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The stability condition (1.2) for frictional contact expressed in terms
of potential energy and the dissipation function is applied to analysis
of the stability of rigid-sliding and elastic-sliding contacts obeying the
Coulomb friction condition and the non-associated sliding rule. Both
static and dynamic modes are considered.
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1. Introduction

Stability of frictional contact can be studied for different friction models,
including the classical Coulomb-Amontons friction rule for which only rigid-
slipping response occurs at the contact. A more general model would be ob-
tained by assuming tangential and normal contact compliance, and also acco-
unting for contact dilatancy or compaction effects.

Certainly, in considering stability problem, we have to analyse the whole
system of elastic or elasto-plastic structure interacting with the frictional fo-
undation. The critical state can then be reached either through the loss of
stability of the structure or due to destabilizing action of the contact. Gene-
ral stability conditions for a discrete elastic system with frictional interaction
were derived by Mréz and Plaut (1992), and Nguyen (1992). A more general
class of friction and slip rules was discussed by Jarzebowski and Mréz (1994)
and Mréz and Giambanco (1996). The conservative and non-conservative sta-
bility problems of truss and frame structures were extensively discussed by
Zyczkowski (1998) who, however, did not consider the friction effects.

Consider a discrete system with n degrees of freedom. Assuming ¢; as the
generalized coordinate vector and specifying the potential energy V = V(g;)
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and the dissipation function D = D(gg, ¢;), the equilibrium equations are

av 8D

a4 _*_8‘% =0 or I/,-*—D(z) =0 1=1,2,...,n (1.1)

where the subscript ¢ denotes the derivative with respect to the configuration
coordinate g; and the subscript (i) denotes the derivative with respect to the
rate Q‘L
The stability conditions were derived in the form
o0V oD
o+ ma—a >0 or Vij:4; + Drgr > 0 1.2

Thus, the sufficient conditions of stability are satisfied when the inequality
(1.2) occurs. In particular, when there is no frictional dissipation, the well-
known condition is obtained

Vididj > 0 (1.3)
requiring the potential energy to be a positive-definite function. On the other
hand, when the rigid-frictional system is considered, the stability condition is
expressed in terms of the dissipation function

D;g; > 0 (1.4)

In our further analysis, we shall refer to these conditions.

2. Rigid-slip model of contact

Consider first the rigid-slip model of contact. For the contact stress wi-
thin the domain bounded by the friction condition there is neither slip nor
deformation. The Coulomb friction condition can be expressed in the form

fT,N) =TT, —pN <0  or |IT—uN <0 (2.1)
and the slip rule in the tangential direction within the contact plane is

T .
v = /\WI:—” vy =0 A= /vivi =" >0 (2.2)

where v}, = 1,2 and v}, are the slip components in the Cartesian reference
frame, where the z3-axis coincides with the normal direction.
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Fig. 1. Friction surface and sliding rule
The dissipation function is expressed as follows
D = Tpw] = pN||v°|| = pN4/(v§)2 + (v3)? (2.3)
so the inverse relations to Eq (2.1) are
oD CH
5= g M (24)
The rate of variation of T; equals
_ _r 03 |o°|| — v Tk
T. = upuN—— + =
T el T
(2.5)
. v [ ViUV, S
— AN +uN( i —L——) — T 4 T
ol ol flo)f® L

where the first term Ti’ is coaxial with the slip velocity and the second term is
normal to the slip velocity and represents the force reorientation term, Fig.2a.
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Fig. 2. Friction forces varying along the slip trajectory — (a), and with the normal
traction — {b)
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In fact, we have
Ty = T}v} Tl =0 (2.6)

Let us note that the term Tz-’ corresponds to frictional hardening or softe-
ning due to variation of normal traction N. In fact, we have the incremental
work rate

L = Twf = i} = uN|o*| (2.7)
Hence the stability condition is
L= pNp|| >0 (2.8)
or .
uN >0 (2.9)

since ||v®|| is always positive. Consider slip along the trajectory s = s(t),
where § = [[v°||. As N = N(s), then we may state the stable and unstable
slip portions as

dN dN
Ts > (0 — stable slip o < 0 — unstable slip (2.10)

Let us note that the conditions (2.9) follow directly from the general condition
(1.4). In fact, the generalized coordinate rate ¢ = ¢ and Eq (1.4) provides

oD dN
ON ds
where N = dN/ds. The condition (2.10) is thus equivalent to the requirement

that L > 0.
The stability conditions can easily be generalized for a distributed contact
pressure oy = —non over the contact area S,. In fact, we have

D;g; = = /j,NH‘!)S” >0 (2.11)

L= /ufmllvsll dS. >0 (2.12)
Consider the translation and rotation of a rigid body contacting over the
area S, with the other body. Assume the slip distribution in the form, Fig.3

=y twxr (2.13)

or

vy =1y + rwsina Uy = —TWCOS
(2.14)

|[v°|| = \/vg + r2w? 4 2ugwr sina
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Fig. 3. Slip over the distributed contact area S,

Then, the condition (2.11) becomes

L= /,u,[rNr\/vg + r2w? + 2vpwrsina drda > 0 (2.15)

In the particular case w = 0, there is a pure translation mode, so Eq (2.15)
provides

LZ/wmd&:uN>o (2.16)

where N is the resultant force transferred through the contact area.

3. Rigid-slip model with elastic interaction

Consider now a more complex case when the tangential and normal trac-
tions are applied through elastic system. Consider first an illustrating example
shown in Fig.4a. The block sliding along horizontal foundation is acted on by
a normal force N exerted by a spring sliding along the inclined plane. The
horizontal force is applied through the horizontal spring.

Denoting by s the frictional sliding distance and by wu the total displace-
ment of the point A of the system, we have

S e - e L ':).\S T
u=u"+s U £ 8 gn

T - uN<0 T —uN <0 A>0

(3.1)

where u® denotes the spring elongation. Assume that

N =Ny —kstana= Ny — Ks N =—-K; (3.2)
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Fig. 4. (a) Block with elastic interaction, (b) force variation with frictional slip s,
(c) force variation with total displacement

where % denotes the vertical spring stiffness and K = ktan a. In view of Eqgs
(3.1) and (3.2), we have for the sliding regime

T K3 K

11=E—+é=—%+é=(l—%)é §>0
(3.3)
. - . pK . .
T:uN=—uKs=—1_E£u=—E3u
E
and in the elastic regime there is
u——-ue:E T-uN<O0 (3.4)

Integrating Eq (3.3), we obtain the force-displacement relations
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T
T = Fu U<EOZU0

T="T-

1_%(11.—110) U > U z >0
It is seen that for pK < E the block sliding is associated with friction
softening. The softening modulus E; depends on the stiffness ratio K/E.
In fact, when uK = E, the snap-back phenomenon occurs and the sliding
process cannot be controlled by imposed displacements when uXK > E. Thus

for pK < E - process is unstable under force control
for uK > E - process is unstable under displacement control

Let us now apply the general stability condition (1.2). Consider the displace-
ment controlled motion. The potential energy of system is

k 1
Hzﬁhmo—nwaf+§EM—®2 (3.6)

where wu,, is the initial displacement of vertical spring. Differentiating Eq
(3.6) with respect to u and s, we have

o
T—=—"—=F —
o (u—s)
and the dissipative force is
b oIl
T, =—E’;—=k(uNo—stana)ta.na+E‘(u—s)=Ntana+T (3.7)

Fig.b presents the force distribution at the constraining surface. The ver-
tical force N in the spring induces the tangential dissipative component
Nsina. There are two dissipative forces uN and N tana associated with
the horizontal slip rate §, thus

D=D;+Dy=uNs+ Nstana (3.8)

and the dissipative force is

oD
TP = 5= LN + Ntana = (u + tan o)k(u,, — stana) (3.9)

Comparing Eqs (3.7) and (3.9), we obtain T = uN = pk(u,, — stana).
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Fig. 5. Force distribution at the contact

The stability condition now is

8°I , 0D
— —38 .10
52 S T g 5> 0 (3.10)
or
kitan’a+ E + (u+tana)N > 0 (3.11)

and noting that N = —ks$ tan c, we obtain
E— pktana=F-Kyp >0 (3.12)
Let us note that the stability condition can be written as follows

orP  oerhA
d > d

o o TP =17 (3.13)

Thus, the dissipative forces calculated from the potential energy and dissipa-
tion function are equal, however, their rates with respect to the dissipative
displacement s can be different. The stable situation occurs when the dis-
sipative force TdD exceeds the potential energy release force Tdn near the
equilirium state.

Let us consider now the dynamic response of the system. The equation of
motion of the block is expressed as follows

M§+uN =T =—-E(u-s) (3.14)

Consider the perturbation z = z(t) satisfying the condition u(t) = 0, so we
have
Mz —-pKz=—-Ez (3.15)
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or
MzZ+ (E—-uK)z=0 (3.16)

The stable equilibrium occurs when EF — pK. Assuming

z = zget 7 = lwzge't 7= —wlzpelt (3.17)

and substituting into Eq (3.15), we obtain

Muw?=E — uK (3.18)
d E—uK
2 __ LT H
W= —— > 0 (3.19)

Fig. 6. Phase diagrams of (a) stability, (b) divergence instability, (c) flutter
instability

Thus the system will undergo free harmonic vibrations near the equilibrium
point with the frequency w specified by Eq (3.18), cf Fig.6a. On the other
hand, when F — pK < 0, the solution of Eq (3.15) is

z = zpe™t 7 = zoA2eM

where
/\2 — MK - K
M
80 the gystem exhibits also divergence instability, cf Fig.6b. When force control
is applied, then T = 0 and the perturbed equation of motion is

>0 (3.20)

Mz—-uKz=0 (3.21)
and the system exhibits divergence instability: z = zge*t, where
K
aN=E 5y (3.22)

M
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4. Elastic slip model with dilatancy effect

Let us now discuss a more complex model when the elastic compliances of
the contact are accounted for and the slip dilatancy effect is introduced. The
total velocities are now composed of elastic and slip portions, so that

v; = v + v uN = V% + VN i=1,2 (4.1)
where . .
T; N
v§ = — VY = —— 4.2
and
1 0 .
v§ Kr T;
= - - 4.
A | 4
Ky

The friction condition and the slip rule are

F(T,N) = /IT; — uN = ||T]| — uN <0

(4.4)
s, T , . . —
v} :)\“T” Iy = —ALL A=/vivi >0
The total velocities now are
T T N
V= — + A—r & = —— — X 4.5
? KT ”T“ N KN H ( )
where 7r denotes the dilatancy factor. Using the consistency condition
T
= — uN =0 (4.6)
Il
the following rate constitutive equations are derived
T:Ty KrKy T;
Krdix — K3 p
B _ | T ORE P O [ w wn
N _KTKN Tk K K12V _ UN )
e N = — MR
H |7 H

where
H=Kr+pKnp (4.8)
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When 7 =0, that is v}, = 0, from Eq (4.7) we obtain

. T.T T;
T; | | Krdik— KTz—]; MKNTz Vg
o= g || (49)
0 Ky N
Consider the second order work rate
. . . TKnK KyK KrK
L =T+ Nuy = e IIIV T2+ Ijq T(u+ﬂ)vv~+ j;INU?V > 0 (4.10)

where v = /7;u; = ||v||. Requiring L to be positive definite, we obtain the
static stability condition

S = uiv® + (u + Bvvy + vk >0 (4.11)

When 7 = 0 we obtain
vn (v + pv) >0 (4.12)

On the other hand, when u =z, Eq (4.10) provides
(on + pv)? >0 (4.13)

i.e., the displacement controlled deformation is stable for the associated sliding
rule.

(a) pe#p (b) =4
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Fig. 7. Stability diagram: (a) non-associated sliding rule, (b) associated sliding rule,
(c) vanishing dilatancy effect

Figure 7 presents the diagram of S specified by Eq (4.11) in the
plane S,vn/v. It is seen that S > 0 when wvy/v > —p or vy/v < —F.
For the case of associated slip rule the contact response is stable. When only
tangential slip occurs, f = 0, the stable response occurs for vy/v > 0 and
S > 0 occurs also for vy /v < —p.
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Fig. 8. Illustration of critical states: (a) friction condition and slip potential,
(b) sliding at constant T and N, {c) sliding at decreasing T and N

There is a clear physical interpretation of critical points satisfying the
condition S = 0. The value of S is negative when the velocity vector vy, v
lies within the angular domain bounded by the normals to the limit friction
surface F = 0 and the sliding potential G = 0, Fig.8.

Consider first the situation when vy /v = —F and the velocity vector is col-
linear with Ng. Since the slip vector satisfies the same relation v} /v* < -T,
the elastic strain rate and hence the force rate should vanish. The sliding oc-
curs at constant 7 and N. On the other hand, when wvy/v = —p, so the
velocity coincides with Npg, the progressive sliding occurs under decreasing
T and N. In fact, we have
. - .

712} + %v— + Ty Noy =0 (4.14)

L = Tivi +TN’UN =

Using the consistency condition and the slip rule, Eq (4.14) can be expressed
as follows
. T2 N? .
L=—+—+Nv’(p—p) = 4.1
el el v (p-m) =0 (4.15)
Fig.9 presents the domains L < 0 and L > 0 in the NT-plane.
Comnsider now the general stability condition (1.2). The potential energy
under displacement control is

1 u"f; u%z Lr(uy —uf)? Zi(un—uiy
2+ %) =3l * G

U= -
2 Kn Kr
and the dissipation function is expressed as follows

. TT .
D =Ty} + Ny = Aﬁ — NX = [°|(IT| = Ng) = [v*|(p = B)N  (4.17)
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e |

Fig. 9. Instability domain in the NT-plane

The dissipative forces generated by the potential energy are

8
ur;, — uTi

u_ UN — u?V )
_ . 4.1
N Ky sz KT ( 8)
and the dissipative forces generated by the dissipation function are
p_ Y%
1R = (k=N (4.19)
The stability condition can be expressed as follows
1S - (va)? | (v°)° B 1y, e
-0z |-t ==+ .
Nl =8 2 = [+ ] == (5 + 7)) (4.20)
or taking derivatives with respect to tangential translation, there is
72
. . I 1 )
-2 -+ — 4.21
N5 > (5 + (4.21)

4.1. Dynamic contact response

Consider now the dynamic motion of the block of mass M. The equations
of motion are

Ti = Muv; + [D]ijvj (4 22)

N = Miy + [D]pvn

Considering the perturbation of motion v+ z, the same equations as Eq (4.22)
are obtained. Assume the solution of the potential system in the form

At i = anet (4.23)

éi = a;€
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The following eigenvalue problem is thus obtained

;T KrKy T;
Krb — K2 222k il nbeth L
R S v 7 T
_KTKy T} K% _ 2 an | )
oy v g e

requiring the determinant of the non-symmetric matrix to vanish.
Consider the motion within the plane zin, so that vs = 29 = 0. Eq (4.24)

now becomes
K2 KrK
Kp — _Hl + M2 u_T_N

ay o
iy - REERE

an

— _ AN 9
F— Ky — —ppp+ MX
and we have
Kb o\ Kby KRKY
(KT— —L 4 M )(KN— =N+ M ) -~ —0 (4.26)
which provides the quadratic equation
KT KN _ KT KN —
2,2 2(1_48T _ AN _Ar An _
Mz +M:1:[KT(1 I )+KN(1 I uu)+KTKN(1 I I uu) 0
4.27)
where z = A2. The discrimant of this equation equals
K2 K 2
3=l (i 1) a1 )
(4.28)
Kr Ky _ 2 Kr Ky _)
k(- ) (- ) v 1 K
and
) ~M[kr(1-E) + Ky (1- Brum)] £ VA
Al,2 =T = (4.29)

2M?

Thus, the eigenvalues can be either real when A > 0 or complex conjugate,

when A < 0. In the latter case the flutter vibrations may develop. In the

particular case, when 7 = 0, we have

_ Kr

)\2 _ KT (1 H ) )\2 __ KN

=M UM

When Kp < H, then J; is imaginary and the system undergoes harmonic

vibrations, when K7 > H there is divergence in the system in the tangent
direction.

>0 (4.30)
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5. Concluding remarks

The present paper provides the analysis of contact stability using the gene-
ral conditions (1.2). The effect of dilatancy and elastic compliance is clarified
and dynamic response is briefly outlined, indicating the possibility of flutter
type instability. The analysis pertains to simple cases and is aimed at clarifi-
cation of instability modes. More complex cases of stability of elastic systems
with frictional interaction will be discussed separately.
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O statecznosci kontaktu z tarciem

Streszczenie

Warunek (1.2) statecznosci ukladu sprezystego z ciernym kontaktem wyrazony
jest przez funkcje energii potencjalnej V(g;) i funkeje dysypacji D(d;,qr). Roz-
patrzono prawo tarcia Coulomba i niestowarzyszone prawo poélizgu i zastosowano
warunek statecznosci do kontaktu sztywnego i z podatnoécig sprezysta. Okre§lono
statyczne i dynamiczne formy utraty statecznosci.
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