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In this paper a generalized exact method of solving the problem of beam
free vibrations with a discrete rigid body attached to the beam by means
of viscoelastic constraints was presented. The vibrations of such a discrete-
continuous system were described by a set of coupled partial and ordinary
differential equations. Separation of the variables and the obtained results
of the boundary-value problem, as well as the proved generalized orthogo-
nality of complex eigenmodes, were used to the analysis of free vibrations
of the system with arbitrary initial conditions.
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1. Introduction

Mechanical systems consist of various structural elements. In conventional
terminology, these systems are divided into discrete and continuous ones. In
practice, however, the combined systems, i.e. discrete-continuous are met as
well. Such systems are much more complex in terms of mathematical expres-
sion and dynamical analysis than separated systems, i.e. only discrete or con-
tinuous. The difficulties lead most often to aproximation methods in the dy-
namical analysis of discrete-continuous systems. The essence of the aproxi-
mation method, i.e. the general one implied by the finite element technique
is the discretization of the continuous subsystem that belongs to the combi-
ned system. Typical examples of application of the classic aproximation me-
thods were presented by Beer and Johnson (1977), Inman (1994) as well as
in White’s considerations (1985) that were based on Galerkin’s method. Mo-
dern formulation of the classic aproximation method in the research of dyna-
mic discrete-continuous systems were presented in the papers by Kruszewski
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(1975), Nadolski (1994), Pielorz (1992). It should be mentioned, that Pielorz’s
description (1992) contains wide bibliography survey of the subject. Although
the classic aproximation methods are popular and have advantages, some of
the inconveniences resulting from this method should be discussed here. Some
authors become discouraged from making use of the classic aproximation me-
thods. First of all, the obtained results give discontinuous image of physical
phenomena that occur in mechanical systems. Thus, continuous interpreta-
tion of the phenomena is disabled. These methods are time-consuming and
have limited usability for analytical optimization of a given design as well as
involve significant errors. In principle, such inconveniences do not occur in
analytical methods and the continuous results can be achieved in that case.
Thus, apart from the classic aproximation methods, new analytical methods
are also developed. However, on their way one can meet two basic obstacles.
The first obstacle comes from the existence of discrete elements in the me-
chanical system and the second one is related with the presence of damping
phenomenon. Kasprzyk and Dan-Tinh (1979) presented the exact method of
solving boundary and initial problems that are related to conservative vibra-
tion of a discrete-continuous system. Moreover, Niziol and Snamina (1990)
described the exact method of solving the free vibration problem in a discrete-
continuous system with damping. This method combines Kasprzyk and Dan-
Tinh’s (1979) method and Tse, Morse and Hinkler (1978) conception, which
was formulated for the analysis of the discrete system with damping. Kasprzyk
(1996) proposed the analytical method of solving the free vibration problem
in a discrete-continuous system with damping that considerably varies from
the systems described by Kasprzyk and Dan-Tinh (1979) as well as by Niziot
and Snamina (1990). However, Kasprzyk’s method is accurate exclusively for
the cases where the stiffness operator is similar to the damping operator. In
other cases, the obtained results are only approximate.

The classic analysis of vibration of discrete-continuous systems modelling
more sophisticated structures is presented in papers by Andreev (1970), Man-
dryka and Monogarov (1975).

Moreover the investigations, which were performed by Lee et al. (1988) are
worth to be mentioned, however, they are beyond the scope of this paper.

The monograph by Kukla (1999) and the quoted there extensive bibliogra-
phy contains a number of exact solutions to boundary-value problems concer-
ning conservative linear mechanical systems with the particular use of Green’s
function.
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To sum up the bibliography survey, one can mention the efforts to formulate
generalized principles applicable to vibration analysis of any non-conservative
linear element separated from the given mechanical system (see Cabaniski,
1993, 1994, 1999).

The main purpose of this paper is the introducing of a generalized and
unified exact method for solving the free vibration problem of some non-
conservative combined linear mechanical systems.

2. Formulation of the problem

2.1. Physical model
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Fig. 1. Physical model of the mechanical continuous-discrete system

The basis of the research that have been carried out in this paper is model
of the mechanical system shown in Fig.1. The continuous subsystem in this
physical model is a Bernoulli-Euler’s beam with optional supports of its ends.
The existing constraints at the ends of the beam show, in general, all the possi-
ble support cases. Properties of the assumed model depend on the stiffness of
spiral springs and kind of the joints used for mounting them to the beam. The
discrete subsystem consists of a set of translational and rotational oscillators.
Each oscillator comprises a discrete rigid body introducing translational and
rotational inertia as well as viscoelastic constraints according to Voigt-Kelvin’s
model. Mutual exclusion of the interaction between the translatory and rotary
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motion of the oscillator implies that each discrete body can be presented as
two independent rigid bodies, i.e. a particle and thin disc (see Fig.1).

The denotations of the quantities applied for the description of the physical
and mathematical model are following:

l — length of the beam

t - time

T — axis in the Cartesian coordinate system

Zj ~ coordinate of location of jth-oscillator

p - mass density of the beam material

E —  Young’s modulus of the beam material

mj — mass of jth-oscillator corresponding to particle

m; —  mass moment of inertia of disc in jth-oscillator with respect
to its axis of rotation

kj, k3 —  stiffness coefficients of translational and rotational constra-
ints of jth oscillator, respectively

Cjs € — damping coefficient of translational and rotational constra-
ints of jth oscillator, respectively

K4, Kp - general stiffness coefficients of the beam constraints at its
ends, respectively

w — deflection of the beam, w = w(z,t)

% — slope of the beam, ¢ = ¢(z,1)

2 —  displacement of the particle of jth-oscillator, z; = 2;(t)

P; — angular displacement of the disc of jth-oscillator,
P; = ;(t)

F - cross-sectional area of the beam, F = F(x)

I —  axial moment of inertia of the beam cross-section, I = I(z)

q - distributed force acting on the beam, ¢ = ¢(z,1?)

q* — distributed moment acting on the beam, ¢* = ¢*(z,1)

P; —  concentrated force acting on jth-oscillator, P; = P;(t)

Py —  concentrated moment acting on jth-oscillator, P} = P/ (t).

2.2. Mathematical model

Vibrations of the discrete-continuous system, presented in Fig.1 are descri-
bed by the following set of one partial and two ordinary differential equations
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0? 0w 0w
5 Q(R(x)a 2)+u6t2 +Z(k +c]at)(w] 2;)0(z — z;) +
. og*
- Z(’“j + ng)(soj —95)8(z —25) = g - o
—
! (2.1)
d?z; d
mj—s dt2 <k +c.7dt)( _ZJ):PB
* 2¢' * d * .
my dtQ] - (k ]dt)((pj —%) :P] J=12,..,7
with the boundary conditions
vs(a,t) =0 s=1,2 a=0,] (2.2)
and the initial conditions
wo = w(z,0) z05 = 2j(0) Yo; = %;(0)
wo= ?O?L:o 057 5y lt 0 Yoj = ot lt—O (23)
z € (0,1) t € [0,00) j=1,2,...,7

where R = EI denotes the flexural rigidity of the beam, p = pF is the mass
of the beam per unit length, d(-) and ¢'(-) presents the Dirac delta function
and its derivative, respectively. Moreover, some of the quantities appearing in
Eqgs (2.1) are defined as follows

wj = w(z;,1) z; = zj(z},t)
o ow o 0z (2.4)
%5 = B loma, ¥i = 3 loma,

where z(z,t) denotes fictitious function which is filterd by Dirac’s delta func-
tion at the points z; and simultaneously suppressed outside these points.

In order to express boundary conditions (2.2) in the explicit form, the follo-
wing equations of constraints at the beam ends can be applied (see Pietrowski,
1967)

2 k 2
0 0*w(z,t
1@t) = 3 2 afgutz, ) + g TUGD)

p=1
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where ag‘;,), §;‘,> are the coefficients describing the kind of the beam supports
and k = Jyp, here dop is Kronecker’s delta. After differentation of the right-
hand side of equation (2.5), and replacing z with a = 0, we get this formula
in fully explicit form.

It will be convenient for further investigations to rewrite Eqgs (2.1) in the
following vectorial form

0%u ou
Mos +Lo +Ku=F (2.6)
where ( t) ©.)
. w\T, - a\z,
u= [ o(a, 1) ] F= [ P, t) ] 27)

are the vectors of displacements and loads of the system (Fig.1), respectively,
besides

M = w(z) 0 K = R; -K; L= Lj —L;
L0 M | -K; K | -L; L;
(2.8)

are the global, linear operators of inertia, stiffness and damping, respectively.
Whereas

0? 0?
Ry = 51 (Rle)gg) +K
T
. d
2.9)
v . d
K= (k] kj%-a—)a(x — z;)
j=1
;
. d
L; =Z:1(c] 7% )é(x z;)
]:
and
6 %
g(z,t) =q- a(i
(2.10)

T
wrn @
pla,t) = ,.ZE(PJ‘ (t) = P} () 5-)d(z — z;)
Tt should be noticed, that the operators K and L are self-adjoint because of
their symmetry (see Banach, 1932), and only in particular cases they can be
homothetic.
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3. Boundary-value problem

3.1. Separation of variables

In the case of free vibrations, i.e. when F = 0 Eq (2.6) reduces to the form

oy | Ou

The classic Fourier method of separation of the variables in Eq (3.1) can
be applied in the case, when L = 0, i.e for the undemped system or, if the
operators K and L are homothetic, i.e. when the vectors appearing in Eq
(3.1) are colinear (see Kasprzyk, 1996). In general, these vectors are coplanar
and separation of the variables in Eq (3.1) can be achieved only when the
problem is extended to the complex Hilbert space (see Maurin, 1959). Such
extension makes if possible to separate the variables like in the classic case
(see Cabariski, 1999)

u=U" (3.2)
where
U(z) = [ VZV } (3.3)

is the vector of the complex modes of vibrations, T = T(t) denotes a scalar
function of motion, besides W = W (z) and Z = Z(z).
Substituting Eq (3.2) into Eq (3.1) we obtain the ordinary differential
equation of motion
T-wT=0 (3.4)

and the vectorial equation of mechanical impedance
(M -K-iwl)U =0 (3.5)

where v = in + w denotes the complex vibration frequency, in wich w and i
stand for the angular frequency and damping, respectively.

Equation (3.5) can be written in the scalar form expressed by a set of one
ordinary differential equation and two linear algebraic ones

dd2( (m)ilv;/) -v uW—!—ch](W Z; )5(:1:—:1:])+

—Zm (P7 - )0 (z —2;) =0 : (3.6)
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v2miZ; + k(W — Z;) =0 §=1,2,.,7
vimiW; + k5(®; — ;) =0

where

ki = kj +ive; K; = kj +ivc; (3.7)

are the complex stiffnesses corresponding to the translational and rotational
components of complex constraints of the jth oscillator, respectively.
Moreover, some of the quantities appearing in Eqgs (3.6) we define as follows

W; = W(z;) Zj = Z(z;) a8)
3.8
_aw . 4az
dsj T dz T=; QP] T dz T=1;

3.2. Transformation of the equation set

The two algeraic equations occuring in Egs (3.6) can be expressed in the
simplified form

&
Krj krj
Z; = ——LW; ¥ =—-—19; (3.9)
J RS J Pt
ITj IIj
where - -
kpj = — T K= (3.10)
J e T T k% .
and
2 * 2, %
Kirj =v'm; KIrj = v°m; (3.11)

Egs (3.9) and (3.10) imply existence of the motionless nodes O; and Oj at
the translational and rotational components of the complex constraints of the
jth oscillator, as shown in Fig.2a and Fig.2b, respectively.

The above-mentioned “nodes” split this mechanical system but yet do not
exclude a dynamical interaction between the discrete rigid bodies and the
continuous subsystem at the same time.

With the help of Eqgs (3.9) + (3.11) the differential equation, which appears
in Eqgs (3.6), is reduced to the goemetrically isolated form

2 2 T
%(R(x)%) — v ()W + Zlij(a:j)d(m - z;) +
j=

(3.12)

T dW
'—ZK;IJ'—E; 5l($"".’,lf])=0
i=1
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Fig. 2. Scheme of formation of the motionless nodes O; and Oj on jth constraint:
(a) translational constrain, (b) rotational constraint

3.3. Solution to the differential equation

The general solution to Eq (3.12) has the form

. aw

4 T
. dG;
W(z) = Dypfi(z) =Y wr;W(z;)Gj + Zm,jﬁ J
k=1 j=1 j=1

z=z; dx

(3.13)

where fi(z) (k=1,2,3,4) are the linearly independent particular solutions
to the following differential equation

d? % 9
where Dy (k = 1,2,3,4) are arbitrary integration constants and
G; = G(z,z; ) is the solution to the following differential equation
d? d?G,
@(R(x) dx;) ~ 2 u(2)Gj = §(z — z;) (3.15)

with the zero boundary conditions. This solution is well-known as the Green
function.

3.4. Solution to the boundary-value problem

By analog with Eq (3.2), the left-hand side of Eq (2.2) can be written in
the form

Vs(a,t) = Iy(a)T(2) (3.16)
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Equating to zero the right-hand side of Eq (3.16) for T'(t) # 0, one obtains
homogeneous boundary conditions of Sturm’s type (see Pietrowski, 1967)

Iy(a)=0 s=1,2 a=0,1 (3.17)
Like it was done in Eqgs (3.16) and (3.2) one can write
Vs (z,t) = Ls(z)T (1) w(z,t) = W(z)T(t) (3.18)

Then, substituting Eq (3.18) into Eq (2.5) we obtain the formula presenting
the explicit form of boundary conditions of Sturm,s type (Pietrowski, 1967)

k 2
d . (@4 W) s=1,2 (3.19)

2
=32 (o
Iy(z) p}zjl (W (@) + 69

T

The coefficients ag';,) and ng) (s,p = 1,2) are determined from the consi-
stency conditions of generalized internal forces and displacements of the beam
and constraints at its ends.

The requirements concerning Eq (3.19) are the same as in an instance of
terms Eq (2.5). The aforementioned coefficients should satisfy the following
equality (see Pietrowski, 1967)

o8 Y
(a)
21

o pY
ol B

a=0,1 (3.20)

o)

By applying solution (3.13) to formula (3.19), then substituting the obtained
results into boundary conditions (3.17) the homogeneous system of simultane-
ous linear algebraic equations can be constituted, which in a matrix notation
takes the following form

AX =0 (3.21)

where A is the coefficient matrix with respect to v and X is the vector of
unknowns of the system.
The system of equations has a nontrivial solution, provided that matrix
A is singular, i.e. the determinant of this matrix is equal to zero. Hence, the
transcendental, complex frequency equation can be written in the symbolic
form as
detA=0 (3.22)

The solution to Eq (3.22) can be presented as an infinite sequence of the
complex eigenfrequencies {v,}, where v, = i)y +wn (n=1,2,..).
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With regard to the singularity of the matrix A(y,), the solution
to Egs (3.21) gives an infinite sequence of the complex vectors {Xn},
X, = [Din,Dan,Dsy,Dyy)T, corresponding to v,. By substituting u,
and Xp; n =1,2,..., succesively into Eq (3.13) and using the obtained re-
sults in Eqs (3.9), we obtain an infinite sequence of the complex eigenvectors
{U.}, Uy = [Wh, Zin, ey Zon, i, w; ] T, of the boundary-value problem
corresponding to v, and satisfying Eqs (3.6) and (3.17).

According to notation (3.3), the eigenvector U, can be written in the
compact form

U, = [ o } (3.23)
Zn,
where Wy, = Wy (z) and Z, = Z,(z) are the complex eigenmodes correspon-
ding to the continuous subsystem and discrete oscillators, respectively, but yet
we must remember, that relations (3.8) are still obligatory.

The above presented solution to the boundary-value problem and the fun-

damental principle (see Cabariski, 1999)

(1070 + vn)iM + LU, Un) = N (3.24)

defining the generalized orthogonality condition of the eigenvectors U are
the base for solving the free and forced vibration problems (Opm denotes
Kronecker’s delta).

4. Free vibration

The general solution to Eq (3.1) with homogeneous boundary conditions
(2.2) and initial conditions (2.3) is a linear combination of linearly independent
particular solutions, as follows

n=1

Replacing T, in Eq (4.1) by the general solution to differential equation
(3.4), i.e. Cpexp(ivyt) we get

%= Z CrUy, exp(ivyt) (4.2)

n=1

where C,, are arbitrary integration constants.
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The existence of technically possible initial conditions (2.3) implies exi-
stence of an expansion (4.2).
In order to find the constants C), the following formula is used

([M(ivnuo +g) + Lag), Un)

Cn = (12ivaM + LU, U

(4.3)

which, owing to orthogonality condition (3.24), was proved by Cabaiiski
(1999). In (4.3) wuo and g are the vectors of initial displacement and ve-
locity, respectively, according to initial conditions (2.3) presented in the scalar
form.

Effective calculation of C,, is possible after transforming formula (4.3) into
the scalar form

Cp = -~ (4.4)

where

L T
Jn = //L(:L‘) (il/n’wo + ’UJ())Wn dx + Z [mj(iunzoj + éOj)Zjn -+
0 =1

3 (iwntboj + 0)Tn + ¢;(woj — 207) (Win — Zin) +

+cj(poj — %05) (Pjn — an)]

l T
N, = 2iy, / p(z)W?2 dz + Z [2iun(ij§n + m;‘-&l’lfn) +
0 J=1

+¢;(Win = Zin)? + ¢ (P — an)z]

Now, using the previously obtained results, i.e. the constants Ch and
components of the eigenvectors U, in vectorial from (4.2), we obtain the
exact solution to the free vibration problem

w 7 [o%e] ’ W’I’L
% | =3 Cn| Zin | exp(ivnt) i=1,2,.,7 (4.6)
(2 n=l Pin

To this end, by expressing the complex components appearing the right-hand
side of solution (4.6) in a trigonometrical form and due to the existence of
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complex conjugated components, solution (4.6) finally takes a more classic
and explicit form

o o]
w(z,t) = Z |Cn|[Wh|e ™ cos(wnt + O + 9y,)

n=1
[e's)
2i(t) = 3 |Cul| Zjnle ™ cos (wnt + Op + D) (4.7)
n=1
o0
¢j(t) = Z lOn“y?jnle—nnt cos(wnt + Oy + '19;7;)
n=1

where O, = arg Cp,, ¥, = arg Wy, Yjn = arg Z;, and 19;5” = arg Ujp,.

5. Example
l L
X N l/jl
-
(\ c‘lF
A ki A B D -
r il R 1 72
my
k1 % €1
VW mq 1;1

Fig. 3. Exemplary mechanical continuous-discrete system

In order to exercise the aforedescribed method a particular discrete-
continuous system is assumed, as shown in Fig.3. The continuous subsystem
of this combined system is an elastic, prismatic beam hinged at the end A
and fixed to the weightless flexion spring at the end B. The second end of the
flexion spring is clamped onto the rigid wall in point D. The fexural rigidity
and length of the flexion spring are denoted by R, and I, respectively. The
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following initial conditions are assumed

wo = asin fx z():sin% woz%cos%
g =0 =0 Yo =0
The calculations are carried out for the following data
R = 3.75-10°Nm? p = 40kg m™* m = 50kg
m* = bkg m? k=25-10°Nm™! k* =1.0- 105Nm
¢=12-10?Nsm™" ¢* =3-10°Nsm l=3m
z1 = 1.bm a = 0.0lm b=4m

In the presented example Eq (3.13) takes the particular form

W (z) = Dy sinh Az + Dgsin Az + Ds cosh Az + Dy cos Az +

_%%W(wl)[sinh)\(:c — ;) —sin\(z — z1)|H(z — z1) + (5.1)
r7 AW e _ B
T dz lo=a [cosh A(z — z1) — cos Mz — 21)|H(z — 1)

where

_ s’
A= \/—R— (5.2)

and where H(z — z1) is Heaviside’s function.
In Table 1 the coefficients of the contraints of the beam ends are
shown (Fig.3).

Table 1
o) |69 | o9 | A
p|1]2|1]2]1]2 1 2
S

2R BR
1 1 ol1]o| =82 2=
00 2Rg 3Rg
IsR 2R
2 olol1lolol1] == | 2=
Rg 2Rg

The further considerations in this example were carried out according to
the presented algorithm.
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Fig. 4. Complex eigenmodes W,, and Znp, ¥y, of the beam and osicillator,
respectively, and the corresponding eigenfrequencies v,,; (a)n=1,(b)n=2,
(c)n=3,(d)n=4

14 ~ Mechanika Teoretyczna
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6. Conclusions

The final results presented in the form of Eqgs (4.6) and (4.7) can be
applied to practical calculations. The form of Eq (4.6) has practical
character, whereas the form of Eq (4.7) is rather of cognitive importance.
Moreover, the form of Eq (4.7) confirms unambiguously the correctness
of this method.

The calculations of complex eigenfrequencies and eigenmodes presented
in the example (see Fig.4), confirm that the described method is useful
from the practical point of view.

From the analytical considerations and calculations, mainly concerning
the eigenmodes as shown in Fig.4, one can draw a conclusion that the
phenomenon of vibrations possesses dual character. The simultaneous
existence of two eigenvectors, .e. ReU, and ImU,, corresponding to the
complex eigenfreqencies vy = inp & wn, supports this binary character.
Let us understand that the reason for the binary phenomenon is the
so-called biinertia or else apparent interia, i.e. real inertia and damping.

The oscillators connected with the continuous subsystem often play arole
of dynamical dampers or exciters of certain components of the subsystem
vibrations. The parameters of these dampers or exciters can be easily
determined by means of formulas (3.9), (3.10), (3.11) and (3.7).

The operational principle describing the generalized orthogonality con-
dition of complex eigenvectors (3.24) and operational formula (4.3) are
the invariants of this method. The separation of the variables in Eqgs
(3.4) and (3.5) as well as the invariants can be used for solving the free
vibration problem for any linear visco-elastic system.

In particular cases, when the oparators K and L are homothetic and the
phase angles ¥p, ¥jn and 73, invariable, Eqs (4.7) can be reduced to
the well-known form by the classical Fourier method (see Osinski, 1980;
Kasprzyk, 1996).

Solution to the steady-state forced vibration problem requires:

— completing the right-hand side of Eqs (3.6) with amplitudes of for-
cing loads

— replacing the complex frequency v with real the frequencies of the
forcing loads w
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— assuming that forcing frequencies are the same and invariable in
time.

The problem of vibration forced by arbitrary loads one can solve using
principles given by Cabariski (1999).

10.

11.

12.
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Analiza drgan swobodnych uktadu ciaglo-dyskretnego z ttumieniem

Streszczenie

W pracy przedstawiono uogélniong Scisly metode rozwigzania zagadnienia drgad
swobodnych belki z dolgczonymi do niej, za poérednictwem lepko-sprezystych wiezi,
skoncentrowanymi sztywnymi cialami. Drgania ukladu cigglo-dyskretnego zostaly
opisane uktadem sprzezonym, tj. jednym czeastkowym i dwoma podukladami zwy-
czajnych réwnan rézniczkowych. Rozdzielenie zmiennych i wyniki uzyskane z rozwia-
zania problemu brzegowego oraz warunek ortogonalnoéci postaci drgai wlasnych wy-
korzystano do analizy drgaifi swobodnych tego ukladu mechanicznego przy dowolnych
warunkach poczatkowych.
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