-Kutta method. Having obta-
ined from (3.15) the functions f;(z) and g;(z) and their derivatives, one can
determine displacements, strains and velocities in an arbitrary cross-section of
the elastic elements in the considered model at an arbitrary time instant. The
solution can be obtained in transient as well as in steady states.

4. Numerical results

The numerical analysis is performed for the model presented in Fig.1 when
n = 1,2,3 with two, three or four rigid bodies. The function of the external
excitation yeq(t) is arbitrary: irregular or regular, periodic or nonperiodic. In
the paper by analogy with the nonlinear discrete problems it is assumed in
the form

feal(t) = ag sin(pt) (4.1)

and the considerations focus on the determination of displacements in the
steady states. By means of function (4.1) various direct and indirect external
excitations can be described, where p is the nondimensional frequency of the
external excitation.

The considered discrete-continuous systems represent low structures and
are described by the nondimensional parameters R;, K, see (3.8). These
parameters can have various values. The constants R; are the ratios of the
masses m; and the mass of the foundation mg while the constant K, is the
ratio of the mass of the columns and myg. For real structures such parameters
are usually smaller than 1. In the presented calculations they are assumed to
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be equal 0.5 and 0.3, similarly as in the paper by Pielorz (1998) where the
nonlinear models with a hard characteristic were studied.

In the numerical calculations in the present paper we concentrate on the
presentation of the influence of the local nonlinearity with a soft characteristic
on the displacements in selected cross-sections.

The local nonlinearity is described by four functions (2.1)+(2.4). Functions
(2.2) + (2.4) are connected with the parameters k; and k3 representing
the linear and nonlinear terms in polynomial (2.1) by relation (2.5). In the
numerical analysis the nondimensional parameter k; is fixed and is equal
to 0.3 while the nondimensional parameters k3 and ag can be changed.
The parameter k3 is connected directly with the local nonlinearity, and ag
is the amplitude of external excitation (4.1). The remaining nondimensional
parameters appearing in equations (3.16) are fixed and equal to

R() =1.0 KT =0.3 kl =0.3 my =My

(4.2)

R, =05 d;=D; =0.1 i=1,2,..,n

The efficiency of the method applied in the paper was shown by Pielorz
(1996) in the case of linear discrete-continuous systems for low structures sub-
Ject to shear deformations. Certain comparable calculations were presented by
Pielorz (1998) for a single-mass system with a local nonlinearity having a hard
characteristic. This type of the characteristic was also assumed there for multi-
mass systems. In the present paper further aspects of the nonlinear problems
are investigated. Namely, it is assumed that the local nonlinearity has a soft
characteristic. Numerical calculations are concentrated on the presentation of
the influence of this type of the local nonlinearity on the amplitude-frequency
curves for selected cross-sections of the elastic elements in the considered mo-
dels using four nonlinear functions (2.1) + (2.4) for the description of the
nonlinearity. It is done for harmonic kinematic excitation (4.1).

In the paper by Pielorz (1996) it was shown that equations (3.15) enable
determination of the numerical solution in an arbitrary cross-section of the
discrete-continuous systems. Below, the effect of the local nonlinearity only in
the cross-section z = 0 is investigated.

4.1. Two-mass system

Numerical calculations for the two-mass system are performed using Eqs
(3.15) with parameters (4.2) for n = 1. In Fig.3 amplitude-frequency diagrams
for the displacement in the cross-section z = 0 are plotted for k3 = —0.05 and
ao = 0.15, 0.25. Functions (2.1)+(2.4) are used for the description of the local

11 - Mechanika Teoretyczna
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Fig. 3. Amplitude-frequency curves for the displacements in z = 0 for the two-mass
system for ks = —0.05, ag = 0.15, 0.25 with nonlinear functions (2.1) + (2.4)

nonlinearity. They are marked 1+ 4, respectively, and they are connected by
relation (2.5) with the parameters ki and k3. The diagrams in Fig.3 include
9 resonant regions (w; = 0.379, wy = 0.975). In the further resonant regions
the results for all the assumed nonlinear functions are practically the same.
From Fig.3 it follows that the maximal displacement amplitudes in the first
resonant region are obtained for exponential function (2.4), next for hyperbolic
tangent function (2.3). The remaining functions for both values of ag in the
neighbourhood of the first resonant region give sometimes solutions which
are not harmonic functions within certain intervals of the frequency p of
external excitation (4.1). The maximum values of p, for which the solutions
are harmonic functions, are marked by points. The interval for the frequencies
p giving irregular solutions in the case of polynomial (2.1) is slightly wider than
for sinusoidal function (2.2). One may find the values of ag being smaller than
0.15 when the solutions for all nonlinear functions are harmonic functions. The
irregular solutions within the marked intervals of p in the case of functions
(2.1) tend to infinity while in the case of function (2.2) they stop to behave as
a harmonic function. The divergence of the solution to infinity is known in the
dynamics of nonlinear discrete systems having a soft characteristic described
by a polynomial function as the escape from potential wells, cf Stewart et al.
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(1995). From Fig.3 it follows that similar escape phenomena can also occur in
nonlinear discrete-continuous systems when using function (2.1). From Fig.3 it
also follows that the results in the second resonant region practically coincide
with each other for all the nonlinear functions.

0.20

Fig. 4. Amplitudes of the force F for the two-mass system for ks = —0.05,
ao = 0.15 with nonlinear functions (2.1) + (2.4)

In Fig.4 the diagrams of the amplitude F4 of the nonlinear forces F(t)
applied in the cross-section z = 0 for k3 = —0.05 and ao = 0.15 for the
two resonant regions of the considered two-mass system are plotted. Functions
(2.1) + (2.4) are used for the description of these forces. From Fig.4 it follows
that in the second resonant region the amplitudes of forces are minimal for
exponential function (2.4) while for the remaining functions they are similar.
In the first resonant region the amplitudes are smallest also for functions (2.4),
next for hyperbolic tangent function (2.3) while for remaining functions (2.1)
and (2.2) there exists an interval of p where the solutions are not harmonic
functions. In the case of polynomial (2.1) the solution in this interval appro-
aches infinity. The appropriate values of the amplitudes F4 are higher in the
case of sinusoidal function (2.2). This is connected with the fact that according
to relation (2.5) the maximal values postulated by the assumed parameters are
higher for function (2.2). For the parameters k; = 0.3 and k3 = —0.05 these
values are equal 0.3 and 0.2828 for functions (2.2) and (2.1), respectively.
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Fig. 5. Amplitudes of the force F for the two-mass system for ks = —0.05,
ag = 0.25 with nonlinear functions (2.1) + (2.4)

The amplitudes Fj4 are plotted in Fig.5 for the amplitude of the external
excitation ag = 0.25. From Fig.5 it follows that in the second resonant region
the amplitudes for the dynamic forces are the same when functions (2.1) and
(2.2) are used. The smallest values of the force amplitudes in this region are
obtained for exponential function (2.4). In the first resonant region the results
for function (2.4) are usually smaller than for hyperbolic tangent function
(2.3). The diagrams of functions (2.1) and (2.2), similarly as in Fig.4, show
the cases where the solution is irregular. Moreover, one can notice that for the
assumed ag = 0.25 the diagrams of nonlinear functions (2.3) and (2.4) form
a plateau in the neighbourhood of the first resonant region. The plateau is
wider in the case of function (2.3).

Fig.3 + Fig.5 show exemplary diagrams for displacements and forces. These
diagrams indicate that some nonlinear functions may have restrictions for their
application in the discussion of the nonlinear vibrations of discrete-continuous
systems with the local nonlinearities having the characteristic of a soft type.
This concerns polynomial (2.1) and sinusoidal function (2.2). The application
ranges for these functions are investigated for k3 = —0.025, —0.05, —0.1 for
the first and second resonant regions. The suitable curves are marked by da-
shed and continuous lines in Fig.6. These curves determine the amplitudes of
external excitation (4.1) below which the numerical solutions behave as har-
monic functions with the period equal to the period of the external excitation.
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The smallest values of ag are acceptable in the neighbourhood of the reso-
nances. From Fig.6 it also follows that for the fixed k3 the application ranges
are slightly wider in the case of sinusoidal function (2.2). It is connected with
the fact that function (2.2) has a higher maximum value than function (2.1)
for the assumed parameters k; and k3. Besides, there exists an interval of
the frequency of excitation (4.1) where the admissible values of aq increase in
a linear manner when function (2.1) is assumed. This interval occurs between
the first and the second resonant regions. No restrictions have been found for
the application of nonlinear functions (2.3) and (2.4).

3.0
)

2.0}

Fig. 6. Application ranges of the sinusoidal function (continuous lines) and
polynomial function (dashed lines) for the two-mass system with ks = —0.025,
~0.05, —0.1

4.2. Three-mass system

Diagrams in Fig.7+ Fig.10 concern a three-mass system with parameters
(4.2) for n = 2. The amplitudes of displacements in the cross-section z = 0
are presented in Fig.7 including 3 resonant regions (w; = 0.28, wy = 0.727,
w3y = 1.187) for k3 = —0.05 and the amplitude of the external excitation
ap = 0.2, 0.3. One can notice that for ag = 0.2 in the first resonant region the
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Fig. 7. Amplitude-frequency curves for the displacements in z =0 for the
three-mass system for k3 = —0.05, ag = 0.2, 0.3 with nonlinear functions
(2.1) + (2.4)

maximal values justify making use of exponential function (2.4). It appears
that the amplitude ag = 0.2 is chosen in such a way that the solutions are
harmonic functions for all the assumed intervals of the frequency of excita-
tion (4.1) when function (2.2) is applied, and in the case of polynomial (2.1)
there exists only a very small interval of p where the solution approaches
infinity (p €< 0.208,0.217 >). In the second and third resonant regions all
the functions describing the local nonlinearity give similar results for the di-
splacement amplitudes for the considered system. When the amplitude of the
external excitation is ag = 0.3, both functions (2.1) and (2.2) have intervals
of p where the solution stops to behave as a harmonic function. Such inte-
rvals occur in the first and second resonant region. Similarly as for ag = 0.2,
the maximal displacement amplitude in the first resonant region is now also
obtained for function (2.4). In the second resonant region the results for all
the applied nonlinear functions are similar, within the application ranges of
functions (2.1), (2.2).

In Fig.8 the diagrams of the amplitudes of the forces F described by
functions (2.1) < (2.4) for k3 = —0.05 and ap = 0.2 are plotted. From Fig.8 it
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0.20+

Fig. 8. Amplitudes of the force F for the three-mass system for ks = —0.05,
ag = 0.2 with nonlinear functions (2.1) + (2.4)

follows that in the third resonant region the results for functions (2.1) + (2.3)
are practically the same, and that in the remaining resonant regions the highest
amplitudes are obtained for sinusoidal function (2.2) and the smallest ones for
exponential function (2.4). One can notice that in Fig.7 as well, in the case
of function (2.1) there exists a very small interval of p, marked by the point,
where the solution loses its physical meaning.

Diagrams in Fig.9 show the effect of application of four nonlinear functions
(2.1) +(2.4) on the behaviour of the amplitudes of the forces F for the three-
mass system for k3 = —0.05 and @y = 0.3. From Fig.9 it follows that
the maximal amplitudes occur when the sinusoidal function is used and the
minimal ones for exponential function (2.4). It concerns the whole interval of
the assumed p. For the curves corresponding nonlinear functions (2.1) and
(2.2), in the first and the second resonant regions there exist intervals of pin
which the solutions do not behave as harmonic functions. In the first resonant
region these intervals are longer. Besides, for polynomial (2.1) these intervals
are shorter. In the third resonant region functions (2.1) + (2.3) give the same
amplitudes of the force F.
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Fig. 9. Amplitudes of the force F for the three-mass system for ks = —0.05,
ao = 0.3 with nonlinear functions (2.1) = (2.4)

1.6
29
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Fig. 10. Application ranges of the sinusoidal function (continuous lines) and
polynomial function (dashed lines) for the three-mass system with
ks = —0.025, —0.05, —0.1
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The application ranges of polynomial (2.1) (dashed lines) and the sinuso-
idal function (continuous lines) are shown in Fig.10 for k3 = —0.025, —0.05,
—0.1. They concern two resonant regions. Similarly, as in the case of the two-
mass system, the strongest restrictions occur in the neighbourhood of the
resonances and the admissible values of ag decrease with the decrease of kj.
For the fixed p the acceptable ag is higher for the sinusoidal function. In the
case of function (2.1), there exists an interval of p between the considered
resonant regions where these values increase in a linear manner. Comparing
the application ranges of functions (2.1) and (2.2) given in Fig.6 and Fig.10,
respectively for the two- and three-mass systems, one can notice that in the
case of the two-mass system higher values of the amplitudes of excitation (4.1)
are admissible.

4.3. Four-mass system

6.00
p 4
3
3
-
4.00}
2.00[-
0

Fig. 11. Amplitude-frequency curves for the displacements in z = 0 for the
four-mass system for k3 = —0.05, ao = 0.25, 0.35 with nonlinear functions
(2.1) + (2.4)

Numerical calculations for the four-mass system are performed for para-
meters (4.2) with n = 3. The amplitudes of displacements in the cross-section
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z = 0 are presented in Fig.11 for k3 = —0.05 and ap = 0.25, 0.35. The
diagrams concern 4 resonant regions (w = 0.22, wy = 0.594, w3 = 0.949,
ws = 1.278). Only three of them are distinct. From Fig.11 it follows that
in the first resonant region the maximal displacement amplitudes occur for
nonlinear function (2.4) for both values of ag. In the second resonant region
functions (2.3), (2.4) give similar results. In further regions the results for all of
the four nonlinear functions are similar. In the case of function (2.1) solutions
may approach infinity for ag = 0.25 as well as for ag = 0.35. For function
(2.2) with ap = 0.25 one can expect solutions not behaving as a harmonic
function only in the second resonance, while with ao = 0.35 in both of the
first resonant regions.

0.30+
Fy

0.20F

0.10

Fig. 12. Amplitudes of the force F for the four-mass system for k3 = —0.05,
ap = 0.25 with nonlinear functions (2.1) + (2.4)

Diagrams of the amplitudes of the force F described by the four functions
are given in Fig.12 for k3 = —0.05 and ag = 0.25. In the first and second reso-
nant regions the maximal amplitudes are obtained for the sinusoidal function,
and the smallest ones for exponential function (2.4). After the fourth resonant
region results for all assumed functions are difficult to distinguish. In the first
resonant region one can notice the interval of p where the solution approaches
infinity when the polynomial function is used. In the second resonant region
function (2.1) as well as sinusoidal function (2.2) can give solutions losing their
physical meaning.
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Fig. 13. Amplitudes of the force F for the four-mass system for ks = —0.05,
ag = 0.35 with nonlinear functions (2.1) =+ (2.4)

In Fig.13 the diagrams of the force amplitudes for k3 = —0.05 and
ap = 0.35 are plotted. In the third resonant region the highest amplitudes
are obtained for functions (2.1) and (2.2) while the smallest ones when the
exponential function is applied for the description of the local nonlinearity. In
the case of functions (2.1), (2.2) one can observe the intervals of the nonhar-
monic solutions in the first as well as in the second resonant region. For the
remaining functions, the diagrams of the force amplitudes in the first resonant
region form a plateau. It means that in this region the solutions corresponding
to these functions approach the maximum value postulated by the parameters
k1 and k3. The plateau is wider for the hyperbolic tangent function.

The application ranges of the polynomial function (dashed lines) and the
sinusoidal function (continuous lines) for the four-mass system are shown in
Fig.14 for ks = —0.025, —0.05, —0.1. They include 3 resonant regions. Si-
milarly, as in the case of the two-mass and three-mass systems, one can see,
by tracing the appropriate diagrams, how the admissible values of the ampli-
tude ag decrease with the decrease of the parameter k3 representing the local
nonlinearity. The strongest restrictions occur in the neighbourhood of the re-
sonances. In the case of the four-mass system the minimal admissible values of
ag increase with the increase of the frequency p. In this case the application
ranges are also slightly wider for sinusoidal function (2.2). Between the first
and the second resonant regions the acceptable ag for the polynomial function
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Fig. 14. Application ranges of the sinusoidal function (continuous lines) and
polynomial function (dashed lines) for the four-mass system with
ks = —0.025, —0.05, —0.1

can increase in a linear manner. Besides, one can notice that the differences
between the diagrams of function (2.2) and function (2.1) increase slowly with
the increase of the frequency of the external excitation.

5. Final remarks

It is shown in the paper that various nonlinear functions can be incorpo-
rated in the dynamic analysis of the discrete-continuous models of low struc-
tures subject to shear deformations and having a local nonlinearity with a
soft characteristic. In the study four nonlinear functions are employed for de-
scription of the considered local nonlinearity including a polynomial of the
third degree. It is found that the polynomial function can have strong re-
strictions on its application aiming at determination of numerical solutions of
the governing equations for discrete-continuous systems. For this reason, the
introduction of other nonlinear functions may have important meaning. It is
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found that the use of sinusoidal function can also lead to the solutions losing
the physical meaning. In exemplary numerical solutions the effect of the intro-
duction of different functions on the amplitude-frequency curves is shown for
a harmonic kinematic excitation and the application ranges of the polynomial
and sinusoidal functions are determined. From the presented results it follows
that increasing number of rigid bodies in the considered systems gives more
complicated diagrams. The strongest restrictions imposed on the admissible
parameters determining regular numerical solutions are connected with the
neighbourhood of the resonances.

Nonlinear systems undergoing shear deformations and having the local
nonlinearity with a hard characteristic were studied by Pielorz (1998). It ap-
pears that in the case of a hard characteristic the use of the polynomial func-
tion gives satisfactory results while in the case of a soft characteristic one may
expect certain inconveniences.
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Drgania dyskretno-ciggltych modeli niskich konstrukeji ze sprezyna
o nieliniowej charakterystyce typu migkiego

Streszczenie

W pracy przeprowadzono badania dynamiczne niskich obiektéw poddanych wy-
muszeniom kinematycznym wywolanych falami poprzecznymi przy wykorzystaniu
dyskretno-ciagglych modeli z lokalng nieliniowoécig. Modele ztozone sg z bryl sztyw-
nych i elementéw sprezystych poddanych tylko odksztatceniom Scinajgcym, natomiast
lokalna nieliniowo§é reprezentowana jest przez dyskretne elementy z nieliniows spre-
#zyng. Zalozono, ze nieliniowa charakterystyka sprezyny jest typu migkkiego. W pracy
charakterystyke te opisano za pomocy czterech funkeji nieliniowych. W dyskusji wy-
korzystano podejécie falowe. Obliczenia numeryczne wykonano dla modeli z dwiema,
trzema, i czterema brytami sztywnymi przy wymuszeniu kinematycznym opisanym
funkcja harmoniczng. Koncentruja, si¢ one na zbadaniu wplywu lokalnej nieliniowo-
éci, wyrazonej przez cztery rézne funkcje, na przemieszczenia wybranych przekrojow
poprzecznych elementéw sprezystych w rozpatrywanych modelach, oraz na wyznacze-
niu obszaréw stosowalnosci przyjetych funkeji nieliniowych.
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