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The paper aims at the analysis of damage mechanisms and its influence on
heat flow in a mid-thick Reissner’s plate. Adapting the concept of thermo-
damage coupling in continuum damage mechanics, the following two 2D co-
upled problems are formulated: heat transfer through nonhomogeneous partly
damaged material and Reissner’s membrane-plate made of aluminium alloy,
subjected to brittle damage resulting from mechanical and thermal loadings.
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1. Introduction

The classical theory of thin plate subjected to mechanical and 1D thermal
field loads is applied even to the complicated case of piston analysis (cf Lipka,
1970). Such a simplified theory may be treated only as a first approximation
of the problem. In a real structure neither the plate thickness is thin nor the
temperature field is 1D, so the theory to be more accurate and closer to reality
bases on the mid-thick plate (cf Reissner, 1945) and the continuum damage
mechanics method including thermo-damage coupling effects.

2. Basic equations

2.1. Heat transfer in a damaged material

In the present paper, an extension of the Tanigawa concept (cf Tanigawa,
1995) originally derived for a time-independent nonhomogeneous but isotro-



272 A .GANCZARSKI, J.SKRZYPEK

pic material, to cover time-dependent partly damaged materials is presented.
Namely, the coefficient of thermal conductivity A of heat flux through par-
tially damaged material in the homogeneous quasi-stationary Fourier equation
(slow temperature field change following damage) is assumed to be the linear
function of scalar damage parameter D (cf Ganczarski and Skrzypek, 1995,
1997; Skrzypek and Ganczarski, 1998)

div(AgradT) =0 A= X1 - D) (2.1)

However, the effect of damage on the thermal expansion coefficient « is not
taken into account. This problem was discussed by Ganczarski (1999). Addi-
tionally the heat transfer between fluid (gas) and solid (plate), governed by
the Newton law of free convection, is assumed to be affected by damage.

2.2. Reissner’s membrane-plate

Assuming that total strains are decomposed into elastic, creep and thermal
components: € = €% + £° + €', we formulate an axisymmetric problem of
the Reissner-Mindlin moderate thickness plate theory where the straight and
normal segment to the mid-plane before deformation remains straight, but not
necessarily normal. Additionally, the stress component o, is assumed in the

form _3qr2 2z, 1/2z\3
=3l *3li) ] 2.2)

satisfying the following conditions

{ ~q for z=—h/2
oy =

(2.3)
0 for z="h/2

at the upper and lower surfaces of the plate, respectively. The equations of

equilibrium of the stress resultants, when geometrical changes are taken into

account, together with the average values of displacements (cf Love, 1944)

h/2
3 0 22\3
vogi | - ()
—h/2
(2.4)
h/2 h/2
Ny NEY
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and the following definitions of the membrane and bending stiffnesses

Eh ER3
B=10 P=ia—wy (2:5)

and the generalized thermal and creep forces

h/2

Nth E 1
[Mth}*l—y H[Z}dz
—h)2
e 5 h)2 ,
/19 _ C
IiM}/’d = h /(Eg/,&‘f'l/ff,&/,r) [ Z:l dZ (26)
—h/2
h)2
3¢ 22\2
C— —_— — [
Q“/2h[1 (h”dz
—h/2

where § =T — T,y is a difference between the actual and reference tempe-
ratures, lead to the simplified Karman system extended to cover the case of
visco-elastic plate of moderate thickness (Ganczarski et al., 1997)

—for t=0

2, %Y_ v hdg dN*
B(VU 7"2)_(1—y)2d7'+ dr
e (2.7)
d*w 1 dw h?2 —v
4 — 2 2 psth
DV:w N,-d2 19;% q—i—O].— Viq—-V°M
—for t>0
o, WY _ v hdj dN* dNf Nf-Nj
B<V“ r2>_(1—y)2d'r+ & T T r 08)
. d?wy ldwy: . h?22—-v_. .
vt (v ) - (W15 <o i v

dQ°  d*MS  1d(2ME — M)

DV? ,
+DV dr dr? T dr

where the following additional assumptions resulting from cylindrical symme-
try are true: Mpy = 0, Ny = 0, and only the fundamental mode &k = 0
is considered. The underlined terms of the right-hand side of Eqs (2.7) and
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(2.8) are characteristic for Reissner’s plate theory and may be neglected when
either h — 0 (classical Love-Kirchhoff plate theory) or ¢ = const. In the
general theory of rectangular Reissner’s plate the bending state is described
by the system of two equations: biharmonic one represents deflection w and
the harmonic one describes equilibrium of the shear forces @, and @,. Ho-
wever, in the case of circular plates revealing axisymmetric deformation when
the shear state is statically determined @ = —¢r/2 and no edge effect is
observed for all types of boundary conditions (cf Selman et al., 1990), the
aforementioned harmonic equation may not be taken into account. Deriving
system of equations (2.7) and (2.8) the simplified assumption has been made
that the membrane and bending stiffnesses, as defined by Egs (2.5)), are not
affected by damage. This formulation leads to certain inconsistency. Namely,
the completely damaged zone is free from mechanical stress and heat flux, but
it must be able to bear the thermal stresses that result from a residual tem-
perature field. A consistent formulation, where damage affects not only the
time hardening hypothesis Eq (2.12), and coefficient of thermal conductivity
Eq (2.1), but also the Young modulus in definitions of both stiffnesses Eqs
(2.5), requires extension of the mechanical state equations (2.7) and (2.8) in a
similar way as previously proposed by Skrzypek and Ganczarski (1999) for the
Love-Kirchhoff plate of variable thickness. Hereinafter, when the above effect
is neglected, both the membrane (necessary in view of temperature inhomo-
geneity along r) and the bending states contribute to the stress state which
fulfils relations

—for t=20
dw 61+v
@*—E—EE}L qr q = const
. d*w _ 1 dw
o dr? M=y dr
du u
/\-,- = ?i; /\19 = ";'
M, =D Mg e 2.9
)9 = (Kr/19+VKfr/19)—T61_V_ (2.9)
v h
Nepg =By +vhepg) = 7= 54~ N
12 1 Fo
Or/p = ﬁ(Mr/ﬁ + Mth)z + E(Nr/g + Nth) - mﬁ
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—for t>0

dw

. _du
® dT+Q

- . : dQ° ¢
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2.3. Constitutive equations

The essence of thermo-damage coupling results from the reciprocal co-
upling between the processes of creep, microcrack growth and change of ther-
mal field Eq (2.1), which are described by the similarity of deviators based on
the flow theory

. 3¢,
Elf:l 20_:;'; kl (211)
the time hardening hypothesis
o™ 1
G = G L Tl (2.12)

and Kachanov’s type isotropic brittle rupture law (cf Skrzypek and Ganczar-

ski, 1999)
dD x(0) \n
= - 2.13

dt C(l - D) ( )
respectively. In Eq (2.13) the state of damage is measured by the scalar internal
variable D, whereas damage growth is controlled by the damage equivalent
stress x(o) according to Hayhurst. For the aluminium alloy x(o) = oefs 18
applicable (Hayhurst, 1999). In the above formulae the following definitions

hold
3 .c 2., ..
Oeff = §3k13kl Eeff = §eklekl (2.14)
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3. Formulation of boundary problems

3.1. Thermal boundary problem

Fig. 1. Temperature front propagation (a) and schematic heat flow through plate (b)

The temperature distribution in a medium over the upper plate surface is
not uniform. Assuming spherical symmetry of the temperature front propaga-
tion (Fig.1a) we find that the temperature distribution of the gas neighbouring
the upper plate surface reveals cylindrical symmetry and is given by the cosine
function T, cos ¢, where T}, stands for the gas temperature neighbouring the
central upper point of the plate, whereas ¢ denotes the angle between normal
and radial directions starting form center of the temperature front (heat so-
urce). On the other hand, typical heat flux through the plate is presented in
Fig.1b. The whole heat flux which enters the upper plate surface goes towards
the sidewall, whereas the lower surface is subject to the adiabatic conditions.
The above comments allow one to formulate the mixed and Neumann integral
type boundary conditions for Eq (2.1) in the following form (¢max = 7/3)
(Moon and Spencer, 1961)

or
- - =—-X(1 = D)— f:
B(1 = D)(Ty, - T) ret)2) Aol 27l upper surface
or
il = lower surface
0z (r,h/2)
%%s(o,z) =0 axis of symmetry
+h/2
J (- D)G—T = sidewall
b2 Or |(R,2)

(3.1)
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where [ denotes the coefficient of free convection between the gas and upper
surface of the plate. The heat flux, that enters the top surface of the plate
and is transfered through the sidewall is kept constant throughout the process
(C = const).

3.2. Mechanical boundary value problem

—
|
0 r
Iz
—

Fig. 2. Simply supported Reissner’s plate

The initial and boundary conditions (Fig.2) for the simply supported plate
subject to the uniform constant pressure p are as follows

ne(R) = 0 fir(R) = 0

my(R) =0 o e (R) =0

w(0) = 0 for t= a(0) = 0 for t>0 (3.2)
w(R) =0 w(R) =0

4. Numerical algorithm for the creep-damage problem

To solve the initial-boundary problem by FDM, we discretize time by in-
serting [V time intervals Atg, where ty = 0, Aty =t — tx_1 and ty =1
(macrocrack initiation) (cf Skrzypek and Ganczarski, 1999). Hence, the initial-
boundary problem is reduced to a sequence of quasistatic boundary value pro-
blems, the solution of which determines unknown functions at a given time
t, g, T(r,z,ty) = THrz2), u(rty) = u*(r), wlrt) = wk(r), etc.
At each time step the Runge-Kutta II method is applied to yield updated
functions T*, u*, w*, etc. To account for primary and tertiary creep regimes,
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a dynamically controlled time step Aty is required, the length of which is
defined by the bounded maximum damage increment

ADlower ¢ max{[Dk(r, z) — D¥ (7, z)]Atk} < ADvPPeT (4.1)

T,Z

Discretizing also the radial and axial coordinates 7;, 2;, by inserting the
equal mesh Ar = 7; —1,_1, Az = z; — 2;_), we rewrite the equations of
thermal state (2.1) and mechanical state Eqs (2.7) and (2.8) for a time step
tx in terms of FDM in respect of 7; and z;, respectively. Applying a stage
algorithm, first to the damage [D]; = 0, the equation of thermal problem (2.1)
with the boundary conditions Eqs (3.1) is solved by using the SOR method
(cf Press et al., 1993), and the initial ”elastic” temperature [T¢;; is found.
Then, the system of equations of mechanical state Eqgs (2.7) and (2.8) with
the boundary conditions (3.2) is numerically solved, and elastic displacements
are determined [uf,w¢];. Next, the program enters the creep damage loop
which requires the effective stress intensity, the components of the damage and
strain rates [aeff,D,éc]j, Egs (2.11) + (2.13), and the generalized inelastic
forces [N" Mth, TC/I,,MTCN,QC]J', Egs (2.6), are found. Repeating again the
stage algorithm a solution of discretized thermo-creep-damage problem, rates
of temperature |[T];; and displacements [g,1); are computed. In the next
time step the "new” temperature [T];; and displacements [u,w]; are found,
and the process is continued until the maximum value of damage parameter
reaches the critical level max|[D]; = 1.

5. Results

5.1. Material data

The numerical results presented in this paper concern a plate made of Al-
Mg-Si alloy of the following thermo-mechanical properties at the temperature
of 483K (cf Litewka (1989): Ty, = 300°C, Ty = 0°C, E = 60.06 GPa,
0g = 149.5MPa, v = 0.3, a =2.5-1073, Xy =203 W/m°C, B = 15 W/m?°C,
m="17.0, n=237, C=8.44-10"17" MPa~"h"!. The characteristic parameters
of the plate (thickness compared to diameter) and magnitude of the pressure
are: h/R =0.2, p=6.7-10"30y, respectively.
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6. Example

The effective stress type sensitivity to damage of aluminium alloy and com-
bined thermo-mechanical loads cause that the first macrocrack appears at the
central upper plate surface which is a region of compressive stress concentra-
tion (Fig.3).
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Fig. 3. Damage distribution in Reissner’s plate under thermo-mechanical loadings

Damage accumulation causes substantial decrease in the coefficient of ther-
mal conductivity A = Ao(1 — D) and consequently decrease in temperature
(Fig.4) and local heat flux (Fig.5). As the total heat flux transferring through
the sidewall is constant the local heat flux in an undamaged region at the up-
per surface increases in order to satisfy the global condition of thermal balance
(Fig.6). The region of most advanced damage becomes unable to conduct any
heat (see Fig.h and Fig.6).

However, in the model under consideration, where mechanical moduli are

not affected by damage, the total effective stress in the most damaged zone
(top) that results from both the bending compression and the thermal com-
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Fig. 5. Heat flux g = —Xg(1 — D)gradT: (a) in the case of ¢t =0, (b) at the
moment of rupture
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pression is not released to zero, but remains almost unchanged, whereas in less
damaged tensile zone (bottom) the effective stress at ¢ is about three times
as high as at the beginning ¢ =0, Fig.7.

7. Conclusions

e Heat flux through the damaged material is sensitive to a current damage

state of the material. To describe this effect in the most general case
both the tensor of thermal conductivity A and the tensor of thermal
expansion @ in the Fourier heat flux equation and mechanical state
equations, respectively, should be functions of the damage tensor D.
However, in the case of aluminium alloy, when the damage growth is
controlled by the effective stress oefy, the scalar damage parameter D
is applicable and consequently the material remains isotropic during the
creep-damage process.

In the model under consideration, a completely damaged particle is free
from the heat flux, but it has to carry non-zero stress resulting from the
residual temperature field. To avoid this inconsistency it is necessary to
incorporate the effect of damage on the mechanical constitutive moduli
E, and consequently the damage influence on the membrane and bending
stiffnesses B and D. In this more consistent formulation some additional
terms associated with derivatives of stiffnesses, as functions of damage
parameter D, with respect to both radial co-ordinate r and time ¢
must by taken into account. The approach mentioned above will be a
subject of separate publication.

In the example of Reissner’s plate considered, significant stress redistri-
bution accompanied by a moderate temperature change is observed.

In the proposed model, a temperature jump at the fluid/solid interface
is used to approximate the real heat exchange conditions. To describe
precisely the fluid-solid interaction it is suggested to extend the model by
taking into account the boundary layer effect as well as an environmental
corrosion.
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Wplyw uszkodzen na pola termo-mechaniczne w ptlycie éredniej grubosci

Streszczenie

Przedmiotem pracy jest analiza mechanizméw rozwoju uszkodzeni i ich wplyw na
przeplyw ciepla w plycie Reissner’a éredniej grubosci. Stosujac sprzezenie efektéw ter-
micznych i uszkodzen w kontynualnej mechanice zniszczenia rozpatruje sie nastepujace
dwuwymiarowe zagadnienia pél sprzezonych: transport ciepla w niejednorodnej, cze-
§ciowo uszkodzonej, aluminiowej plyto-tarczy typu Reissner’a podlegajacej kruchemu
uszkodzeniu w warunkach zlozonych obcigzen termo-mechanicznych.

Manuscript received October 27, 1999; accepted for print December 14, 1999





