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In the paper a general approch to dynamics of flexible systems in which
displacements are resolved into displacements due to deformation and
displacements due to rigid body motion, will be applied. A contact pro-
blem of bodies resting on frictional foundation and being in plane motion
is stated and qualitatively discussed.
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1. Introduction

The majority of contact problems formulated and considered in mecha-
nics represents two, qualitatively different approaches: the first, typical for
mechanics of solids (elastic, plastic etc.) is concentrated on determination of
deformations, stress distributions and interaction processes in the contact zo-
ne; the second one, typical for multibody dynamics, is looking for motion of
the system described obviously as finite-dimensional. Contact is taken into
account mainly by forces respresenting reactions of obstacles or interactions of
contacting bodies (see e.g. Bremer and Pfeifer, 1992). One of the few explored
problems in contact dynamics is a planar contact of deformable body mo-
ving on a rough surface. Some results in this topic was given by Fischer and
Rammerstorfer (1991), Fischer et al. (1991), Mogilevsky and Nikitin (1997),
Nikitin et al. (1996), Stupkiewicz and Mréz (1994), Stupkiewicz (1996). Ben-
ding of beams resting on frictional surface, torsion of plates pressed between
two rough planes etc. are examples of this type Nikitin (1998).

In the present paper the mentioned problem of the plane motion of an
elastic body resting on a rough rigid foundation will be considered. Contrary
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to the existing formulations, the body is treated as a highly flexible system in
which the location of each particle is resolved into displacements due to defor-
mation and displacements due to rigid body motion. Such description enables
to determine the mutual interaction between rigid motion and deformation.
Governing equations of dynamics in presence of two-dimensional friction and
some qualitative results will be given.

The paper is organized as follows: we start with coupling of the rigid motion
and deformation according to the general statment given in the paper Szefer
(2000). Next we pass to the two-dimensional problem of frictional motion of
an elastic body in the plane state of stress. At the end some conclusions are
presented.

2. Coupling of rigid body motion and deformation

Consider a deformable body B, its motion from its reference configuration
Bp, into the current location B; at instant ¢ being measured with respect to
a global inertial system {0z'}, i = 1,2,3. Denoting by {X¥}, K =1,2,3
the material coordinates of an arbitrary material point with its position vector
X (XT), one describes the motion z' = (X t) as a mapping of X onto
x(XK ,t) where a means the current position vector of the point at time ¢.
Thus the configuration By of the body can be treated as a result of deformation
described by the displacement field w (X%, t) followed by a rigid body motion
defined by a translation vector x((t) and a rotation tensor Q(t) in the form
(Fig. 1)

(X, t)=xo+ Q(t)[X +u(X,1)] (2.1)

Remark. We assume, that the vector xo(t) stands for motion of the center
of mass 0%, what constituites the most convenient description.
Velocity and acceleration of each point yields (Szefer, 2000)

T = vy, + Uy T =ay,+a,+a. (2.2)
where
vy = Qu vy = @0 + Qlw X (X + u)]
a, = Qu a, =20+ Q{w x [wx (X +u)]+wx (X +u)}

a.=2Qw xu
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Fig. 1.

and w(t) is the axial vector of the skew-symmetric tensor
W=Q'Q=Wa=wxa Va

The vectors w,, and v, measured in the reference system {0z} can be
interpreted as the relative and transporting velocities of the particle due to
deformation whereas the vectors a,,, a,, a. are the relative, transporting and
Coriolis accelerations, respectively.

Thus, using the principle of momentum and the principle of the angular
momentum (or the equivalent virtual power principle), one obtains the system
of equations of motion of any flexible system in the form (Szefer, 2000)

xyg: MaEy+ Qw X (wx A(u)] + Qw x A(u) + 2Qw x P(u)+
+QB(it) = F' + F¢

w: JwHwxJw—-2wx Kou)+ 2 x QA(u) + Lo() = (2.3)
= Mo(u) + M§ (u)

w: DivS(1+VTu)+ prb=pr(ay, +a, + a.)
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Here the following notations have been used

M= /pR Vi Alu) = /pR(X +u) dVi
Vr VR
P(a) = [ privdVi B(it) = [ prit dVi
VR VR
FC:/thSR Fext:/prdVR-l—/deSR
FCR Vr Sr
J' = /pR[(X +u)( X +u)l — (X +u)® (X +u)] dVg
1%
" (2.4)
Ko(@) = [ pnit x (X +u) dVi
Vr
Lo(ii) = [ prit < (X +w) dVi
Vr
M (w) = [ prlbx QX +w)] Vi + [ prx QX +u) dSi
VR SR
M = / tr x Q(X +u) dSk
I'cy,
where
pr  — mass density in Bpr
Ve — volume domain in Bp
Sk — Dboundary surface loaded by prescribed external tractions pp
I'c, — contact zone with contact tractions tg
b —  body forces
\Y — stands for the gradient operator with respect to Bp
1 — identity tensor
S — second Piola-Kirchhoff stress tensor.

Vectors Fo and M g expresses the presence of contact forces or reactions
of constraints.

Remark. Denoting the sum of the second to the fifth terms on the left-
hand side of equation (2.3); by

F,=Qlwx (wx A(u)]+ Qw x A(u) + 2Qw x P(u) + QB(&)  (2.5)
and similarly the coresponding sum in (2.3)s by

MG = —2w x Kg(u) + &9 x QA(u) + Lo(i) (2.6)
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one can write the mentioned equations in the form

Mgy =F*'+Fo—F,
(2.7)

34+ w x Jw = M (u) + M§ (u) — MY

This form coincides with the known system of equations of rigid body dy-
namics but with the inertial tensor J“ (see Egs (2.4)). System (2.7) together
with equation (2.3)3 possess a clear structure and provide a simple interpre-
tation for the coupled rigid motion and deformation: translation and rotation
influences the motion of a continuum by additional transportation and the
Coriolis acceleration, whereas deformation influences the rigid body motion
by configuration-dependent force (2.5), moment (2.6) and inertial tensor J*.
System (2.3) must be completed by the constitutive equations

S =F(X,E) (2.8)
the kinematical equations for Green’s strain tensor
1
E= §(Vu +VTu+ Vu' Vu) (2.9)

and by the boundary and initial conditions

on S
S(1+ V' u)N = { P f (2.10)
tr on Ig,
xo(to) = 70 xo(to) = vo w(ty) = wo 2.11)
w(X, to) = up(X) w(X,ty) = To(X) X € By '

Here NN means the unit outward vector normal to Sg and I, is the map-
ping of the contact zone I'¢ onto the reference configuration. Equations (2.3),
(2.8), (2.9) constitute a coupled system with unknown functions xo(t), w(t)
and w(X¥,t), K = 1,2,3, which describe the complex motion of any flexible
body with displacements explicitely decomposed into rigid motion and pure
deformation. Such statement of any dynamical problem represents a third,
and in fact, the most general approach to dynamics of deformable bodies. The
system (2.3) which consist of two ordinary and one partial differential equ-
ations shows evidently the mutual dependence of translation, rigid rotation
and deformation. Simultaneously, the displacements due to deformations de-
pend strongly on rigid motion what can be seen from (2.3)3, where dynamic
body forces are supplemented by transportation and Coriolis members. The
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presence of deformation shows additionally that contrary to pure rigid motion,
there is a coupling between translation and rotation.

It is worth to observed that equations (2.3) (or in the form (2.7)) are va-
lid for elastic bodies the external constraints of which may be nonholonomic,
rheonomic, unilateral and rough. The material system may posses large di-
splacements and rotations, too. Thus the impact, friction, rolling with and
without sliding etc. can be taken into account.

3. Elastic plate undergoing frictional motion

Consider a thin elastic plate resting on a rough rigid foundation loaded by
prescribed tangential boundary tractions p; and compressed by normal forces
with density p, (Fig.2).

Fig. 2.

When the body starts to move due to the external boundary load p;,
friction occurs. Thus the body forces

vT

b= _:upn(th) "UT’

(3.1)
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where vp means the sliding velocity, arise at all points of the plate area where
pn (X, t) # 0. The intensity of the friction forces |b| = up, is known whereas
their direction results from the Coulomb law (3.1). They have the body force
character since they act on the internal points of the plane body. For sticking it
will be v = 0; otherwise the body is sliding. Let the material reference frame
be a cartesian coordinate system (0%, X,Y,Z) with its origin in the center of
mass and let the global inertial system will be denoted by (0,z,y,z). Thus
the kinematics of the body yields

w=10,0,w = d U = [y, Uy xo = [0, Yo]
cosa —sina 0 . sinaw  cosa 0
Q=| sinaa cosa 0 Q=—-a&| —cosa sina 0
0 0 1 0 0 0
T [ x xo+ Acosa — Bsina
€T = =
Ly Yo + Asin o + B cos «
. [ v, &0 — w[Asina + Bcos al + 1, cos o — 1y sin o
v g e
| vy Yo — w[—Acosa + Bsin o] + 1, sin a + 1, cos
(3.2)
- . iy cos o — iy sin a
a'w = = . . .
| Quwy Uy SIN (¢ + Uy COS ¢
W [ ays B #p — w?[Acosa + Bsina] — &[Asina + Bcos a]
Yo Ay fio — w?[Asina — Bcos a] — w[—Acos a + Bsin a
o [ e B —2w(ty sin o + 1y cos a)
| agy —2w(—1g cos a + 1y, sin o)

where A= X +u;, B=Y + uy.
Taking into account the fact that in a plane motion it is Jw|w, Ky||w,
calculating next all the integrals (2.4)

Ax(t) = /pRux dVR Ay(t) = /pRuy dVR
Vr Vr

Px(t) = /pR’U,m dVR Py(t) = /pRuy dVR (3 3)
Vr Vr

B,(t) = /,oRuz dVg By(t) = /pRuy dVg
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Lo (t) = / pr(Biiy — Aiiy) dVig T () = / pr(A? + B2) dVi
%5 Vr

and introducing for clarity the unknown matrix q' = [z9, o, @], one obtains
the system of equations (2.3) for the two-dimensional case as follows

M 0 —Agsina + Ay cosa
0 M Azcosa— Aysina | g —
Apsina+ Ayjcosa —Agcosa+ Aysina J.s

0 0 Psina+ P,cosa 0 0 —Agcosa— Aysina

-2 0 0 Pycosa—FPysina | q+

0 0 —Agsina+ Aycosa q’> +
0 0 0

0 0 0
B, cosa — Bysina F& + Foy
+ | Bysina+ Bycosa | = | Ff* + Fgy
Lo: M2 + M,

Di [ Sa(L+Uzz) + Saytyy  Sya(l+Uza) + Syytyy ]
1v —
Seatlyz + Soy(1 4+ uyy)  Syatiyz + Syy(1 + uyy)

Vg
,/U%—F'UZ Gz + Quz + Qcg
—HPn Uy = PR
T Gy + Quy + ey
\ V2 + vl

The quantity ¢> means multiplication of matrices ¢'q.

The external resultant force F** and moment M§*" have the components

Feot — — / Pt gy / ds
T 2 02 n 1)2 + Pt
Vr x 4 Sgr
F;zt = —,u/ Pl dV + /pty ds
VR SR

[)2 2
vz + vy

VpTy — UyT
Moeft = /(ptzry _ptyrz) as — N/pnM av

2 2
Sk e VU Ty

ry = Asina — Bcos o

(3.5)

ry = Acosa — Bsina
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The system (3.4) is strongly nonlinear and can be solved numerically only.

It is seen from (3.4) that the rigid part of plane motion depends on defor-
mation through functions (3.3) and (3.5) only. This property makes it possible
to solve the system (3.4); (with suitable initial conditions) formally indepen-
dently on (3.4)2 (e.g. by means of the Runge-Kutta method).

On the other hand, the nonlinearity of (3.4)s causes that the incremental
approach is obviously used. The incremental form of (3.4)9 is then as follows

Div[SAH + AS(1 + H)] + Ab = pr(Aay, + Aay + Aa,)  (3.6)

where H = Vu.
Thus the system (3.4); must be solved iteratively for any increment Aw.
Leaving the numerical details and analysis for separate discussion, one can
however, in particular cases, come to some general qualitative conclusions

A. Constant body force

If the density of the external body force is constant, then

Fert = /pr dV = Mb (3.7)
Vr
and we obtain from (2.7);
. 1
0= b+~ (Fo — F,) (3.8)

Substituting this expression into (2.3)3 we obtain

.. 1
DivS(1+ Au') + prb = prQit + pr [b + M(Fc - F,)+a;+ ac} (3.9)
where a¥ means this part of a, which results from rotation (see (2.2)). One
can see from the above equation that the term prb vanishes and it reads
finally

DivS(1+ Au') = pp(Qit + a® + a,) + pMR(FC ~F,) (3.10)
This result means that, in the case of constant body force, pure deformation

does not depend on b; the constant body force density influences translation
only. This fact is invisible if displacements are not presented in the form (2.1).
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B. Sliding without rotation under symmetric monotonic load and uniform
pressure

The result obtained above can be applied to a plate being in translatory
sliding motion (Fig.3a). Thus w = 0. Assume that the lateral velocity v, is
small (e.g. if the plate have dimensions of a rod). Then b = —up,|[1,0] (since
the direction of velocity v = u+ @ for all points of the body is the same and
known) and the property of case A holds true.

(a) (®)

HPper

;LlpncT - Pt

Y
N

~
[¢]

~—
N

Fig. 3.

So, friction disappears in equations of motion (3.4)y. If stick-slip process
occurs (and this takes place when wv have to vary under nonmonotonic or
nonsymmetrical loads p;) then friction influences the deformations.

On the other hand, when the lateral velocity v, cannot be neglected and
the plate will be clamped on one side (Fig. 3b), rigid rotation vanishes w = 0,
Q = 1 and pure deformation results now from the equation

DivS(1+ Au’) — ppner = pr(i + o) (3.11)
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Vg Uy
er = 2 2 |2 .2
\/vz+vy \/vx—l—vy

whereas the system (2.7) (and hence ; (3.4)1) yields

Uy = Uy + T Vy = Uy

Mig = F&" + Fop — By (3.12)

Remark. In case of symmetry all the terms in (2.7)y vanishes. Simultane-
ously it is yg = 0. Hence the above result.

C. Dynamic bending of a beam

Consider an elastic uniform slender beam using the standard Bernoulli-
Euler model of small deformation but with large rigid rotations. Let the beam
of length L, cross-sectional area A, inertia moment J and Young modulus F
rest on the plane {0zy} (Fig.3c). The material coordinate system {0*XY Z}
rotates with the beam. The centroidal axis is assumed to be inextensible. Under
the action of prescribed load p,(X,t), the beam moves and bends laterally
with the deflection w(X,t).

Thus the functions (3.3) take the values

Uy =0 — A, =P, =B, =0

(3.13)
L2 L2
Ay =pA [ w(X,t)dX Py =pA [ w(X,t)dX
—L/2 —L/2
L/)2 L/2
By =pA [ @w(X,t)dX Lo, = —pA [ w(X,t)X dX
—L/2 —L/2
For the loading terms one obtains the components
L)2 L2
v
Fo= [ pwdX—pp [ p—ieax
[2)2 2
—LJ2 —L/2 Uz T Uy
L)2 L)2
v
F, = / Pty dX — pb / pn——— dX (3.14)
2 1 42
_L)2 i VU Ty
L2 L)2 Y X
M, — / p(X,0)X dX — b / pnvz SIN (v — Vy X COS v dx

02 4 a2
—L/2 —LJ2 Uz T Uy
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where b is the width of the beam.
From (3.4) result the equations of plane rigid motion of the beam

Mg + Ay(t) (G cosa — a*sina) — 2P, (t)dcosa — By(t)sina = F,(t)

Mijo + Ay(t)(Gsina — 6% cos a) + 2P, (t)asina + By(t) cosa = Fy(t)
(3.15)
bL3

pﬁd + Ay (t) (%o cos a + fjo sina) + Lo, = Mo (t)

To obtain the most convenient form of bending, the local coordinate system
{0*XY} which is moving together with the beam will be used (see Fig.3c).
We then get

z=z0+ (X +w) = [z0,y0] + [X, 0]

v = [Ty —ww, Yo + W+ wX] (3.16)

2

a = [#g — ow — w2 X — 2w, §o + W + X — ww]

Using the lateral components of velocity and acceleration, one obtains the
dynamical equation of the beam
0*w

EJW :Pt(

X,t) — upn(X, ) sgn (o + w0 + wX) — pA(ijo + w0 + X — ww)
(3.17)

This equation generalizes the static case discovered by Nikitin (1992) and

Stupkiewicz (1996). If the beam move translational one get

otw

EJ 57 = Pe— Hpnsgn (o +1b) — pA(jjo + ) (3.18)

Finally, if only pure deformation (bending) is taken into account, one obtains
the standard dynamic equation in terms of frictional contact
0*w

EJW = Py — Upn SENw — pAw (3.19)

4. Concluding remarks

The presented approach to dynamics based on formula (2.1) differs from
the standard procedure where elastic strains and stresses result from the pre-
scribed rigid motion (obviously used in multibody dynamics of elastic sys-
tems). No restrictions on displacements, velocities and deformation gradients
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were introduced. Thus the systems with high flexibility and large rigid mo-
tion can be analyzed. Plane friction constitutes still a challenge in contact
dynamics. Few numerical results of plane sliding motion are known up to now
(some of them were mentioned in the Introduction). The equations derived in
the paper give the possibility to analyze the mutual interaction between rigid
motion and deformation which is of great interest today.

Some simple qualitative examples of sliding were presented only.

More complex cases of coupling of rigid motion and large deformation in
terms of contact will be discussed separately.

10.
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Dynamika cial sprezystych w warunkach ptaskiego ruchu szorstkiego

Streszczenie

W pracy zastosowano ogdélny opis dynamiki uktadéw odksztatcalnych, w ktorych
przemieszczenia sa dekompozycja czesci wynikajacej z deformacji oraz czesci wywota-
nej ruchem sztywnym. Sformulowano i przedyskutowano jakosciowo problem kontaktu
ciala lezacego na chropowatym podtozu i bedacego w ruchu plaskim.
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