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1. Introduction

Fatigue crack growth under a variable amplitude loading is usually accom-
panied by the load interaction phenomenon, due to which the crack growth
rate in a given cycle can differ from the growth rate observed for the same
cycle in constant amplitude tests. The nature of the fatigue crack growth for
various materials or conditions of loading – especially amplitude and frequen-
cy of overload occurrences, or for randomly variable loads, is different. Crack
growth prediction methods can be grouped by various criteria. An obvious
requirement for prediction models is their capability to estimate variable am-
plitude fatigue test results with a sufficient accuracy. It is also most desirable
that the effect of any change in the load, material or geometry parameters on
fatigue crack growth behaviour should be quantitatively predicted. The clas-
sical Wheeler model has been modified in terms of extending the description
of the fatigue crack propagation phenomena, among other things, those di-
scussed in part 1 of the paper and by Kłysz (1998), where some peculiarities
concerning the problem of the fatigue crack propagation have been presen-
ted. The Wheeler model (Wheeler, 1972; Fuchs and Stephens, 1980; Kocańda
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and Szala, 1985) defines the retardation coefficient Cp in the following way
(Fig. 1a)

Cp =
( rp,i
aov + rp,ov − ai

)n

(1.1)

where
rp,i, rp,ov – radii of plastic zones of current and overload cycles, re-

spectively
ai, aov – crack lengths of the current and overload cycles, respec-

tively
n – exponent in the Wheeler model.

the range of using it is determined with the following condition: ai + rp,i ¬
aov + rp,ov.

According to this model, the retardation phase exists until the plastic
zone rp,i related with the propagating crack (i.e. in the current cycle of the
load) is contained within the plastic zone rp,ov originated from the overload
previous to the given cycle. With the constant-amplitude loading applied in
cycles after the overloads had been imposed, the retardation coefficient Cp
changes monotonically and increases up to unity at the moment of reaching
the overload plastic zone by the current plastic zone of the crack.

2. Modification I

The first modification has been based on the assumption that the crack
growth retardation due to an overload is present up to the moment when
the crack tip (and not the plastic zone spreading in front of it) reaches the
boundary of the plastic zone produced by this overload. Hence, the condition
of using the retardation model takes the form ai ¬ aov + rp,ov, whereas the
equation that defines the retardation coefficient assumes the following form

Cp =
( rp,i
aov + rp,ov + rp,i − ai

)n

(2.1)

Treating the boundary of the overload plastic zone as a physical barrier to
be overcome by the front of the propagating crack seems to be more justified
than the approach presented in the initial form of the model. Not earlier than
after the crack itself (not the plastic zone of the crack) has overcome this pla-
stic zone, the retardation coefficient reaches unity and the crack grows again
at the rate as if no overload has occurred. This modification does not generate
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Fig. 1. Dependence of the retardation coefficient on the crack length (a) and plastic
zones during overload crack propagation (b); curve No. 1 – initial Wheeler model,

curve No. 2-No. 5 – Wheeler model after modification I-IV

any significant change in the nature of the dependence of the retardation co-
efficient upon the crack length. The only effect it produces is some delay (i.e.
some elongation vs. crack length) of the range of retardation, i.e. up to re-
aching unity by the retardation coefficient. It is evident that in the case of the
constant-amplitude loading after the overload has occurred it is the extension
by a distance equal to the size of the current plastic zone. Fig. 1b shows some
exemplary plots that illustrate these dependences for a selected computational
case. Curve No. 1 corresponds to the initial form of the Wheeler model after
modification. A significant difference between these two cases consists in the
fact that the retardation model has not been based on the interdependence
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between the overload plastic zone and the current one only, but between the
overload plastic zone and the front of the propagating crack. Thus, it allows
some instances to be described, namely those when the crack growth retarda-
tion takes place just as after the first overload cycle in the course of executing a
number of subsequent cycles of applying the overload (e.g. while replacing the
load block of the L-H type with a block of a higher maximum load). In such
situations, with the initial model incorparted, the size of the current plastic
zone always exceeds the size of the plastic zone reached in the previous cycle.
As the condition that implies validity of the retardation model had not been
satisfied, no account was taken of the retardation phenomenon in computa-
tional analyses. In other words, the initial Wheeler model does not provide
for any retardation in this case, because each subsequent overload cycle (i.e.
a cycle from the block of a higher maximum load) generates a plastic zone
beyond the zone originated in the course of the previously applied cycle (due
to changes in both the crack lengths and the stress intensity factors in those
cycles). The modified model relates in such situations the occurrence of the
retardation phase to the sizes of crack increments in these overload cycles. If
the crack increments are lower than the size of the plastic zone (e.g. at the
initial stage of the crack growth), the retardation phase is to occur (before
the crack front reaches this zone). On the other hand, if the increments are
higher than the size of the plastic zone (like, for example, at the near-critical
stage of the crack growth), the retardation phase will not occur at all. What
can be referred to in this case, is the dependence of crack growth occurrence,
or the crack growth not being retarded, on both: the size of the plastic zone
in a given cycle – the retardation phase is to appear at large enough plastic
zones (e.g. with plastic materials), and will not occur at small plastic zones
(e.g. with brittle materials), and on purely fatigue properties of the material
within which the crack propagates – the retardation phase is to occur with a
slowly propagating crack, and will not occur with a quickly propagating one.
In other words, the model comprises also the cases when – as the experimental
knowledge shows – different materials respond in different ways to identical
overloads applied (e.g. at the same time intervals and of the same size). The
modified model conditions the occurrence and the duration of the retardation
effect not only with differences in values of the yield points of a given mate-
rial but additionally with taking account of the crack-propagation properties
of the materials (by dint of including the current crack length, i.e. indirectly,
the C and m coefficients of the equation of propagation, and the form of the
stress intensity factor). The very problem of the material response to overload
sequences (decreasing/increasing blocks) and their modes (number of cycles,
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succession of applied overload blocks, mean values, stress ratios, etc.) is also
of great significance to evaluation of the fatigue life – it will not be, however,
analysed any more in this paper.
Let us then return to the problem under discussion, i.e. a single overload.

It is evident that this modification does not ensure ability to describe the
crack growth, like it did in figures included in part 1 of the paper and by
Kłysz (1998). There is still the monotone dependence of the delay coefficient
upon the crack length within the whole range of the retardation occurrence.
Therefore, the model describes only the cases featured with the regular increase
in the crack growth rate.

3. Modification II

The second modification introduces the variable exponent n′ of the Whe-
eler model, one that also depends (as the very retardation coefficient of the
initial model) on the crack position and the current plastic zone previous to
that originated in the overload cycle. Within the range, where the plastic zone
of the propagating crack is totally included into the plastic zone originated in
the overload cycle (ai+rp,i ¬ aov+rp,ov), assuming that the exponent n takes
the form of n′ described with one of the following relationships is suggested

n′ =
(ai + rp,i − aov

rp,ov

)

n (3.1)

or

n′ =
(ai + rp,i − aov

rp,ov

)n

(3.2)

Within the range, where the plastic zone in front of the propagating crack
crosses the plastic zone originated in the overload cycle (ai+rp,i > aov+rp,ov),
replacing the exponent n with the n′ one described with one of the following
relationships is recommended

n′ =
(aov + rp,ov − ai

rp,i,max

)

n (3.3)

or

n′ =
(aov + rp,ov − ai

rp,i,max

)n

(3.4)

where rp,i,max stands for the maximum current plastic zone generated in the
course of subsequent cycles after the overload has been applied, i.e. the zone



848 S.Kłysz

that has overcome the overload zone during the retardation effected with this
overload.

As in the initial Wheeler model, the term in brackets in equations (3.1)-
(3.6) illustrates just a fraction of the path that a crack has to cover to generate
the plastic zone in front of it reaching the overload plastic zone (stage I) or
escaping the retarded growth (stage II), and its value be contained in the (0,1)
interval. The changes in variability of the retardation coefficient Cp against
the crack length ai (together with changes of curves for the initial (No. 1)
and modified (No. 2) Wheeler models) have been shown in Fig. 1b. For the
sake of simplicity in illustrating the problem, some exemplary values of the
individual parameters (rp,i, aov, rp,ov, and rp,i,max) have been assumed, as
well as the constant-amplitude loads to be applied in subsequent cycles to
eliminate the shown changes (examplary plots) in the retardation coefficient
due to load variability. Curve No. 3 corresponds with equations (3.1) and (3.3)
(stage I and II) with the coefficient n in the form of a multiplier, whereas
curve No. 4 corresponds with equations (3.2) and (3.4) with the coefficient
n in the form of an exponent. In both the cases the retardation coefficient
takes some value from the interval (0,1) and reaches the minimum at the
instance of crossing the overload plastic zone by the plastic zone in front of
the propagating crack. It means that the modified retardation model of fatigue
crack growth permits the cases to be analysed when the crack growth does not
show the uniformly monotonic nature after the overload has occurred (as in
the initial Wheeler model). It provides for a period of gradual retardation of
the crack after applying the overload (up to the moment of intersection of
both plastic zones, i.e. the current and the overload ones), followed by an with
the accelerated (but still slower than the crack propagation with no overload
applied) escape from the phase of the growth retardation. This has found
practical confirmation during testing the specimens.

4. Modification III

On the account of the mentioned in part 1 of this paper and in the work by
Kłysz (1998) differences in crack length increments of 1-2 orders of magnitude
experimentally observed in overload cycles and between the overloads appli-
cation, it seems that the retardation model predicts these rapid crack length
increments as well. In the considered model it is possible, if the retardation
coefficient Cp could accept values within the range of 1-2 orders of magnitude.
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The range of variability of Cp like of curves No. 3 and No. 4 in Fig. 1b does
not render such a description possible.
As equations (3.1) and (3.3) in shortly expanded forms can be written

down as

n′ =
(

1−
aov + rp,ov − ai − rp,i

rp,ov

)

n (4.1)

and

n′ =
(

1−
ai + rp,i − aov − rp,ov

rp,i,max

)

n (4.2)

it is suggested using these equations in the following forms:
— at stage I

n′ = 1−
(aov + rp,ov − ai − rp,i

rp,ov

)

n (4.3)

— at stage II

n′ = 1−
(ai + rp,i − aov − rp,ov

rp,i,max

)

n (4.4)

This makes the exponent n′ capable of accepting positive and negative
values (for specific positive values of n), and thus, the coefficient Cp capable
of accepting the values higher than unity. Extending the range of possible
applications of the retardation model is of crucial importance.
Curve No. 5 illustrates variability of the Cp coefficient in these cases. It

is evident that immediately after applying an overload (i.e. for crack lengths
close to aov at stage I) as well as before abandoning the retardation phase (i.e.
for crack lengths close to aov + rp,ov at stage II) the retardation coefficient
is greater than one. The case that takes place at stage II is of no interest
to the model-based description (or at least difficult to interpret as far as the
mechanism of the crack growth at this stage is concerned), therefore, it will
not be taken into account any more. On the other hand, the changes in the
retarded crack growth throughout stage I meet the requirement assumed at
the beginning – they ensure variability of the Cp coefficient within the range
of 1-2 orders of magnitude and exactly the same differences in the increments
of the crack length. Hence the suggestion: let the following relationships be
accepted as the retardation coefficient:
— in stage I (the left portion of curve No. 5)

Cp =
( rp,i
aov + rp,ov − ai

)n′

=
( rp,i
aov + rp,ov − ai

)1−

(

aov+rp,ov−ai−rp,i

rp,ov

)

n

(4.5)

— in stage II (the right portion of curve No. 4)

Cp =
( rp,i
aov + rp,ov − ai

)n′

=
( rp,i
aov + rp,ov − ai

)

(

aov+rp,ov−ai
rp,i,max

)n

(4.6)
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The exponent of retardation n′ can be then written down with only one
equation of the following form

n′ = sgn (ai ¬ aov + rp,ov − rp,i)
[

1−
(aov + rp,ov − ai − rp,i

rp,ov

)

n
]

+

(4.7)

+ sgn (ai > aov + rp,ov − rp,i)
(aov + rp,ov − ai

rp,i,max

)n

The range of the retardation effect and changes in variability of the Cp
coefficient in the cases under discussion depend, of course, on specific values
of the individual parameters: rp,i, aov, rp,ov, and rp,i,max, i.e. on the crack
length at the instance of the overload occurrence, on the overload size kov,
and plasticity of the material.

The model still retains its essential, already known – owing to experimental
work – property: when the overload increases, the crack length corresponding
to stage I increases as well, and the crack over some considerable length escapes
the retardation phase. Moreover, all equations for n = 1 are equivalents,
which seems to confirm the theoretical roots common for all of them. For
values of the exponent n from within the (0,1) interval, the variability of
the retardation coefficient Cp increases monotonically – the model enables
obtaining the properties like in the initial Wheeler model over the whole range
of its applications; in other words, the initial Wheeler model is a special case
of the modified model.

Fig. 2 shows a more complete display of the changes in the retardation co-
efficient Cp against the crack length for the suggested forms of the relationship
defining this coefficient (equations (4.5)-(4.7)), for a wider interval of values of
the coefficient n, i.e. from 0 up to 6. The conditions of the simulation were:

– application of constant-amplitude loads in subsequent cycles – to eliminate
changes in the retardation coefficient due to variability of the load level,
hence, rp,i = rp,i,max = const (although in practice the coefficient chan-
ges as the crack length increases – a constant value has been assumed
for the sake of clarity of the figure)

– the same length of the crack at the moment of the overload aov occurrence

– values of kov = 1.75, 1.4, and 1.2

– values of n = 0.5, 2, 4.

So the extensive range of variability of the properties of the modified model
ensures high flexibility in describing the phenomenon of fatigue crack growth
retardation. Fig. 3 shows exemplary relationships of a = f(N) determined
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Fig. 2. Variations of the retardation coefficient as a result of modifications I-III
(described in detail in the text); aov = 10mm, rov = 1.695mm, ri = 0.551mm

according to the model described by Kłysz (1991), and the corresponding
retardation coefficient Cp against the number of cycles, for simulation-based
analyses of the crack propagation in a standard flat specimen with a single-
edge notch (SEN). The calculations have been carried out for the following
conditions:

– constant-amplitude load of the specimen, with overloads kov = 1.75 applied
every 10000 cycles

– pre-determined values of the coefficients of the Paris equation: m = 2,
C = 1 · 10−10

– materials with various yield points, i.e. 360MPa

– variability of the coefficient n within the range (0,9).

It has become evident that the modified model enables description of a ve-
ry wide spectrum of material behaviour under the above-mentioned conditions
of loads application. For plastic materials (large plastic zones) no escape from
the retardation phase occurred in a major part of the specimen life. The crack
length increments between the overloads did not surmount the large overload
plastic zone up to the moment just before the specimen failure, when the rate
of propagation was the highest. The crack did not escape the retarded phase
of growth. In the case of a material with a high yield point the situation is
different. While between the overloads, the retardation manifested itself in its
full range – the retardation coefficient was changing while passing through the



852 S.Kłysz

Fig. 3. Simulation-based plots of crack propagation. Modified retardation model, the
yield point 360MPa
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minimum to reach unity before the subsequent overload occurred. An inter-
mediate situation takes place in materials with mid-range values of the yield
point. Therefore, the points of inflexion (or lack of them) and the directions
of convexities on the a = f(N) curves and, for the cases with high values
of n, also considerable crack length increments in the overload cycles, are
characteristic for those variants. All these features are easily observed in the
course of fatigue tests. To make the comparisons easier, the Cp = f(N) curves
have been plotted up to the same scale; unfortunately, to the effect that the
values of the Cp coefficient exceeding 2 (for n = 5 and n = 6) have been cut
off. The occurrence of something like ”double retardation phase” at n = 0
(up to 150000 cycles), and n = 0.5 (up to 30000 cycles), for a material with
a low yield point, is an interesting detail of this simulation. The retardation
coefficient Cp was not subjected to cyclic changes every pre-determined num-
ber of the cycles consistent with the frequency of overload occurrences, but
every twice as large number of cycles. The crack length increment between the
overload applications was small enough (as referred to the size of the overload
plastic zone) not to escape the retarded phase of growth (the crack tip did not
reach this zone) even at the moment of applying the subsequent overload. The
result was that the previous retardation phase seemed to be continued. The
retardation effect was repeated in cycles, every 20000 cycles instead of every
10000 cycles. It could be equivalent to a situation met in research practice,
when the response of a given material to some overloads is evidently different
from that to other ones (e.g. different nature of the relationships a = f(N) or
COD = f(F ), the crack opening displacement against the loading force, i.e.
the specimen flexibility, or the relationship da/dN = f(∆K), the crack pro-
pagation rate vs. range of stress intensity factor). It takes place particularly in
the cases of high overloads, when the classical response to an overload does not
occur after every overload application, but every second, third, or further one,
and the material behaves between the overloads either in a different manner or
”as if nothing had been happening”. According to the terminology assumed in
the paper, it may correspond to the above-mentioned: as if ”double”, ”triple”,
etc. retardation phase.

Fig. 4 shows, according to a slightly different approach, exactly the same
results for a pre-determined value of the coefficient n. The mid-range value
has been selected from among the previously assumed values, i.e. n = 2. Thus,
one of the essential factors that shape the retardation model (the coefficient n)
has been eliminated for the sake of this analysis. From the above-shown plots
it follows that the mentioned factor has originated a 300 per cent change in
the specimen life and is responsible for physically different interpretation of
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Fig. 4. Simulation-based plots of crack propagation. Modified retardation model, the
coefficient n = 2
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the changes in the retardation process of the individual curves a = f(N).
Therefore, the influence of the two other factors (i.e. overload quantity, and
yield point) on description of the changes in the retardation process with
the model under discussion has been presented. The plots confirm the above
discussed relationships between the changes of the retardation coefficient in
individual computational modes. It is evident that even for such a limited
range of the analysed mode (n = 2) the model is highly sensitive to the
magnitude of the applied overload and the sort of material used. It proves
suitability of the modified model to the analysis of fatigue crack growth under
random loadings.

5. Modification IV

In all cases the minima of the curves Cp = f(a) (Fig. 2) occurring for
the crack length ai = aov + rp,ov − rp,i are either 0.5 (for curves No. 4 and
No. 5) or (1/2)n (for curve No. 3) – the exponent n′ takes – according to
Eqs (4.5)-(4.7) – values 1 or n. For the ascending overload coefficients kov
the model responses with a prolongation of stage I, like the initial Wheeler
model does. The initial model reduces, however, the value of the retardation
coefficient Cp – down to the minimum immediately after the overload cycle.

In improving the description of the experimental data it seems reasonable
to make the minimum value of the Cp coefficient of the modified model change
within a wider range, e.g. to make it decrease down to zero, or at least down
to the range (0.5-0). It is suggested that the formula for Cp should take then
the following form

Cp =
( 1

αkov

rp,i
aov + rp,ov − ai

)n′

(5.1)

where α is to be found experimentally.

Fig. 5 shows some exemplary dependences of the retardation coefficient
upon the crack lengths (based on Eqs (4.7) and (5.1) for some selected values
of α and kov). Each curve models different ”dynamics” of the changes in
the retardation coefficient. Such behaviour can happen in reality for various
materials (brittle, plastic, cyclic-hardening and cyclic-softening ones, at va-
rious stages of treatment), or different loading conditions (different values of
DN , kov, R, but also randomness, multiaxiality, changes in temperature or
frequency), which proves the universal nature of the suggested model. Same
example of good fitting the above described theoretical model to experimental
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Fig. 5. Variability of the retardation coefficient after modification IV; aov = 10mm,
rp,ov = 1.695mm, rp,i = 0.551mm
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data shows Fig. 6. It cannot be accomplished using the basic Wheeler retar-
dation model.

Fig. 6. Description of experimental data with the modified model

6. Conclusion

Crack growth prediction in structured elements in service can be based
upon various techniques with different degrees of sophistication and varying
life prediction accuracy. In rising order of complexity these are: rough estima-
tes, analytical methods combined with the FEM, sophisticated crack modelling
in 3D using automatic mesh-genetarion software and fracture mechanics ana-
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lyses. The fracture behaviour of a given structure or material will depend on
the stress level, material properties and the mechanisms by which the fracture
progresses. The most successful approach in prediction and prevention of the
fracture is modelling the crack growth rate, especially when under a service lo-
ading. The different features of a = f(N) and da/dN = f(∆K) relationships
(presented in part 1) make a uniform theoretical description rather difficult,
and sometimes preclude simple mathematical models from being applied.

A number of models have been developed to describe the observed variabi-
lity in the crack growth. The modifications of the Wheeler retardation model
have been proposed in the paper. They widen the range of possibilities of de-
scribing the experimental data using this model. They also enable application
of it to any of the dependences a = f(N) or da/dN = f(∆K) found in
the research practice. This model has shown the ability to characterise both
constant and variable amplitude fatigue crack growth.

The above-introduced model guarantees good representations of the com-
plex, experimentally determined relationships a = f(N) and, which is proba-
bly of fundamental importance, very precise estimations of the coefficients of
the equations of fatigue crack growth rate propagation, as well as the resul-
tant fatigue life. The possibility of matching the theoretical description with
experimental data is well confirmed. Hence, with such precise representations
of the experimental data the model makes the estimations of dispersion of
these parameters possible (e.g. while analysing some specific kinds of tests
with a suitable number of the specimens). All mentioned features are very
useful in the two main approaches to the design of critical structural elements
with respect to fatigue safe-life design and damage-tolerance design. The first
approach aims at withdrawal of the elements from serwice before the crack is
detectable. The second approach tolerates a growing crack and aims at removal
of the part when the crack is detectable or has the critical size.

All the problems discussed above give grounds for correct analysis of fati-
gue life of specimens and structural elements. It is a very important problem
especially for all kinds of devices responsible for peoples’ life. It is hard to find
tasks in engineering practice being more critical than the prediction of service
lives of critical structural elements and prediction of their fatigue strength.
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Osobliwości rozwoju pęknięć zmęczeniowych i modyfikacja modelu
opóźnień Wheelera – część 2

Streszczenie

Przedstawiono modyfikacje modelu opóźnień Wheelera rozwoju pęknięć zmęcze-
niowych. Modyfikacje te poprawiają możliwości opisu danych doświadczalnych z ba-
dań propagacji pęknięć zmęczeniowych, w szczególności dla dużych przeciążeń. Przed-
stawiono przykłady opisu danych doświadczalnych przy użyciu zmodyfikowanego mo-
delu opóźnień Wheelera.
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