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We discuss the problem of a contact of two parallel elastic cylinders
heated to different temperatures. The purpose of our investigation is to
derive the conditions which have to be satisfied so that the solution to the
thermoelastic problem is physically meaningfull (i.e. the paradox of ”the
cooled cylinder”can be avoided). Pertinent formulae have been derived
for relations between the contact pressure, geometrical characteristics of
the solids and distributions of heat flux over the contacting region. The
paper has been illustrated by an example and diagrams.
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1. Introduction

The contact problems of elastic solids in the field of temperature have been
atracting many researchers due to the technological importance and theore-
tical interest. In the paper by George and Sneddon (1963), presumably the
first theoretical paper dealing with the contact problems with the heat fluxes
taken into account, the authors derived the solutions for axisymmetric shapes
of the heated, rigid punches. The boundary value problem satisfied all mathe-
matical requirements of the classical thermoelasticity, and consequently one
might think that the method of solution was capable of solving problems for
"any” sufficiently smooth surfaces of rigid punches. Many papers have been
written in the field of contact problems of thermoelasticity here we mention
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the monographs: Shlykov and Galin (1963), Shlykov et al. (1977), Nowacki and
Olesiak (1991), and original papers: Barber (1973), (1978); Barber and Comni-
nou (1989); Borodachev (1962); Comninou and Barber (1984); Comninou and
Dundurs (1979); Generalov et al. (1976); George and Sneddon (1963); Gla-
dwell et al. (1983); Kulchytsky-Zhyhailo et al. (1999). We cite the theoretical
papers of arising in the mixed boundary value problems of thermoelasticity.
Here we do not discuss the tribological approach, problems of friction and
dynamical contacts.

Barber (1978) was the first who pointed out that the classical solution,
though mathematically well posed, did not lead to a physically sound solution
in the case when the flux of heat was taken in the opposite sense along the nor-
mal direction, i.e. when a rigid, in particular case spherical, punch was cooled
down. The problem belongs to one of the paradoxes in the mixed boundary
value problems of the theory of elasticity (more precisely thermoelasticity).
Barber called it ”"the paradox of the cooled sphere”. The original Barber’s
paper referred to a rigid solid of revolution (a sphere) indented into an elastic
semi-space. Since then a number of problems have been discussed taking into
account the elastic properties of both the solids in contact. In order to avoid
the paradox new, non-classical, models of contact have been devised. To find
the limits of the validity of the classical model belongs to important questions
considered.

In paper by Kulchytsky et al. (1999) we discussed the case of the axial sym-
metry while in this paper the case of plane strains. We discuss the stationary
problems only. In the case of nonstationary problems it is difficult to find the
corresponding relations analytically. Consequently a more general discussions
is awkward.

Fig. 1. Two elastic cylinders in contact
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The paradox of the cooled sphere, in this paper becomes the paradox of
the cooled cylinder, if we we think of an elastic cylinder pressed into an elastic
semi-space. Here however we discuss a more complicated case of two parallel
elastic cylinders in contact induced by pressure in the presence of heat fluxes.
The paradox means that we obtain from the theoretical solution the regions of
tensile tractions, and/or the zones of overlapping materials. Both contradic-
ting the physical meaning of the solution. Barber introduced (compare Barber
and Comninou, 1989) the condition in the form of ”non-tensile inequality”
which had to be fulfilled in order to obtain only non-tensile tractions in the
contact region. It depends on the direction (more precisely on its sense) of the
heat flux flowing into the body of larger distortivity. The conclusion was that
in such cases the model of the classical thermoelasticity had to be modified.
It could be done in a number of ways. One can assume that the flux of heat
depends on the contact pressure, or that the region of the thermal boundary
conditions does not coincide with that of the mechanical boundary conditions.
Likewise the assumption that the mechanical and/or thermal coefficients de-
pend on the temperature can change the distribution of contact tractions and
the theoretically possible regions of tensile surface forces. All these problems
are discussed under the assumption that the contact between the solids is
frictionless.

Comninou and Barber (1984) and Comninou and Dundurs (1979) found
that if heat flew into the solid body with the smaller distortivity no direct
transition from the perfect contact to separation was possible, for the solu-
tions to have a physical meaning, and that an intervening zone of imperfect
contact had to exist. In the paper Comninou and Barber (1984) considered the
thermoelastic Hertzian problem of two elastic cylinders and parabolic profiles,
assuming that a contact resistance was inversely proportional to pressure. The
Hertzian contact problem with the heat flow in the case of axial symmetry was
considered by Barber and Comninou (1989).

In this paper we have analysed:

e The problem of the loss of contact between the two solids over a central
or an outer part of the region in the cases with known contact regions,
for a continuous, positively (or negatively) determined functions, cha-
racterising the distribution of the heat flux over the contact region.

e The existence problem of physically meaningfull solution for the case
with an unknown beforehand contact region. The problem is discussed
for continuously differentiable heat flux functions (of constant sign) the



300 R.D.KULCHYTSKY-ZHYHAILO, Z.S.OLESIAK

absolute values of which increase monotonically. The conditions have
been analysed for the cases when the effect of "cooled cylinder” can be
avoided.

2. Basic equations

A contact problem is considered between two elastic cylinders kept at dif-
ferent temperatures 77, and T¥, respectively. The two cylinders are pressed
against each other by a constant force P which is the equipollent to the trac-
tions over the surface of contact. If it is assumed that the cylinderical solids
are much longer than the radii of curvatures then the problem can be treated
within the framework of the hypotheses of plane strain. It is also assumed that
the half width of the contact distance is much smaller than the corresponding
radius of the cylinder curvature, and in turn, that it can be modelled by an
elastic semi-space.

In the cartesian coordinate system z,z the considered problem can be
reduced to the following partial differential equations of thermoelasticity

2(1 - Vk)uk,:c:c + (1 - 2Vk)uk,zz + Wg,zz = 2(1 + Vk)aka,:c
(1 = 2up)wi gz + 2(1 — V)W 2z + Uk oz = 2(1 + vp) Tk, (2.1)

Tk,:c:c + Tk,zz =0 k= 1, 2
where
v — Poisson ratios
g - coefficients of the linear thermal expansion of the kth solid
U, Wy — components of the displacement vectors
T — temperatures of the solids.

Applying, to Eqgs (2.1), the Fourier integral transforms

’(’Zk(ﬁ,z), ﬁk(f,z), Tk(ﬁ,z) = f[uk(Z‘)Z)’wk(x) Z),Tk(l‘, Z); z— 6] =
+oo
_ \/_12_7; / (i (@, 2), we (2, 2), T (3, 2) — TO) explice) dz

o]

we obtain the transforms of the components of displacement vectors, stress
tensors, and temperatures in the following form
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(€, 2) = me{ [~ AR(€) + (3 — dug — melg|2) Bu(©)] +
+(1 4 ve) ol Cil€) | exp(melé)2)
Ty (€, 2) = Ci(€) exp(nx ¢ |2)
(2.2)
FE (¢, 2) = 2uk]—Ak(€) + (2 — 2vg, — mkl€]2Br(€)][¢] exp (k€] 2)
B¢, 2) = 2ppmi[Ar(€) — (1 — 2vg — ml€]2Bi(€))€i exp(nel€|2)
where 7 = (-1)%, k = 1,2, yx - shear moduli.

The unknown functions Ag(£), Bx(€), Cx(£) can be determined from the
compatibility equation and the boundary conditions (Olesiak et al., 1995)

& oy~ ) —PT) for |z] <a
922 (2,0) { 0 for |z|>a
(2.3)
o) (z,0) =0 for [z| >0 k=1,2
9 :
?(wz—wl):g(x) forjz] <a 2=0
]:k(TIj’qj):O k,j=1,2 forz=0 (2.4)
a
/ p(z) dz = P
-a
here
0k - heat flux flowing into the kth cylinder through the surface
z2=0
p(z) - contact pressure (on the unit length)
9r(z) - convex curve describing the form of the kth cylinder.

Without the loss of generality we can assume that g¢1(z) + g2(z) = g(z). The
convexity of the curve at the point z = 0 means that ¢’(0) = 0,and ¢”(z) > 0
in its vicinity. Eqs (2.4)2 afford the conditions of the thermal contact between
the solids and environment. From the condition of the balance of energy we

obtain
g +aq =0 for |z] <b 2=0 b>a (2.5)

6 - Mechanika Teoretyczna
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It is assumed that the region of the thermal contact can be larger than that
of the mechanical one. After some algebra we obtain from the solution to the
boundary value problem (compare the Appendix)

$o .
p(z) = m + pg(z) o] pq(iv) for 20 (26)
p(—z) for z <0

where
2 [ ydy [ g"()dt
yay g
T
pg( ) \/y — 12 \/y2 — t2

_ydy [ q(t)dt

Pq ((L) \/y——-:c? \/yT—_p

(2.7)
. (1+V1)a1 (1+V2)C¥2
p = 5{ A Y ]
I ek (R ek 4(2) = p(z) = 01 (2)
1 U2

The unknown constants ¢y or a can be determined from the equilibrium
condition (2.4)3 which together with conditions (2.6) and (2.7) can be reduced
to the following form

P=n¢y+y P, — B*P, (2.8)

where

= / "(z)\/a2 —z2 dz q = 2/ :L')\/ a? — 2?2 dz (2.9)
0 0

It is evident from Eqs (2.6)+(2.9) that the distribution of the contact tractions
is determined by the compressive force, geometry of the contacting surfaces,
and heat flux through the contact region. Let us note that ¢(z) > 0 for
TP > TP, and q(z) < 0 for TP < TJ. Since the character of thermal effects
depends on [*q(z) where the parameter [* € (—oo,+00) it is sufficient to
discuss one of the cases, say, when TP > T7.

Taking into account the definition of heat fluxes ¢; = 7;A;0,T; we obtain
that the heat flux has to be directly proportional to AT(A\;7'+X;1)~'6~! and
can be represented in the form

g(z) = AT Mg (E

b) 2| < b (2.10)
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where A = (A\[' + A;1)~!, while gy(z/b) denotes a certain dimensionless
function responsible for the character of the heat flux distribution between
the solids and outer environment (2.4),. By substitution of (2.10) into (2.6)
and (2.8), respectively, we obtain

pa) = Sty 7 py(a) ~ B AT p(z) (21
P=m¢g+y ' Py— B*ATA ' Py (2.12)

3. Case of a fixed contact region

First we shall discuss the case of a fixed region of contact. Then the regions
of the mechanical and thermal contact coincide.

It results from Eq (2.12) that the case of a fixed contact region makes sense
when the obvious condition

Y P, — B*ATXa" ' Py < P (3.1)

holds true. In such a case the distribution of contact tractions has a one over
square root singularity at the boundary of the contact region. If condition (3.1)
does not hold one has to assume that the value of constant ¢g, appearing in
Egs (2.6) and (2.11) vanishes, and has to solve the problem of contact with
an unknown beforehand region of contact.

In the case of convex surfaces and any positive function gy we obtain that
the quantities P, and Fy, are likewise positive. Consequently, we obtain that
for the negative B* there exists such a critical value

(Pg —vP)a
ﬂ*/\'Yqu

for which (for AT > ATy, ) inequality (3.1) is no longer true. This means that
in the neighbourhood of the contact region boundary the contact between
solids is lost. The maximum value of AT, is obtained in the case when the
bottom of punch is flat.

On the other hand, for 8* > 0 the distribution of contact stresses has a
one over square root singularity at the end of the contact region provided:

ATcr -

vy Py <P (3.2)



304 R.D.KULCHYTSKY-ZHYHAILO, Z.5.OLESIAK

Kulchytsky-Zhyhailo et al. (1999) discussed the possibility of the loss of contact
over the central region of contact. Now, after finding from Eq (2.12) the value
of constant ¢g and substituting for it into Eq (2.11), taking into account Eqs
(2.7) and (2.9) we find that

a 173
P 2 " 2 .,
= 4+ = — 2B AT 3.
w0) ==+ = [d'060 & - Zars [eow & (33
0 0
where
G _lna-iL\/a?—t2 _ Va? -¢?

[4 a

It can be shown that G(t) > 0 for t € [0,a], consequently for any positive
function ¢(z) the integral on the right hand side of Eq (3.3) is also positive,
moreover there exists the critical value

a

P+2ay7! [ ¢"(0)G(2) dt
AT, = _ 0
2602 ] w(t)G(0)

such that for AT > AT, we obtain a region of negative tractions in a
neighbourhood of z = 0, i.e. there exists a region of the lack of contact in
the central part. The smallest value of AT, is obtained for the flat bottom
punch.

4. Case of solids with smooth contacting surfaces

In the case when the region of contact is not known beforehand we have
to assume that ¢g entering Eqs (2.11) and (2.12) vanishes, and we have to
find the width of the contact region from Eq (2.12) while the distribution of
the contact tractions from Eq (2.11). It results from Eqgs (2.9) and (2.12) that
for 0* < 0 the contact region width is smaller as compared with that for the
corresponding isothermal problem, on the other hand, for 8* > 0 it is bigger.
From the papers, devoted to the problems of thermal contact, it is known that
for * > 0 we can obtain the diagram of contacting tractions with varying
sign i.e. the problem does not have a physical meaning. We shall call it the
paradox of the ”cooled sphere” (after Barber, 1978), here rather the paradox
of the “cooled cylinder”. We shall analyse when such a problem appeares, the
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effect of the heat flux and the distribution of contact pressure for z — a.
Taking into account the theorem on the mean value of the integral in formulae
Eqgs (2.7) we find that

Py = Py(r1)Va? — 22 Pao = Pyo(12)V/ a2 — 22 (4.1)
where
! T2 I3 t
s Pulr) == [ (1) (.2)
= | PoolT2) = = | —=—=== .
71’0 VTE - t2 o 7TO T4 — 12

where 71, 79 denote certain unknown numbers from the interval [z, a]. Tending
to the limit z — a we obtain

o py(z) o Pglz) A
gl_{r‘ll m - pg(a) :l]:]—r)%. a2 _ :Z,‘Q - pqo(a) (43)

From Egs (2.11) and (4.3) it is evident that for z — a there exists a positive
pressure provided

Y 5,(a) > B*ATAb™ By, (a) (4.4)

Otherwise, when condition (4.4) is not satisfied, we obtain, in the vicinity
of the contact contour, a region of tensile tractions, i.e. the effect of ”cooled
cylinder”.

In the case when for z — a the distribution of the heat fux pg,(z) tends
to infinity as 1/va? — z? and Py, (z — a) tends also to infinity, however this
time logarithmically. Then the paradox takes place for arbitrary mechanical
and thermal parameters entering the problem. Consequently, we can avoid the
paradox of ”"cooled cylinder” if the prescribed thermal contact (2.4); is such
that the function go(z)va? — 22 in the region of the mechanical contact is
regular and il_r)% qo(z)Va? —z? = 0.

More precise analysis how to avoid the problem of the ”cooled cylinder” will
be discussed for a particular case of the paraboloidal cylinder g(z) = z?/2R.
Then we obtain

2

P %_ — 23" AT ael (qo(ey))
(4.5)
g — 1) @

= %ﬁ*AT/\EIZ(QO@y))

\/—42 Ry
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where

1
I, (qolew)) = / wolen)V/I— 72 dy
0
1

1l

Q|8

(ey) dy a
Liq(ey)) = | LYY e=> ¢

5. Conclusions

For any monotonic increasing function g¢g(ey), y € [0,1] it can be shown
that:

(a) For coinciding regions of the mechanical and thermal contacts (¢ = 1)
there exists P, such that for P < P, tensile tractions p(¢) appear in
a certain neighbourhood of ( =1.

(b) Parameter ¢ determined from the condition p({ — 1)/4/1—-(2 =0
satisfies inequality p(¢) > 0 for any ( € [-1,1].

(c) In the case when parameter ¢ is smaller than parameter ¢ determined
from the condition at point (b) then p(¢) > 0 for any |(] < 1.

It results from points (b) and (c) that there exists €y, (correspondingly
bmin) for which the problem has a physical meaning. To determine ¢4, one
has to solve the following nonlinear equation

Ta
€maz12(q0(€mazy)) = 35 ATAEry (5.1)

It results from point (a) that at least for small values of compressive force
emaz < 1. It means that at least for small values of P we have to assume that
b > a to obtain the physically meaningfull solution to the contact problem. If
€maz, determined from Eq (5.1) is greater than 1, it is natural to assume that
€maz = 1, 1.e. the mechanical and thermal regions of contact are equal.

Substituting Eq (5.1) into (4.5); we obtain the dependance between the
compressive force and the width of mechanical contact region for small values
of P (e has been determined from Eq (5.1) and is less than 1)

P

_ma’ 1. 20(go(ew))
B 2R7[ Iz(‘]o(fy))] (5:2)
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The above formula (5.2) provides the relationship between the compressive
force and the width of the contact region for small values of P (in the limit
we obtain for P — 0 that a — 0). We should note that from Eq (4.5); we
obtain in the limit P — 0 a finite width of the mechanical contact region.
The knowledge of the width of contact let us find, from Eq (5.1) the relation
between €,,,,, distribution of the heat flux and characteristics of the problem.
We obtain

25 (qo(fmazy)) TaH
6mazIQ(QO(6mazy))\/17 I5(g0(€mazy)) 26* AT ARy X (5.3)
where a% = 27! PR+ denotes the square of the width of the contact region
in the corresponding isothermal Hertz’s problem.

From the regularity of distribution of the heat flux we obtain that for
€ € [0,1] the left hand side of Eq (5.3) is finite, therefore there exists a critical
value x¢ such that for x > x the roots of Eq (5.3) do not belong to the
segment €pqa, € [0,1]. This means that in the interval [xcr,o0) the solution
in the case of a regular monotonic increasing function go(ey) has a physical
meaning already for a = b. Thus, the regions of the mechanical and thermal
contacts coincide.

In this way, for x € [0, xr] we find from Eq (5.3) the parameter ¢, from
Eq (5.2) the region of the mechanical contact, and from the relation be = a the
width of the thermal contact region. For x € [xr, +00] the physical solution
takes place for a = b.

We introduce a dimensionless quantity of the mechanical contact region
ag = a/ag. For x € [0, x| we obtain from Eq (5.2) the following relation

%:w_&@g@m 5.4

Iy (qo(fmazy))

where €, has been determined from Eq (5.3).
For x € [xer,00) Eq (4.5); reduces to the form

a3 — 2x aol) (qo(y)) = 1 (5.5)

Thus the parametr = map/(2B8* AT AR7) plays an essential role as the
characteristics of the effect of temperature difference on the contact region.

6. Example

The effects appearing in the thermal contact between two convex solids and
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Fig. 2. Dimensionless heat flux over the contact region
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Fig. 3. The ratio of the width of the region to that of the thermal one for varying
parameter x
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the formulae derived above will be discussed on an example of two cylindrical
rollers.
We assume that the thermal contact is non-ideal in a thin strip, namely:

@1tgq=0 z] <b 2=0
(6.1)
q1— ¢ =h(Th —TY) lz| <b 2z=0

Qutside the contact the condition of the heat conduction between the solids
and the environment obeys Newton’s law

g1 = a (T — 1) g2 = Go(T?) — Ty) lz| >b z=0 (6.2)

where Te(l), Te(g) denote the temperatures of the environment, &, Gy the
coefficients of the heat exchange. We assume that the temperature of the envi-
ronment varies exponentially T = TY — AT exp|—«(|z| = b)], for |z| = oo,
T = 70 while for TV =19, |z =5, T =19

1.00

agy,bg \

0.75 \

@\
0.50 \ |

fg\\\

0.25

\\

0
0.5 1.0 P% L.5

Fig. 4. The ratio of the width of the thermal and mechanical contact to that from
the solution to Hertz’s problem

Now we apply the exponential Fourier transforms to the problem governed
by Eqgs (2.1)3, (6.1) and (6.2). Taking into account the symmetry of the contact
problem with respect to z = 0 we obtain

Ty - T?
AT

70
= —t(f1) 1] Bl o) 63)
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where

0]

2 [ cossY ds

;/3+B(k /fk ) cos sy dy k=1,2
0

o0
2 KpCOSS — ss8ins cossY
0_ _B-<1)/ 0 d
1 J k§ + s s+ B0 ¥
1T
f(Y) = AT [87; Bi)(T; - 7))
oT.
f2(Y) = [8772 Bi() (T, — TS )] Y| <1

and Y = z/b, n = 2/b, Biot’s number: Bi(k) = oKb/ Mg, k=1,2, Ky = Kb.
The problem can be reduced to the following system of integral equations
for the unknown functions f,(Y), f2(Y)

29 f1(Y) + (b — 2¢Bi)t 1 (f1) + hta(fo) = & — (R — 2BiM)y)t0 6.
4

201 =) fo(Y) + [h = 2(1 — 9)BiPta(f2) + ht1(f1) = h — bt

where h = hb/(A1 + A2), ¥ = A1/(A1L + A2). The solution of the system of
integral equations (6.4)» can be obtained by using polynomial expansions of
the required functions, reducing it to the system of infinite series, and after
proving the convergence of the process, to truncating the system of algebraic
equations. We assume that

00 ) .
=3 oy (6.5)
§=0

Similarly the integrals entering the formulae for #;(f;), i = 1,2 and 0 have
been approximated by the series of polynomials with the use of the method of
least squares
_ i Oy 2% 0 __ 025
TR I 3 S B 36
7=0 7=0
From the solution of system of algebraic equations we obtain the values of the
coefficients a( ), j =0,...,m;1=1,2, and eventually the required functions. In
order to analyse the stress—strain state it is sufficient to compute the function

©- b%’,\) = 7Y fa(Y) - Bita(fo)] = 3 4 ) ¥ ¥
§=0
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The numerical analysis can be simplified if we assume that @, = & = @;
BitY) = Bi/y; Bi(® = Bi/(1 — ¢); Bi=ab/(A 4+ Ag) = 0.1; ko = 1.

A. Appendix

From the boundary conditions (2.3) we find

Ai(€) = Bi(§)(1 — 213) B(&) = 2p1 By (§) = 2p2Ba(€) (A1)

From the last equation of Eqs (2.3); and condition (2.4); we obtain the system
of dual integral equations for parameter B(¢)

o0 2 o0
'y/B(f)f sin € d¢ +Zai(1 + Vi)/Ci(f)sinxf d¢ =
0 =1 0

= —\/gg (q,) S [0,(1) (A2)

/B({){cos:zf dt = 0 z € (a,00)
0

where v = (1 —v)/pu1 + (1 — v2)/pa. Unknown functions C;(£) can be
found from conditions (2.4),. Solving dual integral equations (A.2) we took
into account the evenness of the functions B(£) and C;(¢). The solution is
presented in the form

£B(e) = @ [ #wanen ae- \/§¢0J0<¢a> (A.3)
0

We note that the second term in Eq (A.3) constitutes the solution of the
corresponding homogeneous system of the dual integral equations. The first
term satisfies identically the second of Eqs (A.2), while from the first of Eq
(A.2) we obtain

[o0d o T
’YO m— g (z) \/;;az(1+uz)b/01(§)smlfd§ (A.4)
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The distribution of the contact pressure takes the following form

22 -2

pa) = - [ Ly 220 p(-2)=p(x) (AS)

By applying the inverse Abel transform of the first kind to Eq (A.4) and taking
into account the cosine transforms

o0

mm:&/a@uwm%

0

we find
y y
2y [ g"(z)dz  2yB* [ q(z)dz
. + A6
where
. Lr(l+rv)a  (1+m)o
A= ’y[ Al A2 ]
q(z) = q2(7) = —qu(7) lz] < a

The substitution of Eq (A.6) into Eq (A.5) provides us with formulae (2.6)
and (2.7).
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Kiedy mozna uniknaé paradokséw w zagadnieniu termosprezystego
kontaktu dwéch walcéw

Streszczenie

Rozpatrujemy zagadnienie kontaktu $ciskanych sprezystych walcéw o réwnole-
glych tworzacych w polu temperatury. Gldwnym celem pracy jest wyprowadzenie
odpowiednich warunkéw gwarantujacych fizyczny sens rozwigzan odpowiednich za-
gadnied termosprezystoéci (tzn. unikniecie paradoksu ”chlodnego walca”). W tym
celu wyprowadzone zostaly wzory na zwiazki laczace cidnienie na powierzchni kon-
taktu, geometryczne charakterystyki cylindréw i rozklad strumienia ciepta poprzez
powierzchnie kontaktu. Prace zilustrowano przykladem liczbowym i wynikajacymi
stad wykresami.
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