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GROUND RESONANCE OF A HELICOPTER
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A method of the ground resonance phenomenon analysis is presented in
this paper. It has been carried out for a one-main rotor helicopter on
the basis of a complete set of nonlinear differential equations, known in
flight mechanics. It has been modified by taking into account the forces
and moments produced by a landing gear. Some results of numerical cal-
culations for two models of landing gear-ground interactions are shown.

Key words: ground resonance, nonlinear helicopter dynamics

1. Introduction

A helicopter is a rotorcraft, which during its motion can be subjected, to
various types of vibrations. For some of these vibrations there can appear self-
excited oscillations caused by the interaction between the lagging motion of the
rotor blades and other modes of the helicopter motion. The ground resonance
is a specific case of vibrations, where the inertia forces react with the fuselage
on its landing gear. These forces are caused by the out-of-phase lagging motion
of particular blades. Frequency of inertia forces depends on the frequency of
blades natural vibrations and on the angular velocity of the main rotor (Kuras
and Zerek, 1966; Lytwin et al., 1970; Bramwell, 1976; Dymitruk and Zerek,
1984, 1985; Bojanowski, 1989; Szrajer, 1989; Ormison, 1991; Zerek, 1989). The
out-of-phase lagging motion may be caused by blast of wind, damage of damper
etc. The inertia forces cause oscillations of the fuselage on its landing gear.
Oscillations of the fuselage produce a motion of the hub which, in turn, excites
the lagging motion. The ground resonance occurs only in the case when the
frequency of inertia forces and the fuselage frequencies are close to each other.
For some values of the angular velocity of the main rotor, the interactions
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between lagging motions of blades and motion of the fuselage are self-excited
and they are responsible for unstable behaviour of the helicopters. The ground
resonance was encountered soon after the introduction of helicopters. A lot of
accidents were caused by this phenomenon.

In a classical theory of the ground resonance for a one-main rotor helicop-
ter (Coleman and Feingold, 1958; Mil, 1967; Kuras and Zerek, 1966; Lytwin
et al., 1970; Bramwell, 1976; Dymitruk and Zerek, 1984, 1985; Bojanowski,
1989; Szrajer, 1989; Ormison, 1991; Zerek, 1989; Szabelski, 1995) only the
following motions are usually considered: lagging of the main rotor blades,
rolling of the fuselage about the longitudinal axis Oz and displacement of
its mass centre along the Oy, axis. This resonance is called the lateral ground
resonance. Sometimes the "longitudinal” resonance is also considered but it
is not so important as the lateral ground resonance. On the assumption that
the main rotor rotates in vacuum aerodynamic forces are not included into
consideration. Many other simplifications assumed too.

In the present paper a nonlinear dynamic model of a helicopter is descri-
bed. This model has been applied to investigation of the ground resonance
phenomenon. A specific modelling of the one-main rotor helicopter has been
implemented. ”Specific’ means that it has been adopted from flight mecha-
nics. Usually it is applied to the analysis of flight mechanics problers, e.g.,
manoeuvres with stall aerodynamics effects or flight under conditions of the
main rotor blade system failure. In this model no typical simplifications have
been taken into account.

In the analysis it is assumed that the helicopter fuselage is a rigid body and
the main rotor consists of four rigid blades which are considered separately.
Each blade moves about its horizontal flapping hinge and vertical lagging
hinge. The tail rotor has been treated as a hingeless and weightless source of
thrust, which equilibrates the drag moment and ensures directional control
of the helicopter. The latter is important when flight dynamics problems are
considered.

Additionally, for analysing the ground resonance phenomenon, landing gear
rigidity and damping have been taken into account.

2. Formulation of the problem

2.1. Systems of coordinates

To determine a mathematical model of the helicopter, the following systems
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of coordinates are assumed: Oz,y,z4 — earth-fixed moving coordinate system,

Ozryrzr, — fuselage-fixed system, Pz'"y"”z" — system connected with an ele-

ment of the main rotor hub with the origin at the centre of hub, Ppjzjylz] -
system connected with the fapping hinge Pp; of the :th blade with the origin
in this hinge, Py;z;y;z; — system connected with the :th blade of the main
rotor with the origin in the lagging hinge Py; of the blade.

All these frames of reference are shown in Fig.1 and they are presented in

details by Kowaleczko (1998).

Fig. 1. Physical model of the helicopter and coordinate systems

The systems Ozgygz, and Ozryrzx are interconnected by the angles of
yaw ¥, pitch @ and roll &.
The relation between them has the form

X =aX p (2.1)
The elements of @ matrix are
cos¥ cos @ sin ¥ cos © —siny¥
a=| cos¥Usin®sin@ —sin@Pcos® sin¥sindsinO + cos¥cos® sinPcosO

cosW cosPsin@ +sin¥sind sinWcosPsin®@ —cos¥sin®  cosPcos @

The systems Ozpyxzx and Py;z;y;2;, are interconnected by the angle @;,
which is azimuth of the ith blade measured from the tail boom in the direction
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of rotation of the main rotor, the angle f; is flapping of the ith blade about
the horizontal hinge and the angle (; is lagging of the th blade about the
vertical hinge. This relation has the form

X =7,Xy (2.2)

where %; =

=(cosy; cos P;sin (;—~siny; cos(;  siny;cosfisin {;+cosyy; cos(;  —sin f;sin
— cos; sin f3; — sin ; sin f; —cos f3;

fcos 1; cos B cos (;—sin; sin(;  —siny; cos f; cos (;+cosy;sin(;  sin B;cos

The analogous relation between Ozyygzr and Przlyiz; is

The matrix 7; is obtained from the matrix #; setting ¢; = 0.
The systems Ozyyrzr and Pz"y"2" are interconnected by the azimuth .

The relation has the form
X" = ﬁ;’xk (2.4)

The matrix 7, is obtained from the matrix %; setting ¢; =0 and §; = 0.

2.2. Determination of the equations of motion

The equations of motion have been derived on the basis of Newton’s second
law of dynamics. It has been applied separately to the fuselage, elements of
each blade, elements of each connector and elements of the hub. On the basis
of these equations the following equations have been obtained:

— Equations of translatory motion of the helicopter

kP

sdmi+y” [ Wi dm, +// W dm' = F+T+T, (2.5)
i= va1 1= LPH
where

My — fuselage mass

V. - velocity of the centre of fuselage mass

W;, W, W" - absolute accelerations of the ith blade element, the
ith connector element and the hub element, respec-
tively

F - vector of external forces acting on the fuselage

T, - thrust of tail rotor

T - vector of external forces acting on the rotor
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T = Z/qszz+Z/qsz +///dF” (2.6)

-—1PV 1= lPH

B - tip-loss factor, g;dr;, gidr}, dF" ~ vectors of external forces acting on ith
blade element, on sth connector element and on hub element, respectively.
— Equation of equilibrium of moments about the centre of fuselage mass

k PVz
Z/&xw dmz+Z/R'><W'dm +
Vi Hi

(2.7)
+// R,,XW,,dmI,:M+MT+MtT

where R;, R, R’ are vectors which determine the locations of ith blade
element, ith connector element and hub element relative to the centre of
fuselage mass, respectively (Fig.2)

. BR
MT_Z/Iquzdrz—kZ/R'xqzdr +// R’ x dF" (2.8)
i= va: ~1PH

is the moment of external forces about the centre of fuselage mass.

\ 29

Fig. 2. Determination of blade, connector and hub element positions
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— Equation describing the rotation of the main rotor around the axis of hub

B x Pvi
[Z /(lHi +lyi+ 1) x Widm; + ) /(lm + 1) x W; dmg]z” +
iZLP‘” izlPHi

(2.9)

+[///r// < W" dm”]z,, - ItMP‘f.‘Mrk]z”
1%

where M, is reaction moment of the fuselage which is under normal flow
conditions equal to the moment of power system. M p is moment of external
forces about the hub centre P. Its projection on Pz" is determined by the
relation

x BR

o 8 Tt o

t=lp,,

[27)

z

(2.10)
k Py
+ [Z / (lgs +15) X g, dri + ///r” X dF”] »
Hi v

i:lP

— Equation of equilibrium of moments of forces acting on a blade about the
flapping hinge Py

R Py;
[/(zw+ri) x W, dm; + / ri x W) dm;]y{ = [Mp,, +Mﬁ]y,_ (2.11)
Py; Py ' '

The lower index [],; indicates a projection on the axis Ppg;y; of this hinge.

[Mp,“] _ is external moment acting on the blade about the axis Pp;y; of the

Y
hinge Py
BR Py;
[Mpﬂi]y,. = [/ (ly; +1;) x g; dry + / T, X g, dr;.]y{ (2.12)
' Pyi Py '

and [Mg] , is the sum of damping and spring moments of flap hinge
Y

[Mﬁ] = —Cﬁﬂ.i - kﬁﬂi.

Y
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— Equation of equilibrium of the moments of forces acting on a blade about
the lagging hinge Py

R
{/ ri x Wi dmi]% = [Mp, + M N (2.13)
Py;

The lower index [-],, indicates a projection on the axis Py;z; of this hinge.
[MPVi] is the external moment acting on the blade about the axis Py;z; of
zi
the hinge Py
BR
I:MPvi]zi = [/ T: X q; d,ri]z,- (214)

Py,

and [MC] is the sum of damping and spring moments of lagging hinge

E2
[Mc]z. = "‘CCCi - kCCZ
These equations combined with kinematic relations

O =Qcosd — Rsind é =P+ (Qsin®+ RcosP)tan @
(2.15)
. 1
W:(Qsin¢+Rcosq§)m
and
dd_ﬁti _ 4 % oy (2.16)

have constituted the set of 18 + 2k nonlinear differential equations with pe-
riodic coefficients, where £ is the number of blades of the main rotor. They
can be expressed in the form

A, X)X + B(t,X) = f(t,X,S) (2.17)
where X is the vector of flight parameters
X = [U) V) Wa-Pa Qa Raw,ﬁ.ivéiaﬁhCiawaeﬂéawp_ i = 1, ak

and



72 Z.D2yGADLO, G.KOWALECZKO

U, VW ~ linear velocities of the centre of fuselage mass in the
coordinate system Ozryrzr fuselage fixed

P,Q,R - angular velocities of the fuselage in the same coordi-
nate system

6,9,¥ - pitch, roll and yaw angles of the fuselage, respectively

B; - ith blade flapping rotation about the horizontal
hinge Py

G — 4th blade lagging rotation about the vertical hinge Py

w — angular velocity of the main rotor

P ~ azimuth of the main rotor.

S is vector of control parameters

S = [907""33773’@3011_ or S = [00a01792)80t7‘]T

where
fo — angle of collective pitch of the main rotor
Ks — control angle in the longitudinal motion
s - control angle in the lateral motion
Dty - angle of collective pitch of the tail rotor
81,89 - angles of cyclic pitches.

The detailed way of determining Eq (2.17) was presented by Kowaleczko
(1998). For determination of matrix A and vector B there were established:
locations of all helicopter elements, absolute velocities of these elements and
their absolute accelerations.

For example for the i:th blade element we have by turns (Kowaleczko,
1998):

— Location vector R; (Fig.2)

R =h+1gi+1ly; +1; (2.18)
— Absolute velocity
Vi=V.+Vai+Vy (2.19)
where
V. ~ velocity of the centre of fuselage mass, V.= [U,V, W]
Vi - velocity resulting from the rotary motion of the fuselage,
Vai =2 xR,
V. - relative velocity produced by motions of blades about hinges

and by the main rotor angular velocity w,
Viiswx (g +lvi+1) + 0; x Qvi+ 1) +§ X1
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— Absolute accelerations determined

W, = dd—‘;z =Wt Wi+ Woi+Weori + Wiy (2.20)
where
W, — absolute acceleration of the centre of fuselage mass,
W.=(0V./0t)+2xV,
W -~ rotational acceleration, W.; =€ X R;
Wi - centripetal acceleration, Wp; = 2 x (2 x R;)
Weori - Coriolis acceleration, Weor; = 22 x Vo
W - relative acceleration,

Wo; = (dV,i/dt) = (OV1:/0t) + (w + B; + ;) x Vs

3. Forces and moments acting upon the helicopter

The vector f(t,X,8) on the right-hand side of Eq (2.17) determines the
external forces and moments acting on the helicopter and on its parts and
represents also the right-hand sides of Eqs (2.15) and (2.16). These forces and
moments may be divided into three groups: aerodynamic forces and moments;
gravitation forces and moments; forces and moments produced by the landing
gear. The aerodynamic and gravitation forces have the subscript o and g,
respectively. The landing gear forces and moments have the subscript lg. We

have
— Vector of external forces acting on the fuselage

F=F,+F,+Ty+ Py (3.1)
— Vector of external forces acting on the main rotor
T=T,+T, (3.2)

— Moment of external forces acting on the main rotor about the centre of

fuselage mass
Mr =Mr, + M7, + M), (3.3)

— Moment of external forces acting on the fuselage
M=M,+M,+ M, (3.4)
— Eexternal moment acting on the blades about the axis Pz” of shaft

MPZMPQ-{-MPQ (3.5)
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— External moment acting on the blade about the axis Pg;y! of hinge Ppy;
Mp,, =Mp, .o+ Mp,, (3.6)

— External moment acting on the blade about the axis Py;z; of hinge Py;
Mp,, =Mp, o+ Mp,, (3.7)

According to (2.5) and (2.7), the forces and moments of the tail rotor have
been shown. They have been indicated by subscript ¢r.

3.1. Mass forces and moments

The sum F,+T, represents the resultant of gravitational forces acting on
the helicopter. This vector is parallel to the axis Oz, and has the magnitude
M,g. Making use of the matrix @, Eq (2.1), one can calculate components of
this force in Ozpyrzg.

The moment of mass forces acting on the fuselage about the centre of its
mass is equal to zero

M;,=0 (3.8)

The moment of mass forces acting on the main rotor about the centre of

fuselage mass is, according to Eq (2.8), equal to

x BR

MTg_Z/R,xqudn*{-Z/Rlxqudr+// R"XdF" (3.9)

= 1PV1

where ¢,;dr;, q’gzdr and d are the vectors of elementary mass forces acting
on the helicopter elements.

The moment of mass forces about the axis Py;y; of ith flapping hinge is
determined by the relation

3

[MPHig]y, = —g(ly My + Sy cos i + 57) Ym0 (3.10)
1 j=1
where
My - mass of the main rotor blade
Sy~ static moment of the blade about the vertical hinge
Sy - static moment of the connector about the horizontal hinge.

The mass moment about the axis Py;y; of ith lagging hinge is equal to

3
[MPVig]yi = —gSu Z Y25 C¢53 (3.11)
i=1
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3.2. Aerodynamic forces and moments

Aerodynamic forces and moments are generated by the main rotor and
by the tail rotor and they also arise due to a flow around the fuselage and its
elements. In the case of ground resonance all the aerodynamic forces produced
by the flow around fuselage are neglected

F,=0 M, =0 (3.12)

All the aerodynamic forces and moments produced by the main rotor have
been obtained on the basis of Egs (2.6), (2.8), (2.10), (2.12) and (2.14) making
use of the blade element theory. Methodology of these calculations shown in
detail in Kowaleczko (1998).

The aerodynamic load of the blade g,; has the following components in
the coordinate system Py;x;v;2;

0; = [0, qyais zasl (3.13)

and the aerodynamic load of the connector has the following components in

the coordinate system Pp;ziy;z)

q:zi = [qu;aiaqgai] (314)

It has been assumed that the vector of aerodynamic forces acting on the
hub is equal to zero dF) =0.

3.3. Aerodynamic loads of the blade element
3.3.1.  General form of formulae for aerodynamic loads

An elementary aerodynamic force dR (given per unit of the blade span)
occurs as an effect of the flow around the blade elements. For further conside-
rations only components of this force in the Py ;y;2; plane have been essential.
In the coordinate system connected with the projection of local vector of the
air velocity V on the Py;y;2; plane the components of the force dR are

v? 2
sza = Cza£'2_b(7") sza == Cza'e;/_b(r) (3.15)

where 6(r) is an aerodynamic chord of the blade airfoil.
However, the components of this force in the coordinate system Py;xz;y;2;
(see Fig.3), have been determined by the following relations

Gzai = AP, cos & + dPy, sino”
(3.16)

Qyai = APgq cos o — dP,, sina”
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Fig. 3. Aerodynamic loads acting on the main rotor blade element

where o is the inflow angle. It is equal to

* VZ
o = arctan Vy (3.17)
The local vector V of the air stream flowing around the blade element
is equal to the sum of absolute velocity V; (2.19) and vector of induced
velocity ;p4. In the presented considerations it has been assumed that the
induced velocity is a function of the blade radius and azimuth. This velocity,
for each airfoil, has been determined by means of the Biot-Savart law - four
separated strings of vortex have been investigated. The method of determining
this velocity is not shown in this paper. For details the Reader is referred to
Kowaleczko (1998).
According to the above considerations

V =Vi+vina(mi + lvi +1i,9:) (3.18)

Vy and V, are the local velocity vector components.

The angle ¢ shown in Fig.3 is the blade pitch angle. It is determined by:
— Angle of collective pitch 6y of the main rotor, and cyclic angles #; and 6
depending on the swash plate position
— Flapping angle f; about the horizontal hinge (the effect of compensation
of flapping determined by the compensation coefficient x)
— Geometric torsion of blade

@r(7i) = brri (3.19)
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Finally we have
@ = By — 6, sint; — O3 cosp; + kB; + 0,7; (3.20)

The aerodynamic coefficients used in Eqs (3.15) depend on the angle of
attack of the blade airfoil and on the Mach number

Cro = za(aa Ma) Cra = za(aa Ma) (3'21)

The angle of attack of the blade airfoil « (the section incidence), equal to (see
Fig.3)
a=ao" "+ (3.22)

The aerodynamic static characteristics of the NACA 23012 airfoil for Mach
numbers from 0.3 to 0.8 for the full range of angles of attack have been assumed
after Mil’ (1967). They are shown in Fig.4 and Fig.5.
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Fig. 4. Lift coefficient of the airfoil NACA 23012
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Fig. 5. Drag coefficient of the airfoil NACA 23012
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3.8.2. Method of taking into account nonstationary effects

Specific flow conditions of the main rotor blades, even in a steady flight
(motion about hinges, changeability of the air velocity flowing around airfoils
depending on the blade azimuth, reverse flow region) cause that the section
incidence a changes within a wide range. The critical angle of attack is often
dynamically exceeded. This phenomenon is particularly vigible for ”retreating”
blades near to the airscrew hub axis of rotation. The region within which the
angle of stall is exceeded becomes larger when the speed of flight increases.
Because of changes of the blade azimuth the sweep angle of the stream A
changes also. This is a direct effect of the yawed component V, of the airflow
velocity V along the blade lengthwise axis. This component can be determined
in the same way as the components V; and V;. One obtains

Ve = (U + Qzri — Ryri) + mas(V + Rags — Pzy;) +

(3.23)
+713i (W + Pygi — Qi) — w(ly + ly cos ;) sin; + [UmdL_
The sweep angle A i3 determined by the formula (see Fig.6)
V.
A = arctan —— 3.24
arctan - (3.24)

yz

where V,, = ,/V24+ V2.

According to the above description, it is necessary to include into conside-
ration nonstationary aerodynamics for aerodynamic forces acting on blades to
be determined correctly. The following way of calculating (according to Harris
and Tarzanin, 1970; Tarzanin, 1971; Szumanski, 1986; Kowaleczko, 1998) has
been applied.

The initial data are: static angle of attack ag = a given by (3.17), Mach
number Ma and reduced frequency determined as (Tarzanin, 1971)

k= b(r)w _ b(r)w

2V o VEHVR+ VR
The static aerodynamic characteristics of the blade airfoil, which are shown in
Fig.4 and Fig.5, are also applied. The scheme of further calculations is depicted
in Fig.7.
The methodology of these calculations is as follows:
— The dynamic angle of attack of the airfoil is determined

ab(r)
2V

(3.25)

Cayn = ot + Avayn = 0t — by || 2| sgnx (3.26)
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Fig. 6. Determination of the sweep angle A of the air stream flowing around the
blade element

where k is an experimental constant of the airfoil.
— From the static lift characteristic one determines the value Cj,
Cra(0gyn, Ma). On the basis of this value tangent of a slope for the line drawn
from the origin of coordinates to the point (aays,Cy,,) is calculated.

Simultaneously, the correction for the effect of the sweep A on the lift is
taken into account

Ciat
ap = — 2t (3.27)
Qgyn €OS A

— The equivalent angle of attack is calculated

d2<p

Qeq = [F(k)ast+<—§+G(k))Z—z+2<z—do)F(k) %—kQ(do—%)d—w] (3.28)
where

F(k),G(k) - Theodorsen functions depending on the reduced fre-
quency. These functions are shown in Fig.7. They are
defined by means of Bessel functions

do — relative location of the pitch axis (percent of chord aft
of the leading edge), see Fig.6, dy = do/b(r)

® - local pitch angle of blade element (3.20) depending on

the azimuth ;.
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Fig. 7. Determination of the lift coefficient under dynamic stall conditions

— The lift and drag coefficients are calculated

G,
C. = min{ap, 2 Jag, Ca = CoralCrtyn, Ma) (3.29)

— The maximum value of coefficient C), is limited and it satisfies the following
relation

) B (Crt)meax + (3 - (Czat)ma.x) 2003(7") for }%(T)‘ < 0.05
7 Jmax , for ‘ab‘y)‘ S 0.05

(3.30)
where (C,, )max 18 the maximum value of the lift coefficient determined for a
fixed Mach number with the use of static characteristic C,,(a, Ma).

In the course of calculations the following limitations have been considered:

e The above shown way of taking into account of nonstationary effects
might be applied only in a limited range of angles of attack. This range
is not clearly stated in the analysed papers. In the present paper the
following limits have been assumed

—50° < ag < 50° (3.31)
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Fig. 8. Theodorsen functions versus 1/k

e On the basis of analysed literature one can not determine the maximum
value of the sweep angle A which gives correct value for expression
(3.27). In the presented considerations this formula was employed for
|A| < 60°. For higher absolute values of the sweep angles, the following
relation was used R

ap = G (3.32)
Qdyn

e Under dynamic stall conditions the minimal value of coefficient C, is
not specified anywhere in the analysed literature for negative angles of
attack. In this paper, likewise Eq (3.30), it was assumed that

(Cz” )min + (2 + (Czn)min) 20_0;/{)@ for JQI;EYT) ‘ < 005
(Cz)min = .
—2 for ‘%(T)\ > 0.05

(3.33)
where (C,,,)min i8 the minimal value of the lift coefficient for a specified
Mach number determined from the static characteristic.

Examples of courses of the lift and drag coefficients, with dynamic stall
effects taken into consideration, are presented in Fig.9 and Fig.10.

3.4. Landing gear forces and moments

When analysing the ground resonance it is necessary to take into account
the forces and moments produced by a landing gear. It has been assumed

6 — Mechanika Teoretyczna
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that the landing gear consists of three wheels. Configuration of the landing
gear is shown in Fig.1. For each wheel its rigidity, damping and position have
been determined separately. Two models of landing gear forces have been used
(Fig.11). The first one, where relations between forces and displacement and
velocity are linear

Plgi = Pki + P, (334)

and the second model where these relations are nonlinear — in the case where
there is no contact between the wheel and ground. In this case all forces and
moments produced by this wheel are equal to zero

Plgi:

Py + P, for Ah; <0
(3.35)

for Ah; 20
where 7 is the number of wheel (i =1,2,3) and Ah; is the distance between

the wheel and the ground.
The components of the force Pjq; produced by the ith wheel are equal to

Xigi = —kgildz; — coii
Yigi = —kyi Ay; — cyii (3.36)
Zigi = —kaiAzi — i
where
kziy kyiy ki — sgtiffness coefficients of the ith wheel
Cziy Cyiy Czi - damping coefficients of the ith wheel
Az;, Ay;, Az;  —  displacements of the ”contact point” determined in

the system Ozpygzi.
The moment produced by the ith wheel is equal to

My =Ry x Py, (3.37)

where the vector Ry ; = (g4, Uig i; 21 ;) determines the location of ith wheel
relative to the centre of fuselage mass. The moment M;,; has the following
components

Lig; = Z1giy19i ~ Yigizig i
My i = Xigizigi — Zigizgi (3.38)
Niygi =Yigitigi — Xigiligi
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Finally, the forces end moments produced by the landing gear are equal to

3 3 3
Xig =Y Xig Yo=Y Ygi Zig =Y Zig;

i = ! (3.39)
Lig=7Y Liy; My, =73 My, Nig=> Nyg;

3.5. Thrust of the tail rotor

As it has been stated at the beginning, the tail rotor is treated as the
hingeless and weightless source of thrust which equilibrates the drag moment
and ensures (in flight dynamics problems) directional control of the helicopter.
According to this assumption, the thrust of the tail rotor has been calculated
on the basis of the initial value of drag moment Mpy (Eq (2.16)). Making use
of this value and the values of coordinates z; and 2z (yir = 0), determining
the location of the tail rotor relative to the centre of fuselage mass one obtains:
— Thrust of the tail rotor

M
Ty = —22 (3.40)
Ztr
— Rolling and yawing moments produced by the tail rotor
Ly = _Ttrztr Ny = ~Tyxyr (3.41)

3.6. Final formulae for forces and moments
Summarising, the final formulae for the right-hand side of the set (2.17)
(elements of vector f(t,X,S)) can be written in the following form
fi1=Fp =Toq, + Xg+ Xy
fo=Fy, =Toy, + Yy + Yig + Tiy
fa=F, =Ty + 2,
fa =My, = Mrog, + L1y + Lig+ Ly
fs = My, = Mrqy, + My + My + M),
f6 = Ny, = Mg, + Njg + Niy
fr= [MPa + Mp, +Mrk]z,,
fryi = [MPH,-a +Mp,,+ Mﬂ]

(3.42)

Y
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frk+i = [MPwa +Mp, 4+ M(]

Zi
f7+2lc+i = ﬁi f7+4lc+1 =w

fr43k4s = Ci friak+e = Qcosd — Rsind
friaks3 = P+ (Qsin® + Rcos P) tan O

fr4ak4+a = (@sin® + RcosP)/ cos @

Remark: In further analysis it is assumed that the angular velocity of the
main rotor w is constant. This assumption is reasonable if the angular
velocity regulator is installed at the helicopter. It allows one to omit dy-
namics of engine. Also the seventh equation of the set (2.17) is neglected.

4. Solution to the problem

Eqs (2.17) have been applied to numerical simulations of the ground re-
sonance phenomenon for the Polish ”Sokol” helicopter. Some results of com-
putation are presented in this paper. For all the cases presented, the initial
position of the helicopter has been disturbed (particularly, the position of the
second blade). The ground resonance is determined by the main rotor angular
velocity, and therefore the angular velocity has been changed to study this
phenomenon.

In the first set of figures (Fig.12) some selected parameters of the helicopter
motion are shown. They have been determined for the nominal angular velocity
wo of the main rotor. One can see that all courses are damped. Of course, this
means that helicopter is stable and no instability can occur. It is not important
which model of the landing gear has been employed in numerical calculations.
Because only the collective pitch of the main rotor #y is not equal to zero, it
is seen that damped oscillations of blades occur. Trajectory of the centre of
fuselage mass moves to a stable point.

In Fig.13 the results of calculation of the ground resonance phenomenon are
presented. It is known that the ground resonance consists of coupled motions:
lagging of the main rotor blades, rolling of the fuselage and displacement of
its mass centre along the lateral Oy, axis. One can name this resonance as
the lateral ground resonance. Sometimes the ”longitudinal” resonance is also
considered but it is not so important as the lateral ground resonance.

In the case presented in Fig.13 the linear model of landing gear has been
applied. One can observe that all parameters increase but the values of pa-
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rameters connected with lateral motions are greater than the parameters of
describing longitudinal motion. Analysing motions of the second blade we can
observe that the lagging angle oscillates with an increasing amplitude. This
agrees with the classical theory of ground resonance. From the presented figu-
res we can also see that the flapping angle of the blade is oscillating. Detailed
analysis of this phenomenon allows us to draw a conclusion that this is due
to cyclic changes of the Coriolis forces and aerodynamic forces acting on the
blade. These forces change the flapping moment, which causes that the blade
rotates around the flapping hinge.

Very interesting results have been obtained in the case of non-linear model
of landing gear (Fig.14). In this instance the effects of nonlinearity are shown
- at first oscillations are increasing and after that the amplitude of oscillations
stabilises within a certain range. Detailed analysis shows that in this case the
periods of oscillations increase. This takes place because average stiffness of
the landing gear for one period decreases. It is presented in Fig.15.

o
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<
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Fig. 15. Angular rolling velocity P(t) - linear and nonlinear cases

If we make a comparison of the results of the classical theory of ground
resonance with our results, it should be stated that the first theory, though
very simplified, gives a correct physical picture of the ground resonance phe-
nomenon.

In our model we could take into account a nonlinear dynamic model of a
helicopter which enabled us to study a three dimensional ground resonance
theory, where aerodynamic forces acting on lagging and flapping rotor blades
have been taken into account together with linear or nonlinear landing gear
models.

5. Concluding remarks

The paper presents the complete set of nonlinear differential equations
which describes the ground resonance dynamics of the one-main rotor heli-
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copter. This set has enabled us to study the helicopter fuselage motion and
motions all the blades of the main rotor. Numerical analysis of the system dy-
namics has been performed and some results are given in the paper too. These
results show time histories for various helicopter motion parameters. Basing
on the obtained results we can conclude that the nonlinear model of the one-
main rotor helicopter enables more precise study of physical phenomena which
occur in reality. Making use of the presented model a further more detailed
analysis of the ground resonance will be performed.
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Naziemny rezonans $miglowca

Streszczenie

W pracy przedstawiono metode numerycznej analizy zjawiska rezonansu naziem-
nego. Analize t3 wykonano wykorzystujac model matematyczny $miglowca jednowir-
nikowego, w ktérym uwzgledniono ruch poszczegdlnych lopat wirnika noénego wzgle-
dem ich przegub6éw. Model ten zostal zaadoptowany z mechaniki lotu. Zmodyfiko-
wano go wykorzystujac do wyznaczenia sil 1 momentéw od podwozia dwa modele:
z uwzglednieniem oraz bez uwzglednienia odrywania sie k6l od podloza.
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