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A design template is defined as a scheme of computer-aided design pro-
cess which could be verified and modified in particular cases by a desi-
guer. Global loads have to be determined and analysis is performed for
each arrangement of unit loads separately. Thus, the influence matrices
are determined and also: matrix of interaction of load effects and ma-
trix of combination of simultaneous loads. New matrix procedures are
introduced in order to identify the most unfavourable load arrangements
and then — the most unfavourable load combinations and load effect in-
teractions. The design templates are exemplified for portal steel frames
subject to permanent loads, variable actions and second-order horizon-
tal forces due to sway of the columns. Complex influence coefficients
are introduced and amplified sway of the frame is taken into considera-
tion. Corrections of some unsound clauses of the Eurocodes 1 and 3 are
suggested.
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1. General remarks

New methodology of structural design has been elaborated for last three
years (Murzewski, 1997, 1998, 1999). It consists in application of so called
design templates, which are different from computer programs. The difference
is that the design procedures can be easily verified and modified by the designer
himself. Computer programs are useful in structural analysis but they can
hardly help in design of structural elements. Standard specifications change too
frequently and the program upgrading cannot follow in due time. Furthermore,
international cooperation and parallel validity of national and European draft
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standards in building involve different design rules. The Polish certification
procedures require formal verification by the authorised units. That is why the
design algorithms have to be up-dated every time and revealed to verification.

The new methodology of design takes advantage of the well-known mathe-
matical programs; like, Mathcad, Mathematica etc. Matrix calculus enables
one to consider thousands of load cases in the design of one structural ele-
ment. This has not been feasible in conventional calculations when designer’s
intuition not always could indicate the most dangerous load case. The logical
value ”1” (true) or 70” (false) at the end of the template indicates whether
the structural element is safe or unsafe. An additional line or column of nu-
merical results of the modules may by useful if errors in data or equations are
suspected.

The following three modules create a design template for the structural
elements like cross-sections, members, joints:

Module 1 - load specification, action arrangements, their influence and glo-
bal analysis of the structural system

Module 2 - resistance of structural elements and interaction problems be-
tween the internal moments and forces

Module 3 - identification of extreme effects for load variants, interactions,
combinations and imperfections.

Every module has three blocks:

e Block of constants
e Block of variables
e Design algorithm.

All data necessary to solve a problem should be arranged as it is shown in
Table 1.
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Table 1
Module 1 Module 2 Module 3
Structural Resistance Reliability
analysis characteristics verification
Block of | Dimensions: L, a | Material properties | Design working
constants | of the structural | f, F,... (steel, con- | time t,.
system and its | crete etc.) and yas. | Reliability  diffe-
elements. rentiation 7y,.
(indepen- | Variable actions | Stiffener spacingl;, | Variable action
dent of | F; = Q,S5n,W,... | a; for buckling mo- | factors ;.
results) in two or more va- | des j = m,n,v, ... Frame imperfec-
riants v; = 0,1, ... tion ¢,.
Block of | Permanent load | Cross-section The amplified
variables | Fy = G from dimensions h,b,... | sway ¢
Mod.2 anditsload | and its properties | Identification  of
factors Ysup, Ying- | A, Sy, 1, .. extreme:
(depen- Optional  archi- | Eccentricity - variants w; for
dent on | tectural details. en = Mg/Ng each Fj,
design Stiffness from Module 3. - load combina-
results) EA EI,..YD Class of the cross- | tions c,
Residual mo- | section. - load effect inte-
ments and | Imperfection fac- | ractions e.
forces? tors o;.
Design Vector of global | Instability factors | The exact eccen-
algorithm | forces F. Xy Xns Xv tricity ey.
(formulae | Equations of | Reference resi- | Safety of design
and equilibrium and | stance Mg or Ng Seqg < R=1 and
results) compatibility for | Cores r; and in- | economy  checks
unit loads. verse cores 7. Sep SR=0
Influence matri- | Interaction matri- | for smaller cross-

ces {cjy}; for:
— internal forces
Ms,Nsg, Vs, ...
—  deformations

A b5, ...

ces (rs):
- (rm) for
cross-section,
— (rn) for the struc-
tural member.

the

sections.

Deformation
and/or crack®)
checking

$p<1/C="etc.

1) if the temperature effects are taken into consideration

2) if the elastic bending moments are modified according to EC3/5.2.1.3

3) mandatory for sway frames
4) not applicable for steel structures.

8 - Mechanika Teoretyczna
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An example of simple design template for portal frames (Fig.1) is presented
in next sections. There are:

e load arrangements v; and influence coefficients {c;,}; for normed loads
(Module 1)

e steel I or H cross-section characteristics, buckling factors x; and
Mg-Ng-Vs interactions (Module 2)

e most unfavourable variants, interactions and combinations of load effects
selected for reliability checks (Module 3).

A semi-probabilistic design method of partial factors is applied according
to European prestandards EC1 (acronym for Burocode 1, 1993) and EC3 (acro-
nym for Eurocode 3, 1992). A black triangle » will mark the Author’s critical
remarks and suggested corrections of the Eurocodes.

2. Module 1 — structural analysis

Every independent action F£; is characterised by:

e Absolute value of the global force F; [kN], ¢ = 0,1,2,... which is equal
to the sum of all vertical forces for the first load arrangement, but in the
case of wind to the sum of horizontal forces

e Arrangement of real distributed and concentrated forces with weight
factors F/F; defined in several variants v =0,1,2,... F/F; are normed
so that the sum of the forces is 100% in the first arrangement

e Equivalent forces H; = P;¢ proportional to the relative vertical compo-
nents P; of the loads F; but horizontal. An amplified sway ¢ shall be
taken into global analysis of the frame.

2.1. Load arrangements

Specific weights [kN/m3] of structural materials are inserted to the Mo-
dule 1 block of constants. There are also lengths and other geometrical qu-
antities which are necessary to determine the dead load Fy = (. The unit
values of variable loads F; [kN/m?], i > 1, are taken from standards.

The cross-section area A [m?] is necessary for the self-weight evaluation
of the structural member while the elastic stiffness EI [kNm?| is required for
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the temperature effect analysis. The values will be included to the block of
variables of Module 1 from the Module 2 by means of the clipboard. Their
trial values will be improved in an iterative process of calculations.

Table 2 presents the normed load arrangements for an exemplary portal
frame (Fig.1). Separate structural analyses must be performed for each va-
riable load arrangement wv; in the third block; however, a single structural
analysis is sufficient to evaluate the effects of permanent load for the cha-
racteristic value G, and proportional upper design value (G with the load

factor ~ysyp) and lower design value (G with load factor ~yinf).

Table 2
Normed load
arrangements v="0 v=1 v=2
t=0 characteristic | upper design | lower design
Dead load value value value
G=1 G = Youp G = Yins
=1 absent the crane to the crane to
Live load the left the right
(e.g. cranes) 0 Q=1 Q=1
1 =2 not at all more SNOW 01l | more SNOw on
Snow the left side | the right side
of the roof of the roof
0 Sn=1 Sn=1
1=23 temperature in summer in winter
Temperature of erection
0 T>0 T<0
1=4 calm from the left | from the right
Wind 0 W=1 W=1
Ay 4
e~ i~
H v f ; v |
7 S FE
4T 41 ¢/.7'\ o
| i / /
| ! ! !
it A i

Fig. 1. Frame with the equivalent imperfection ¢, and amplified sway ¢
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2.2. Global analysis

Within the framework of the second order theory the normed loads are
applied to the perfect elastic frame without out-of-plumb of columns. First,
the analysis of elastic properties is carried out for the real loads F/F; then
it is done for the horizontal second order forces H/F;. Explicit formulae for
portal frames and other simple structural systems may be found in design
manuals. They must be copied to the template. The same template may be
used in other design projects and new formulae will replace the old ones in
the computer memory. If a redundant structural system cannot be solved by
means of explicit formulae, special computer programs may be applied but
the results have to be inserted in a matrix form to the environment of the
design template. The vector of global forces F; will result from calculations
of Module 1 as well as the nested influence array {c,;}; which transforms
the applied loads F; into load effects S;. Elements of the nested matrix ¢
of influence coefficients {c;,}; are not scalar but they are represented by 2D
matrices {cjy} for each action Fj.

2.3. Complex influence matrices

Nested (three-dimensional) arrays a and b are the components of nested
influence array c. It has a complex form because the amplified sway ¢ is
not known a priori. Finally, the elements of matrices a and b with the same
subscripts will be added but now they are treated separately

{cjvti ={aju}ti +{bju}i ¢ (2.1)
where
{ayj}i — nested array which changes the normed loads F;/F; into
their effects
{by;}i - nested array which changes the second order forces H;/F;

into their effects.

The following notation has been introduced (Table 2, Fig.1):

e i takes the values 0,1,2,3,4 for independent loads; i.e. Fy = G (time-
constant load), F) = @ (imposed load), F; = Sn (snow), F3 =T
(temperature), Fy = W (wind action)

e v takes the values 0, 1,2 for load arrangements (variants): the characte-
ristic, upper and lower design values of &; but w; = 0 if the variable
action is absent and v; = 1 or 2 if two positive variants are actual
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o j takes the values 0,1,2 for load effects; in another notation: j = m
for bending moment Mg, j = n for axial force Ng, j = v for shear
force Vs, j = ¢ for column sway, j = § for beam deflection.

The Eurocode 3 and the Polish design standard PN-90/B-03200 recom-
mend iterative procedure to amplify the initial imperfection ¢, of frames
which are classified as the sway frames. The classification of frames is cumn-
bersome. That is why we better treat each frame as a sway frame in the
computer-aided analysis. The amplified sway ¢ will be determined exactly
in Module 3 for selected load arrangements, load combinations and load ef-
fect interactions. The iterative procedure may be faster if a preliminary value
¢ > ¢, is taken at the starting point.

» It has been shown (Murzewski, 1992) that neither iteration of sway values ¢
nor approximate amplification factors (EC3/5.2.6) would be necessary if
the exact stiffness EI of the columns (from Module 2) and combination
values of loads (¢vF');c (from Module 3) were known in advance. A new
explicit formula has been derived

b= Elg,sgne, + Z Ay, (1/J'7F)z
ET =3 by, ($vF)i

where the matrix (9yF) is reduced to a vector (¢yF) for the selected
load combination ¢ = 0,1,2,... Both influence matrices (the first order
a, and the second order one by) are reduced to vectors ay, and by,,
respectively, for selected load arrangements w;.

(2.2)

3. Module 2 — resistance characteristics

The characteristic values of yield strength fi = f, with the partial safety
factor yp = 1.1 and ultimate tensile strength f, with ~yao = 1.25 are
inserted into the block of constants. The free lengths I, I, and spacings a;
of stiffeners necessary for stability verification are also there. A trial value of
eccentricity e, is inserted to the block of variables. There are also the cross-
section dimensions, e.g. h, b, ty, ty, 7y, (Fig.2) in the case of a HEB section.
Algorithms for evaluation of the resistance R; in simple design cases and
interaction relations between the load effect components S; = Mg, Ng, Vs
are given in the third block.
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Fig. 2. I cross-section of a steel member

3.1. Equivalent load effects

If the bending moment Mg occurs simultaneously with the axial force
Ng and/or the shear force Vg, the ultimate limit state of cross-section will
be reached earlier than in the case of a single Mg action. A new concept
of equivalent load effect S, will help to check the ultimate limit state of
structural element in the case of interacting moment and forces

Seg < R (3.1)

where
R - reference resistance; let it be the bending resistance B = Mg

for cross-section design and compression resistance R = Np
for member design
Seq — equivalent load effect; bending moment S.; = M,, for cross-
section design and equivalent compression force Seq = Neg
for member design.
Both structural elements: cross sections and members are treated separa-
tely. The difference is that the buckling factors x; and an equivalent uniform
moment factor p are introduced to member design.

» If the equivalent load effects M,y and g are linear functions of loads Fj,
matrix calculus may be applied and interaction matrices may be defined.
They help to transform vector F into a scalar Seq. Another design
philosophy is presented in Eurocodes and most national standards. The
reduced resistance moments are defined: My, - for simultaneous action
of bending moment and axial force, My, - in the case of moment and
shear force interaction. They will not be used any more.
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3.2. Cross-section design
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Fig. 3. Piece-wise linearised interaction surface

The standard interaction formulae M N, MV and NV may be represented
in a non-dimensional coordinate system (Fig.3)

_Ms Ns

n = ﬁ
- Mg ~ Ng

= (3.2)

m v

where the resistance values Mg, Ng, Vg are defined for simple design cases
as follows

Np = Anf Ve = oS
™ ™ V3ym

(3.3)

where W, = Wy, for the cross-sections of Class 1 and Class 2 or W, = Wy
for the cross-section of Class 3 (EC3/5.4.5), the cross-sections of Class 4 are
not taken into consideration in this paper; Ay = A if Ng > 0 (compres-
sion) or Ay = min(A4, Apefu/vm2) if Ns < 0 (tension) (EC3/5.4.3&4);
Ay = hty, - shear area = full section of the web for any class of the cross-
section (EC3/5.4.6). Subscript d denoting the design value is not added to
the main symbol in this paper.

The Eurocode 3 allows one to apply plastic global analysis only to the
structures the members of which have cross-sections of Class 1 although it
recommends the plastic resistance moment W), also for the cross-section of
Class 1 and Class 2. A little more conservative rule has been accepted by
the Polish design standard. Both standards admit elastic global analysis in all
cases.



340 J.MURZEWSKI

» The Author does not object to the apparently contradictory elastic glo-
bal analysis and plastic resistance moduli in bending of cross-sections of
Class 1. He understands that the residual stresses and stiff cross-sections
allow for reaching the upper yield limit fy, > f, before full redistribu-
tion of bending moments at the ultimate limit state occurs. However, the
author would advise to take different shear areas: Avp, = Ay for Class 1
or Class 2 and another value Ay, = It,/S;/; for the cross-sections of
Class 3, respectively. The proportion Ay, /Avp, will be exactly the same
as it is in the case of bending section moduli W, and Wy

AVE, ~ Itw Wel

=~ = 3.4
Av,  Siphty Wy (3-4)

The standard interaction formulae have empirical background and they
have been simplified in order to make the design easier.

The MN interaction diagram (EC3/5.4.8) is piece-wise linear for the
standard rolled I sections

1 for n<n,

m= 1—n (3.5)
for n>ngy,

1-n,

where ng, = 0.5 + bty/A is the coordinate of the MMN diagram corner for
the cross sections of Class 1 or Class 2, but n,, = 1 for the cross-sections of
Class 3.

The MYV interaction diagram (EC3/5.4.7) is parabolic in the range

0.b<w <1
1 for v <oy
m = (3.6)

1—(1=my)(2v —1)2 for v > vy

where m, =1 — A% /(4t,W,) and vy, = 0.5 are the coordinates of the MV
diagram corners.

» Secant linearization of nonlinear interaction equations has been advised
(Murzewski, 1997). The parabolic MYV interaction curve, Eq (3.6), in
the range 0.5 < v < 1 may be approximated by the secant committing
an error less than 5% on the safe side

0.5m+ (1 — my)v =1—0.5m, (3.7
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Secant linearisation of the limit state locus is always conservative. Inac-
curacy can be as small as we wish thanks to further fragmentation of the
curves. The clause EC3/5.4.9 defines some interaction rules for bending,
shear and axial force which are not compatible with EC3/5.4.7. That is
why the more detailed but uncertain eight equations for the Mg-Ng-Vg
interaction (Murzewski, 1999) are not presented in this paper.

Let six linear interaction equations define the ultimate limit state locus
(Fig.3). The non-dimensional interaction matrix m represents its geometrical
shape. The coefficients m;j. of linear equations (3.8) of the polyhedron in
the interaction ranges e = MO, MN, MV, NV, MNV create the non-
dimensional interaction matrix m (Eq (3.8))

moe Mg + e Ng + o, Vo = Mp

(3.8)
[ 1—-vpy (1_nm)(1 _Um) )
1 1- —_— 0 0
i 1 —myv, D
I — vy, 1—vm,
= 1 - = 0
m 0 0 1 - nyvm, D
0 0 1 —m, 1—nm  (1=my)(l—nm) )
L 1—=myvy, 1 —nyu, D i
M~ NY—~— ~ 7N N 7N Vv AV
MO MN MV NV MNV VO

where Mp = const is the reference resistance equal to the design resistance

moment in simple bending and

D =1—(my — myngy + nm)m,

Uy, = 0.5

A specific interaction matrix (rm) relative to a selected cross-section is
defined as the product of the cross-section core vector r and non-dimensional
interaction matrix m. The elements of the vector r are defined not only for

MN but also for MV interaction ranges

(rm) = diag[r] - m

(3.9)

The transposed specific interaction matrix (rm) = (rm)T will be multiplied

by the nested influence matrix {c¢;,}; and the product will define effective
influence coefficients {(crm)ey }i- The subscript j will disappear in the matrix
multiplication.
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3.3. Member design

The member design rules are different from those for the cross-section if
there are compressive stresses and instability must be taken into consideration.
The reduction factors x; for member design are defined in Eurocode 3

X0 = XLT for beam buckling (EC3/5.5.2)

X1 =X for column buckling (EC3/5.5.1)

X2 = V3 Tpe/ fy for shear buckling in the ”simple” post-critical me-
thod (EC3/5.6.3).

Each reduction factor x; depends on the so called "non-dimensional”
slenderness J;, proportional to the member slenderness \; = [/i.

» In author’s opinion (Murzewski, 1992) the ”non-dimensional” slenderness
specified in the clause EC3/5.5.1 should be corrected

~ A [1.21 — Aj
Aj = -7?]\/ Tfk instead of A= ?]\/ % (3.10)

The reason for correction is that at least equal safety factor should be
applied to median resistance of very slender columns N, = m2EA/\?
(if A — o0) as it is for the median plastic resistance of thick columns
Ny = fmA (if A — 0). The difference between the median value f,
of yield strength and the nominal value fi is about 21% for structural
steel according to the representative statistical estimates for structural
steel (Murzewski, 1989) but the EC elastic modulus E = 210 GPa is
close to its median value. The correction (3.10) has been introduced to
the Polish design standard. Better agreement would be with the value

E = 205 GPa (Polish standard) or E = 200 GPa (American standard).

The interaction curve MN for bending and axial compression can be
concave because of the second order deflection of the member. Secant line-
arisation would be unsafe in this case. The nonlinear and mathematically
non-homogeneous equation is recommended as the limit state criterion by

EC3/5.5.4

M N N

S (1-‘“ S)+ S <1 (3.11)
xoMpg x1Nr/  x1Ngp

where the correction factor p; can be either positive or nonpositive. It is

defined as a complicated function of geometric properties of the member.

» Equation (3.11) can be reduced to a linear equation by the algebraic trans-
formation

Ms N
(s+s

<1 3.12
XoMpr XlNR)an (3.12)
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where

_ 1+ 1 Hyen
Bmn = 0 T AL T 11 + en)?

Such a transformation is possible also for the Polish MN interaction
formula (Murzewski, 1997). The advantage of the form (3.12) is that the
eccentricity ratio e, = Mg x1/(Ns xo) need neither partial factors -;,
nor combination factors ); provided that the loading process is simple
(proportional). If a safety condition is defined in the symbolic form (3.1),

both the left-hand side N, of and the right-hand side Npg of the

inequality Ng, < Ng will be separated thanks to this correction.

Interaction between the bending moment Mg and shear force Vg for
members is similar to that for cross-sections (EC3/5.6.7). The nondimensional
interaction matrix (Eq (3.8)) may define also the shape n of the limit state

locus of members as well in the three-dimensional space m-n-v (Fig.3).

the scalar axial force N, has been defined as the equivalent action

Since
effect

Seq for member design, the inverse section cores r;- = 7y /7 are introduced
with the buckling factors x; and the second-order effect factor pmn. So, the

specific interaction matrix (rn) is defined for member design as follows

[ pmnd
XOWy
Hmn
X1
V3A

| x24y

hence (rn) = diag[r'] - n.

(3.13)

Then, the specific interaction matrix transpose ()’ is multiplied by the

nested influence matrix ¢ (Eq (2.1))

{(ern)ev}i = (Tn)ej{cjv }i

4. Module 3 — reliability verification

The intended lifetime of the structure t4 and partial safety factors

(3.14)

; for

actions F; are inserted to Module 3 block of constants. The -y; values may
be corrected by factor -y, depending on the accepted reliability class. The
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equivalent geometric imperfection, defined as the initial sway ¢, (EC3/5.3.4),
is also in the block of constants; however, a guess value of amplified sway ¢ is
inserted to the block of variables. The value ¢ shall be corrected by means of
the non-iterative formula (2.2). The actual sway ¢ will change definitely the
complex influence coefficients (2.1) into the real numbers {c;,};. The nested
unit load array ¢ has been multiplied in Module 2 by the specific interaction
matrix (rs) = either (rm) or (rn) for any load F;

{(crs)en}i = (8)ejlcin}i (4.1)

The nested array (crs) means either (crm) in the case of cross-section design
or (crn) in the case of member design like the equivalent load effect S, has
meant either equivalent moment M., or equivalent force Neg.

4.1. Combination matrix

Ferry-Borges and Castanheta (1971) defined a stationary stochastic model
of actions where the loads F; were ordered with respect to the numbers
V; = tref/0; of repetitions during a specified reference period t,.y. Random
values F; remain constant during elementary time periods 6;, ¢ =1,2,...,n,
(Fig.4). There are 2" ! possible combinations in this model with n being the
number of independent variable loads.

F1 ‘\ c=1 & ¢=3
) c=4
c=2
0 =
[ 0— ] [ref {
1
c=2
F2 c=1 s c=4
C:
t
0 L-.-l Irt‘f V[
62
F c=4
} ., ¢=3
0 T lrsf >l
3

Fig. 4. Regular sequences of three random actions F;, which are constant during the
periods 8;
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A simplified rule was proposed by Turkstra (1972) where one variable ac-
tion Fi, ¢ = 1,2,...,n, was dominant and the values of other non-dominant
actions Fj;, i # ¢, were reduced to their point-in-time intensities. Thus only
n combinations have to be taken into consideration. A similar combination
rule is recommended by Eurocode 1 but the elementary period 6; are taken
instead of the point-in-time values. The reference period is t,.; = 50 years
and the combination factors are 4 = 0.7 for the imposed loads and 4 = 0.6
for climatic actions at the ultimate limit states according to the Eurocode 1
(Table 3). Combination factors 1 of the Eurocode 1 yield lower estimates
of combined loads than the Ferry-Borges and Castanheta model predictions.
Therefore they are unsafe.

Table 3

Wi [ 1 2 [ 3] 4]

QT Lt ]o7]07][07
S 06 10606
T |06]06] 1 |06
W 0606 06] 1 |

» A new combination rule (Table 4) has been derived (Murzewski, 1996)
which gives safe upper bound estimates of combined action effect. The

elements of the new combination matrix are

-~ Gumbel coefficients of variation of the zth action maxi-

"/jic =

1 —v;In(50/6;)
1 —v;1n(50/86.)
1

where

¢ - subsequent numbers of possible dominant variables,
c=12,...,n

Vg
mal in the reference period ;.

Table 4

e[ 1] 23 ]4

Q 1 10710707

S 07| 1 [06]06

T [|07]06] 1 |06

W ||0.7]106]06]| 1

if
if

1< ¢
1>c

(4.2)
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The coefficients wv; and elementary periods #; have been identified so
(Murzewski, 1999) that the same values ;. = 0.7 and 0.6 would appear
in the combination matrix (Table 2). The new matrix 4 is symmetric.
If the intended lifetime td is different than t..; = 50 years, the non-
dominant combination factors ;. will be the same but the combination
factor 1); of dominant loads will be different from 1, namely

td
Yii =1+ vilngo (4.3)
Eq (4.3) has been derived assuming of the Gumbel probability distri-
bution.

The elements of the combination matrix % are multiplied by the elements
of the design load vector (vF) = ;- F; and they give the combination load
matrix (¢yF) necessary for the ultimate limit states verification

(YyF) = diag[(vF)] - 9 (4.4)

4.2. Extreme load effects

Solution to so-called the first extremum problem helps to identify the most
unfavourable variant v; for every load Fj;, ¢ = 0,1,2,...,n one after another
in each interaction range e =0,1,2,... So, either nested array (crs) ((crm) or
(ern)) will be reduced to two conventional matrices (maxcrs) or (mincrs). The
maximum effect of any variable load Fj, 7 > 1, will be non-negative and the
minimum effect of this variable load will be non-positive thanks to the zero
variants v; = 0,2 > 1

(mazers)e; = mg,x{(crs)ev}i and (miners)e; = mgn{(crs)ev}i (4.5)

In the example under consideration, we have obtained the two matrices,
(maxcrs) and (mincrs), with the elements (mazcrs)e; and (mincrs)e;, re-
spectively, for five independent actions F; = G, @, Sn, T, W (Table 2) and
the interaction ranges e = M0, MN, MV, V0, VN, MNV (Fig.3).

The extreme influence matrices (maxcrs) and (mincrs) for the selected load
variants are multiplied by the combination load matrix (¢yF). The matrix
product of the combination load matrix (¢yF) and the extreme influence
matrix (crs) will give the equivalent load effect matrices

(maxS) = (maxcrs) - (¢yF) and (minS) = (mincrs) - (pyF)  (4.6)
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The load index ¢ disappears as a result of the matrix multiplication (4.6).
The maximal equivalent load effects (mazS)e. and minimal equivalent load ef-
fects (minS).. are derived for each load effect interaction range e = 0,1,2, ...
and each load combination case ¢=10,1,2,...

Solution to the second extremum problem helps to determine the most
unfavourable effective load S., among all combinations ¢ and interactions e.
The two scalar extreme values (MazS) and (MinS) are determined

(MazS) = ngaéx{(maxS)ec} and (MinS) = ngicn{(minS)ec} (4.7)
The absolute maximum of equivalent moment M., is actual for design of
bisymmetrical steel cross-sections

M.q = max{(MazS), |(MinS)|} (4.8)

and the absolute value of minimal equivalent force N4 (compression) is actual

for member design
Neg = |(MinS) (4.9)

Thus the equivalent load effect S, is determined in either design problem.
The critical load case (v;,¢c,e) can be additionally recognised. The result S,
shall be adjusted to the exact amplified sway ¢. The preliminary value of ¢
shall be corrected in the block of variables for either design case.

Finally, the ultimate limit states of cross-section and the structural member

are verified
Meg < Mg =7 and Neg < Ng =7 (4.10)

If we get 1 on the right-hand side of either criterion (4.10), the safety will be
all right; however, economy of design shall be still checked in such a way that
some smaller sections shall be taken into account and criteria (4.10) will be
not satisfied, i.e. symbol 0 should appear on the right-hand side of at least one
criterion.

All critical cross sections and structural members can be verified using the
same or a modified design template. In addition, separate calculations have to
be made in order to verify the limit states of serviceability: Maximum values
of frame sway |¢| and beam deflection || have to be verified for characteristic
loads F; (without ~; factors) and suitable combination rule from Eurocode 1
(EC1/9.5.2)

max(A¢) = max || ~ do < dmaz and max |8] € pmaz Or d2 (4.11)
v,i,C v,4,C v,i,C
The limiting values ¢maz and ey, 02 are specified in Eurocode 3
(EC3/4.2.2).
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5. Final remarks

This paper may be helpful to see what is Design Template in the author’s
understanding. The idea of design templates is such that a designer can mo-
dify it or include some parts of previous templates. The author hopes that
the design templates will give good solutions for codified design when semi-
probabilistic method of partial factors has been introduced and new standards
are implemented. Professional structural design computer programs are usu-
ally obsolete except for elastic analysis programs which do not change too
frequently. Academic teachers and professional designers may learn only few
conventions of a chosen mathematical computer program unless they have used
them before. A great difference between laborious traditional calculations and
the new computer-aided approach is obvious. Using the computer templates
one must take into consideration the following items:

e Computer-aided structural design will be easily verifiable if all constants,
variables and algorithms are written in environment of the mathematical
program (e.g., Mathcad) in due order

e No numerical results must be revealed for confirmation of structural
reliability but they would be helpful to discover errors, to check economic
and techunological aspects

o Thousands of load cases, load combinations etc. for each element may be
checked if matrix calculus and new extreme value procedures are applied

e Once prepared templates may be saved in the computer memory; they
may be included entirely or partly to next design projects.

Design rules and algorithms of Eurocode 1 and Eurocode 3 have been taken
to exemplify the design template. The Eurocodes are not yet mandatory even
in the countries of the European Community. Therefore some discussions and
corrections (marked with ») may be useful to perfect the final version of the
European design standards.
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Szablony projektowania — nowe narzedzie komputerowych obliczen
elementéw konstrukeji

Streszczenie

Szablon projektowania definiuje sie jako wczeéniej praygotowany ukltad obliczert
komputerowych, ktéry moze by¢ sprawdzany i modyfikowany w poszczegdlnych przy-
padkach przez projektanta, co nie jest mozliwe przy korzystaniu z komputerowych
programdéw projektowania. Ustali¢ trzeba najpierw obcigzenia globalne i wykonaé ob-
liczenia statyczne dla kazdego wariantu obcigzen jednostkowych z osobna. W wyniku
obliczeni statycznych formuluje sie macierze blokowe wptywu obcigzen. Qkresla sie

9 - Mechanika Teoretyczna
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nastepnie macierze wspéldzialania sit wewnetrznych 1 macierze kombinacji jednocze-
snych obcigzen. Stosuje sie nowe procedury macierzowe w celu wyszukania najbardziej
niekorzystnych wariantéw dla kazdego niezaleznego obciazenia z osobna, a nastepnie -
najbardziej niekorzystnego przypadku wspéldzialania sil wewnetrznych i kombinacji
obciazen. Przykladowy szablon projektowania dotyczy stalowej ramy portalowej pod
obciazeniem stalym i dzialaniami zmiennymi oraz sitami drugiego rzedu wynikaja-
cymi z przechylu stupéw. Na poczatku obliczei iteracyjnych okrefla sie zespolone
wspolczynniki wplywu obciazen 1 wstawia prébng warto$é dopelnionego kata prze-
chytu. Proponuje sie przy tym poprawki pewnych niedcistych wzoréw Eurokodu 11 3.
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