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Vertical admixture diffusion has been considered in a layer with random
nonhomogeneous two-phase stratified structure of the material. Diffe-
rent phase diffusion coefficients and phase densities have been taken into
account as well as jump discontinuities of the diffusion coefficient at
interphase boundaries. Averaging the obtained expressions for the ad-
mixture concentration has been done over the ensemble of sublayer con-
figurations with equally probable distribution, and two particular cases
of beta-distribution of phases in the body.
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1. Introduction

In practice, often the necessity occurs to describe the process of admi-
xture mass transfer in nonhomogeneous stratified structures. Admixture and
behaviour of its distribution in a body have an essential influence on its phy-
sical and mechanical properties. The rigorous geometric composition of such
structures is unknown, i.e. position and thickness of the sublayers in different
materials are random magnitudes. However, their corresponding densities and
diffusion coefficients of admixture particles are determined accurately enough.
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In certain cases the diffusion coefficients values can differ by some orders of
magnitude in different sublayers.

To evaluate the influence of such a structure with substantially different
diffusive properties of sublayers on the mass transfer in a body, the methods
of homogenisation (Lydzba, 1998; Matysiak and Mieszkowski, 1999) and in-
troduction of effective diffusion coefficients (Kanovsky and Tkachenko, 1991;
Lyubov, 1981; Shatinsky and Nesterenko, 1988) has been proposed.

At the study of transfer processes in regular structures, the methods of
solving the initial-boundary value problems developed in (Podstrigach et al.,
1984) concerning the heat processes can be used.

If the body structure is such that there are macroscopic quantities of par-
ticles of different kind sublayers and admixture within an arbitrarily chosen
physically small body element, then the continuum-thermodynamical models
for description of the diffusion processes (Burak and Chaplia, 1993; Burak et
al., 1995) can be also used.

However, the cases have been described in literature (Lyubov, 1981; Ka-
novsky and Tkachenko, 1991) when introduction of an effective diffusion co-
efficient and experimental data interpretation on this basis are not always
physically justified. But we can make certain reliable assumptions concerning
the stochastic distribution of sublayers in the body.

2. Problem formulation

Let the admixture particles migrate in a dispersed layer of thickness z
with randomly nonhomogeneous stratified structure of material. The body is
composed of two solid phases with different densities (Fig. 1), and admixture
diffusion coefficients can differ essentialy in these phases. The discussion is
restricted to the case when the volume fraction vy of one phase (the basic
phase, marked by the index 0) is much greater than that of another phase
vy > V1.

If an arbitrary vertical body volume is denoted by V then V = V(O 4y 1),
where V) is the volume of the J-phase, and

n; '
V) — U Vi(]) j=0;1
i=1

Here Vi(j ) is the volume of sublayer 7 of the j-phase, i is the sublayer number,
i =1,2,...,nj, n; is the number of sublayers of kind j. And we assume that
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Fig. 1. One of possible realizations of the body structure

the body density p(z) and diffusion coefficient D(z) are constant in the
volume of each phase. At the same time, the phase configuration is a random
magnitude.

Let us introduce into consideration the random operator 7;;(z) that de-
pends on the phase configuration and doesn’t depend on their physical cha-
racteristics. It is defined by the formula (Lydzba, 1998)

1 zev
1ij(2) = ) (2.1)
0 z¢V,’

Note that
1 ny
> mi(z) =1 (2.2)
j=01i=1
Relationship (2.2) represents the body continuity.

Then the diffusion coefficient D(z) and density of the body p(z) are
presented by the random operator (2.1) as follows

1 ny 1 nj
D(z)=)_> Djmij(z) p(z) =D pimij(2) (2.3)

j=0i=1 j=0i=1

where Dj, p; are values of the corresponding coefficients in j-phase.
Using the approach of generalized functions (Vladimirov, 1976; Podstrigach
et al., 1984), diffusion of admixture particles in such a body is described in

the form
Jc(z,t)

L(z,t)e(z,t) = p(2) ot

— VI[D(2)Ve(z,t)] =0 (2.4)
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where ¢(z,t) denotes the field of admixture concentration in the body; 7(z) =
p(z)/po is the normalized random density and p(z) is the body density, py is
the density of the phase 0; D(z) is a random admixture diffusion coefficient,
D(z) = d(z)/po, and here d(z) is a random kinetic coefficient; V = 9/0z, tis
time.

Let a constant mass source act on the upper boundary of the layer referred
to rectangular coordinates so that the Oz-axis is perpendicular to its surface
z=0

c(z,t)| =0 = (c* = const)

Another boundary condition and the initial one are also given
c(z,t)] 2=z =0 c(z,t)]|4=0 =0 (2.5)

Substitute the coefficient (2.3) into Eq. (2.4) and assume that (Vladimirov,
1974)
1 7N

1 ny
>3 V(D) = X2 Y [Dilrd(z — =)

j=0i=1 §j=0i=1

where [D;|r denotes a jump of the diffusion coefficient on the boundaries of
the i-layer of the j-phase (Vi(] )), 0(z) is the Dirac delta-function, zil; is the
() (

boundary of subregion V;*’ (henceforth z; denotes the upper boundary of

Vi(j ) (random magnitude); z;; + 0z; is the lower boundary of this sublayer,

dz; is the width of the j-phase layer). Then we obtain
1 ny
L(z,t)c(z,t) = Z ZL,-j(z,t)c(z,t) =0 (2.6)
j=0i=1
where the random operator L;; is

_ 0 02
Lij(z,t) = ij'j(z)g - Djm'j(z)@ -

~[Dilho(z — i) + [Di1562 (o + 62)]

Here [Dj]k, [D;]t are jumps of the diffusion coefficient on the upper and
lower boundaries of the i-sublayer of the j-phase (random magnitude).
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3. Neyman series for the diffusion problem

In Eq. (2.6) add and subtract deterministic operator Lg(z,t) defined in
the entire interval (¢t € [0;00[, 2z € [0; 20])

0 0?2
Lo(z,t) = ﬁoa - Dow

the coefficients of which are characteritics of the basic phase. Then using con-
ditions (2.2) we have

Lo(z,t)e(z,t) = Lg(z,t)c(z, t) (3.1)

where

ni o ni 82
Ls(2,t) = Lo — L =7, Zm‘l(z)@ — D, Zml(Z)@ +
i=1 i=1 (32)

ni

+D, Z[&(z —zi1) —0(z — (zi1 + 5z1))} %
i=1

Here p, = py — p; and D, = Dy — D;. We consider the right-hand side of
Eq. (3.1) as a source, i.e. the medium nonhomogeneity is treated as internal
source. The solution of initial-boundary value problem (3.1), (2.5) is found in
the form of Neyman series (Rytov et al., 1978).

Let c¢o(z,t) by a deterministic field of admixture concentration in the body
with characteristics pg, Dg. It satisfies the following homogeneous equation

L(](Z, t)CO(Z7 t) =0
and the initial boundary conditions (2.5), i.e. (Crank, 1975)

co(z,t) = c*{l _Z i 2 exp(—lﬁ)—ooyit) sin(ynz)} (3.3)
n=1

20 — N

where y,, = nw /2.
Write G(z,2',t,t') for the unperturbed Green function satisfying a diffu-
sion equation for a point source

oG 0*G

A oL _ oy o
P05, D0822 ot —tH)o(z—2)
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and the initial and boundary conditions
G(z,2,t,t))=0 =0
G(z, 2 t, )| om0 = G(z, 2, t, )] s=sy = 0
Then the initial-boundary value problem (3.1), (2.5) is equivalent to the in-

tegral equation for the random field of admixture concentration ¢(z,t) in a
two-phase stratified layer

t 20
c@w:@mw+//waxuwuwfxwfmaw (3.4)
00

where the Green function is

G(z, 2 t,t') = exp{—?—ooy,%(t — t')] {cos(yn(z —2')) — cos(yn(z + z'))}

(3.5)
The Neyman series for the problem (3.1), (2.5) is built by iterating (Rytov at
al., 1978) the integral equation (3.4). Let us restrict the expression to the first
two terms in the Neyman series. Then we obtain

20n1

t 20
c@az%@w+//m%Auw@wjm@wmww (3.6)
00

If we substitute the operator Lg(2’,¢") defined by (3.2) into Eq. (3.6), we have

t 20
=0 0?
c(z,t) = co(z,t) +//G(z,z’,t,t Z[ *8(;? — *8;2}77,-1(2’) dz'dt’ +
n=1
b (3.7)
7 / — / 8(30 ,
D*//G(%Z,tat Z[ 2 —zin) —0(z —(zi1+5z1))}w dz
00 n=1

4. Averaging approximate solution

Let us consider averaging of the concentration field over the ensemble of
sublayer configurations with different distributions of phases in the body.
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I. Let the phases be distributed with equal probabilities. As c¢y(z,t) is a
deterministic field, then (co(2,t))cons = co(2,t). Consider the first integral in
(3.7). As long as

=ni (2" — zi1)

(4.1)
only the function 7;1(2" — 2;1) depends on z;; under the integral and there
are not other terms with index 4, then

() = 1 2/ € [zi1;2i1 + 021] ] 2 — zi1 €10;021]
i 0 2 zizn+0n] | 02—z €0;0%]

t 20
(I1) conys ://G(z,z',t,t')L (2 e (2, ) / (2 — z1) dzpd2'dt’
00
0 9?2

L.(Zt) =P, — Di=5
(Z7 ) p*at/ 8Z2

Taking into account the properties of function 7;1(2" — z;1), we can write

v 2 < 0z
_Z/nzlz_zzldzzl—{ 151 !

=1y, vy 2 >0z
Then we obtain
t 021 t zo
(Il>conf—5—%//GL co(2 )2 d2'dt! —l—vl//GL co(2 ) d/at’ (4.2)

0621

Consider averaging of the second integral in (3.7). Since the d-function is
even, we have (Abramowitz and Stegun, 1979)

1

20—021 5 Z=0 or 2=z —dn
O(zin —2)dein =9 1 2 €]0;20 — 621
0 0 for other 2’/
and

Iy —0 o 2 =z20— 0z

1 T , 2U5Z1

v 2/5(%1 —2)dziy = (5_1 2/ €]0;20 — 021 (4.3)
=1y, 21

0 for other 2/
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We find the internal integral of the second J-function in the same way

2;—21 =0z or 2=z
= 2/5 zig +0z —2)dzg = YL €]621; 20| (4.4)
i=1i 021
0 for other 2’

Then, allowing for (4.3), (4.4), the definition of an improper integral, the
boundary conditions for the Green function, we obtain

t
U1 1 860 860
I con :D*_ —(G— — U=
( 2> 4 521 0/{2( 0z z'=z0—0621 0z 2’2521) +
(4.5)

621+0
+ / 860 de — / GaCO L ar

+0 20—621+0

Aslong as (4.2) and (4.5) take place, we can write the expression for calculating
the approximate concentration field averaged over the ensemble of sublayer
configurations

t 0z

(c >conf = co(2,t) (5_1/ /GL*Co(Z/,t,)Z, dz' +

20

deg dcg
Luco(2 ¥ D. e 4.
—|—5z16/ GLyco(2' 1) d2' + [ (G 0 s G 2,2521)+( 6)
21
0z1+0
+/ 8cod, / G@co /}d
+0 20—02z1+0

II. Let the phase j = 1 have the beta-distribution in the layer. Note that
the density of the beta-distribution in a layer with thickness zj is

f() = { rar@(m) (-2)" se
0 2 & [0;20] (a>0,8>0)

Below we consider two special cases: (i) a«>1,8=1;(ii))a=1,0>1
(Fig. 2).
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f2)

Fig. 2. Density of beta-distribution

Let us average the concentration field over the ensemble of sublayer confi-
gurations (3.7) with the beta-distribution of the phase j = 1. For this purpose
consider the averaging of the first integral in (3.7)

t 20 n;
(Il>conf = // GL*CO(Z,7t/)Z/ml( )f(zzl) dZZle dt’
00 i=ly

(i) Taking into account the expression for f(z), in this case we have

20—021

1 + @) Zi1 a-1
S ) dzin = §: / A N\ g,
< 1‘/"721 Zzl Zil = 77@1 — Zil (ZO — 521) Zil

Using (4.1) we obtain two cases: if 2’ < §z; then

/ CT(l+a) w()"
2/7%1(2 )f(zi1) dzin = al'(a) 6z(z0 —621)* 2

When 2 > §z

1+ a) n[(z)* — (2 —621)9]
2/77@1 f(zn) dean = al’(a) 021(20 — 021)2

In consequence, we obtain

F(l + Oé) V1

I conf = T 17N .

(i)con al'(a) 0z
t 0z 20

/ / 2 *GLyco (2, 1) d2' — /(z' —021)*GLyco(, 1) dz'} dt’

0 0z1

(Z() — (52’1)2_a .



938 ADMIXTURE DIFFUSION IN A TWO-PHASE RANDOM...

(i) Using the expression of the beta-distribution density when o = 1,
6 > 1, we have

) . zp—0z
n; n;j 0 1

/ I'(1+p) / / zit  \P1
i i 1= — o i1 (2 —zi)(1— i
;/771(Z)f(21)d21 X ; i (2 21)( zo—c?zl) dzi1
1= V 1= 0
Integrating the last expression we obtain
t 20
I conf = T oA -0 ﬁ/ / - 'B L., t d —
(1) cons BT () 521 21) as 20 — 2" )P GLyco(2, 1) dz
Z1

621

/20—521—2 ﬁGLco(z ') d2' + (20 — 621) /GLcoz t)dz}dt
0

Since the Dirac function is an even one, the averaged second integral in
(3.7) can be written in the form:

(i)
(12)conf dL%M( 0 —021)%" O‘/t7GL co(2,t') -
(Fo = (¢ = b)) dZa o
(ii)
(I2)cons = D*%%(% — 621)2 P j /ZOGL*CO(Z/, oy
00

'((zo — 0z — )P — (2 — 5z1)ﬁ_1) dz'dt'

As a result we obtain the formulae for the admixture concentration field avera-
ged over the ensemble of sublayer configurations with their beta-distribution:

(i)
t 621
I'l+a)wv

2—«
_ a N
o) 521 zo (521 0/ / GL.co(2',t)dz

(Ceont = co(z,t) + ———

20

—é/(z —021)*GLyco(Z,t)d2' + D, /G
021

860 /
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(ii)
r1+p) 26 (1 ]
= 72 — B _ _ NG L T !/
(C)eonf = co + (@) o= (Zo 521) /{5 /(zo 2"V GLyco(Z,t)dz
0 621
1 20 1 021
ﬁ (20 — 2/ — 621)°GLyco(2,t')dz' + ﬁ(zo —6z)° /GL*co(z',t')dz' +

(4.8)

+D, /Gaco 20 — 2 —62)P 7 — (% — 521)5_1]d2'}dt'

5. Analysis of the obtained solutions

The final expression for the averaged field of the admixture concentration
for different distributions of sublayers in the two-phase stratified layer is ob-
tained by substituting the formulae for the Green function and the admixture
concentration in the homogeneous medium with characteristics of the phase
j = 0 into the respective expressions for the averaged concentration fields.

I. The equally probable distribution of the phases. Substituting Eqs (3.3)
and (3.5) into (4.6) we have

1 z > 2 D(] 2 .
C_*<C(zvt)>conf =1- Z_O - Z — exp(_ﬁ_oynt) sin(ynz) +

D, D 1
;;1 52000 {5z1(z0 —2z) + Z — exp(—ﬁ—ooy;%t) {(Bl + %Bg) cos(yrdz1) —
D
~Bozosin(ydz)] + sin(yi2) [F(l — (=1)")(1 ~ cos(yxdz1)) + (5.1)
k
- 1 DO DO
+ ngl H [exp(—p—oyzt) - eXp(—p—Oyrth)} .

.(Qg_i’yn(/l_ —As) = (14 (DM A )| |

where

By = 2sin(yxdz1) cos(yxz) By = 2 cos(yrdz1) cos(ygz)
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Dipy — Dop !
= D00 Ay = feos(yk & n)0z;) — 1]

D
P Do (Yk £ yn)?

A, = 2yp  cos[(yx —yn)021]  cos[(yk + yn)d2i]
Y- Yk = Yn Yk + Yn

[lustration of the influence of the material structure nonhomogeneity on
the distribution of the admixture concentration in a layer under the action
of a constant source on the upper boundary is given in Fig.3 and Fig. 4. Nu-
merical calculation was done for the dimensionless quantities & = z/zy and
Fo = Dyt/z3. Tt is assumed that Dj = D;/Dy = 0.5, 61 = 621 /29 = 0.01,
Fo = 1072, v; = 0.1. The solid line marks the respective function for the ad-
mixture concentration averaged over the ensemble of sublayer configurations
and calculated by (5.1). The dashed line identifies the admixture concentra-
tion in the homogeneous medium with the basic phase characteristics. The
dimensionless coordinate ¢ has been assumed as abscissa, the ratio of the
concentration to its value on the upper body boundary c¢* has been taken
as ordinate. The distributions of the admixture concentration are compared
in Fig. 3a for different values of the reduced diffusion coefficient D; = 0.2,
0.5, 0.8, 1.2, 1.5, curves 1-5, respectively. The concentration distributions are
presented for different values of the Fourier number Fo = 1072, 1073, 1074,
curves 1-3 (1la — 3a) respectively, in Fig. 3b.

1.2 1.2
1 (a) (b)
0.9 \_ i 0.9F
\\ ) \\ V{
0.6 0.6f; “\
\\\ \ 11"\2}, 3 \
0.3 N3 0.3{F %
N AT
N S
b T - éa 24 e
0 02 04 06 08 1.0 0 02 04 06 08 1.0
Fig. 3.

Fig. 4a illustrates the behaviour of the concentration field in dependence
on the quantity of the volume fraction of sublayers v; = 0.2, 0.15, 0.1, 0.05,
0.01, curves 1-5, respectively. Dependence of the admixture concentration on
the sublayer thickness §&; = 0.05, 0.02, 0.01, 0.008, 0.007, curves 1-5, is shown
in Fig. 4b.

The performed analysis of the obtained results shows that distinctions in
diffusive properties of the randomly distributed phases can cause essential
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Fig. 4.

changes of the character of the admixture concentration field in the body.
Thus in quantitative description of the mass transfer it is necessary to take
into account explicitly both different values of the diffusion coefficient and
its jump discontinuities at phase boundaries. In the case when the diffusion
coefficient in thin layers is greater than the one in the matrix, it leads the
admixture concentration decrease in the body. And occurence of sublayers
with the diffusion coefficient smaller than one in the matrix causes its essential
increase (Fig. 3a).

Change of the other material parameters affects also substantially the va-
lues of the averaged concentration field in a nonhomogeneous medium. Thus,
in the case of the admixture diffusion in bodies with D; < Dy, increase of the
sublayer volume fraction causes increase of the averaged concentration, both
near the body surface and in the middle region of the layer (Fig.4a). And in-
creasing the layer thickness at the same sublayer volume fraction decreases the
admixture concentration in the body (Fig. 4b). Note that homogenized models
can be used for description of diffusion processes in small time intervals.

I1. The beta-distritution of sublayers

(i) To obtain the expression of the averaged concentration field in this
case, we substitute the formulae (3.3) and (3.5) into (4.7)

c Zo fonm
I(14+a) v (20 —021)27 & D, Dy ,
L fndiod 2024 ).
F(Oé) 521 Z(]DO ;Sln(ykz){zy% [exp( 5k ) }

|: ;31—1(07 ZO,ann) - fsa_l(o7 20, 5Z17yn):|+
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e 1 Dy , Dy ,

+ ) 5 |exp|——uit) —exp(——upt)| -
nz::ly%—yi[ ( Po ) ( Po )
1 (0% «

{EDpyn |:fc (075217 07yk - yn) - fc (07521707yk + yn) -

—f2(621, 70, 021, Y — yn) + £ (021, 20,621, yx + yn) | —
1 _ _

—5 D £87H0,20,0, 5 — ) + 1870, 20,0 + y) -

—F7H0, 20,021, Yk — yn) — [0, 20,021, Y +y")”}

where

b
Xa,b,c,d) /z—c )¢ sin(zd) dz

f&a,bye,d) = [ (2 —¢)* cos(zd) dz

g\v

(ii) Substituting (3.3) and (3.5) into (4.8) we obtain the expression for the
averaged concentration field in the layer with the beta-distribution of sublayers

when a=1,3>1
! Dy
o (s eony = 1= Z_o - Z nr eXp(—p—yn ) sin(ynz) +
I(1+p5) v1 (20 = 621)° 6 220 z B-1
521 D,—/—(1—- = _
F(ﬂ) 021 20Dy { 3 ( 20)(Z0 dz1)P 7" +

+Zsm ykz){ [ fﬁ (- 2'070,52’1—Zoyyk)[l—exp(—%y%t)]—
k=1

+

o= - (55— 1)y exe(- k)] +
i [exp(——ykt) - exp(——yn )} [g—gynA(zo —0z)P —
N (5.3)
D

_prn |:fca(_207 07521 — 20, Yk — yn) - féx(—Z(),O, 521 — 20, Yk + yn)+
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+ [ (=20, =021, —20, Yk — Yn) — [ (—20, =021, —20, Y + yn)] —

1 _ _
—§D*{ P71(~20,0,021 — 20, Yk — Yn) + 2 (—20,0,821 — 20, Yk, + yn)]] -

o 1 — (—1)ktn D
D > A e (2 )

where
sin(yx — yn)d21  sin(yg +yn)dz1

Yk — Yn Yk + Yn

The distributions of the admixture concentration field in a stratified layer
is given in Fig.5 and Fig.6 for the particular cases of the probable beta-
distribution of sublayers. Numerical calculation was also done for the di-
mensionless quantities ¢ = z/2p and Fo = Dyt/z3. Then we assume
Dy = Di/Dy = 0.5, 6 = 621/% = 0.01, Fo = 107!, v; = 0.1. The
dashed line (curves a) marks the respective function for admixture concentra-
tion averaged over the ensemble of sublayers configurations with their beta-
distribution in the body for the case a > 1, § = 1 and calculated by (5.2). The
solid line (curves b) identifies the admixture concentration for the case o =1,
[ > 1 and calculated by the expression (5.3). The dimensionless coordinate &
has been assumed as abscissa, the ratio of the concentration to its value on
the upper body boundary c¢* has been assumed as ordinate. The distributions
of the admixture concentration are compared in Fig. 5a for different values of
the reduced diffusion coefficient D; = 0.2, 0.5, 0.8, 1.2, 1.5, curves 1-5, re-
spectively. The concentration distributions are presented for different values of
Fourier number Fo = 107%, 5- 1072, 1072, curves 1-3 respectively, in Fig. 5b.

A=

>0 { (@) ; )
a
3b
2b 1b 4 II"'-.
L5 - {\
NanE
1.0
% 34 ;,%?_\
?Eggé 24 ST
o=
0.5 E 5p |
~2:@ " 1k N
= ey o =
b Hﬁ 3a-._‘_"5--i‘§;1:a:_:?_“'“-a_‘:_utk
0 025 050 0.75 1.00 0 025 050  0.75  1.00
Fig. 5.

Fig. 6a illustrates the behaviour of the concentration field in dependence
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on the quantity of the volume fraction of sublayers vy = 0.2, 0.15, 0.1, 0.05,
0.01, curves 1-5, respectively. Dependence of the admixture concentration on
the sublayer thickness 0&; = 0.05, 0.02, 0.01, 0.008, curves 1-4, is shown in
Fig. 6b.

2.5 2.0

4b (®)
. ~
e h 30
1.5 2b \&
1.0 51
1.0 o,
os DN
0.5 ‘ ]
curves LZ/‘ -'-""'—\-
0 1.00 0 0.25 0.50 0.75 1.0

Fig. 6.

Numerical calculations show that for the case « > 1, § = 1 of the sublayer
beta-distribution, i.e. it is known a priori that there is the matrix near the
surface z = 0, and sublayers position is most probable near another layer
boundary z = 2y (see Fig.2), and the procedure of model homogenisation can
be used effectively. We also note that for such a probable sublayer distribution,
changes of the model parameters do not produce behaviour changes of the
admixture concentration field. And only the change of the diffusion coefficient
influences the quantitative magnitude of the admixture particles concentration
in the body (Fig. 5a).

An altogether different picture emerges in the case o« = 1, § > 1 of the
sublayer beta-distribution, i.e. the matrix is a priori on the boundary z = 2y
and sublayers position is the most probable near the boundary z = 0 (Fig. 2).
In this case, using of the homogenisation procedure is inefficient. Change of
the model parameters can essentially affect the behaviour of the concentra-
tion field. Thus, for example, if the diffusion coefficient of the matrix is larger
than one in the sublayer material then increase of the admixture particles
concentration occurs near the surface z = 0. And when the matrix diffusion
coefficient is less than one in sublayers, accumulation of the admixture partic-
les concentration occurs near another layer boundary z = z; (Fig.5a). The
value of the sublayer volume fraction (Fig. 6a) and its thickness (Fig. 6b) affect
essentially the concentration values, without changing the function behaviour.

Remark that the obtained expressions for the admixture concentration
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field averaged over the ensemble of phase configurations give the possibility to
determine also the dispersion of the concentration field by using the known for-
mula (Rytov et al., 1978). It is important, in particular, to verify the obtained
values of the averaged concentration.

So we can obtain the practically important information on the character
of the admixture distribution in a body using some a priori data concerning
their structure and physical properties.

10.

11.

12.
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Dyfuzja substancji domieszkowej w dwufazowej warstwie losowo
niejednorodnej

Rozwazona jest jednowymiarowa (pionowa) dyfuzja substancji domieszkowej w war-
stwie tworzonej przez losowo-niejednorodny, dwufazowy material warstwowy. Przy
konstruowaniu rozwiazan uwzgledniono zaréwno réznice wspélezynnikéw dyfuzji i ge-
stosci w réznych fazach, jak i nieciaglosci wspotczynnika dyfuzji na granicach faz.
Zgodnie z zaproponowanym podejéciem przy rozwiazaniu zagadnienia brzegowego
dyfuzji wplyw niejednorodnoéci materiatu sprowadza si¢ do rozpatrywania zrédet we-
wnetrznych masy, a same zagadnienie — do rownania catkowego, ktére z koleji rozwia-
zano metoda rozwiniecia w szereg Neymana. Uérednienie przyblizonego rozwiazania
po zbiorze konfiguracji faz, z ktérych zlozone jest cialo, wykonano dla réwnomier-
nego losowego rozkladu faz oraz dwoch szczegoéltowych przypadkow rozkladu beta.
Poréwnanie rozkladéw usrednionego pola koncentracji i koncentracji w jednorodnym
osrodku pokazalo potrzebe wziecia pod uwage zaréwno réznych dyfuzyjnych wtia-
$ciwoéci faz, jak i niecigglodci wspdlezynnika dyfuzji na granicach faz w warunkach
doskonalego kontaktu. Oprécz wyznaczono zalezno$é¢ usrednionej koncentracji sktad-
nika domieszkowego od wspotczynnikow dyfuzji, gestosci i objetosciowych udziatu faz
dla losowego rozktadu beta podwarstw.
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