JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
2, 38, 2000

WHITE NOISE EXCITED VIBRATIONS OF VISCOELASTIC
SHALLOW SHELLS

JOzZEF NIZIOL
MAREK S. KOZIEN

Institute of Mechanics and Machine Design, Cracow University of Technology

e-mail: kozien@mech.pk.edu.pl

The paper presents the results of the analysis of randomly excited vi-
brations of viscoelastic shallow shells. The parameter of interest is the
dispersion of velocity normal to the element surface. The choice of para-
meter is motivated by estimation of the noise generated by a vibrating
panel.
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1. Introduction

Shallow shells are commonly used as constructional elements in cages of
heavy duty machines. These elements, during the machine operation, are the
source of structural noise inside the cages. To estimate the total acoustic power
radiated by surface elements, the value of second power of velocity normal to
the middle surface and averaged over the time and space (the area of element),
can be used Beranek (1988). The study of the effect of the curvature radii of
shallow shells on the value of averaged second power of velocity, made by the
authors for harmonic excitation has shown that this influence is strong. This
analysis was carried out with no internal damping of the material taken into
account.

In the present paper internal damping of the Voigt-Kelvin type is assumed
and the analysis is conducted for random external force excitations. In the
analysis the white noise signal is used.
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2. Mathematical model of a vibrating shallow shell

Let us consider vibrations of shallow shells with internal damping. A shal-
low shell is after Mazurkiewicz and Nagoérski (1991), a shell for which at each
point of the middle surface the angle between the plane tangent to this surface
and the plane of its horizontal projections is suitably small. The geometry of
shallow shell is shown in Fig.1.
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Fig. 1. Geometry of shallow shell (after Kolkunov, 1973)

The Voigt-Kelvin model is used to describe damping in the material. In this
case, the total stress components consist of the two parts: elastic ones (e),
and damping ones (d). The damping in the material is represented by the
value of the viscous damping coefficient «.

It was assumed in the earlier analysis, that the elastic properties of the
material are described by the values of Young modulus £ and Poisson ratio v
(isotropic and homogeneous material). In the present paper it is assumed, that
the value of damping coefficient ¢ does not depend on the direction, and is
given by a constant material parameter. This material is called a simple Voigt-
Kelvin material

— 4€ d — € d _ € d
0z =05 + 0y oy = 0, + 0y Toy = Toy + Tay (2.1)

In the case of shallow shell made of a simple Voigt-Kelvin material, physical
equations have the form (Xia and Lukasiewicz, 1995)
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The set of equations of motion of the shallow shell with the geometry
shown in Fig.1, written for unknown displacements u, v, w, and positive radii
of curvatures Ry and Ry, has in general the form of Eqs (2.3). The analogous
set of equations without damping was given e.g. by Waszczyszyn (cf Rakowski,
1982; Waszczyszyn, 1995), and was applied in our previous studies (cf Kozien,
1996; Kozien and Niziol, 1993a,b)
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(2.3)

T yp O Ow 2L vydu 131, vy,
ozt 0z20y*  oy!  h*\R, R,/0z h*\R, R,/0y

12,1 1 2v R R R
+ﬁ<R/§. t gt K)w+66z4 H2g s gt

12 ;1 wN\O& 12 ;1  v\8
+h—25(R_1. + E)% + ﬁE(E + E)@ +

12 /1 1 JZN h. 1
+ﬁe(R—% + 7 + Rl.Ry)w + %w = 52(z,y,1)

where

u,v,w — displacements, in the directions 0z, Oy, 0z, respectively
h - thickness
R;, R, ~ radii of main curvatures of the middle surface
E - Young modulus
v — Poisson ratio
D - bending siffeness, D = ER%/[12(1 — v?)]
B ~ in-plane stiffeness, B = Eh/(1 —v?)
€ — viscous damping coeflicient
p - material density
X,Y, Z - external non-inertial loads, in the directions 0z, Dy, 0z,

respectively.
The equations of motion of the vibrating surface elements have in general a
coupled form. Often, during analysis, the inertial components which represent
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the motion in the tangential directions of the middle surface are neglected.
In such a case the amplitudes of vibrations in the tangential directions are
calculated basing on those for bending vibrations. This idea is commonly used
for the dynamic analysis of shallow shells (see e.g. Kolkunov, 1973; Nath et al.,
1987; Nowacki, 1972). The motivation for this approach is the following. The
basic eigenfrequency of bending vibrations decreases with decreasing thickness
of the element, whereas the same parameter of vibrations in the tangential di-
rections does not depend on the thickness. So, usually the eigenfrequencies of
in-plane vibrations are significantly higher then for the bending ones (Kolku-
nov, 1973). Therefore, it is assumed in the paper, that the velocity components
in the first two equations of motion can be neglected too. Moreover, it is as-
sumed that only the excitation in the direction normal to the middle surface
(0z-direction) is taken into acoount. This is a function of time only (random
f(t)) with a constant amplitude go. On these assumptions, the equations of
motion (2.3) are simplified to the form

u 1-vdu 1+v 6% 8(111 w)_o
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The simply supported—free-fixed type of boundary conditions are chosen.
By this we mean the simply supported case of bending vibrations

=0

Sw(z,y,t
w(xay/t)’ =0 Ml(xvyvt)’ :_D(—y) =0
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Pw(z,y,t
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3. Method of analysis

3.1. Free vibrations

The solution to the problem of free vibrations Z(z,y,t) = 0, with unknown

displacements u(z,y,t), v(z,y,t), w(z,y,t), can be written in a series form

with unknown amplitudes Ay, (t), Bma(t) and Ty, (t), which are functions
of time only, multiplied by functions of space variables (z,y) (eigenfunctions)

only
u(z,y,t) Z A (t) cos(Amz) sin(pny)
m,n=1
v(z,y,1) Z Brmn (t) sin(Amz) cos(pny)
m 1
" (3.1)
w(z,y,t) = »  Tun(t)sin(Amz) sin(pny)
m,n=1
mm nw
Am = — Hn = —/
a b
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Substituting the proposed solutions (3.1) into the first two of Eqgs (2.4)
the functions Amn(f) and B, () can be obtained

H
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(3.2)
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In the next step, the discussed functions are introduced into the third of
Egs (2.4). Thus, the differential equation of shell vibration, with unknown
amplitudes 7., has the follows

h . 12 12 12 .
%Tmn(t) + £ [()\?n + /14121)2 - amn;ﬁ’iu)\m ~ bnn Ex}’ivﬂn + }L_ZK] Tmn(t) +
C-r‘r:n
(3.3)
12 12 12

+ [()‘gn + l‘L?L)Q - amnﬁﬁu)\m - bmnﬁﬁvﬂn + ﬁ’ilen(t) =0

Cmn

Eq (3.3), after some transformations, can be rewritten in the form, which
includes the parameters commonly used in dynamics; namely, eigenfrequency
of undamped vibrations wy,, and dimensionless damping coefficient (,n

Tmn(t) + 2Wmn<mnTmn (t) + ‘-‘/rgnnTmn(t) =0

D

cuzm = Ecmn (3.4)
1 D

mn — 56 p_hcmn

The solution of Eqs (3.4), has one of the forms given in Eq (3.5), depending
on whether the value of damping coefficients (;,,, is smaller or greater than
unity

—for (pp <1

Wmn = Wmn i/ 1- Cﬁm

Tonn(t) = Lmne_wm"<mnt sin(@Wnnt)
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— for Gmun >1

S — 2
Wmn = Wmn Cmn -1

(3.6)

T (t) = Lipne ™t sinh(@mnt)

3.2. Forced vibrations

A time-dependent external excitation in the form of function acting in the
Oz direction, which does not depend on the spatial coordinates, is considered.
According to the third of Egs (2.4) it has the form Z(z,y,t) = f(t)qo/D,
where gqg is a constant amplitude.

Let us propose the solution to the problem in the series form, with an
unknown function Sp,,(t)

w(z,y,t) Z Spn(t) sm Am) sin{pny) (3.7)
m,n=1 ~
Wnn(Z,Y)

The external excitation function, can be written in the form of Fourier
series (3.8), where functions Hp,(t) are given by Eq (3.9). Due to the ortho-
gonality of wpy,(z,y), the form of H,,,(t) is easily obtained

Z(z,y,0) = 51 (0) Z Hon (8) wynn (2, 9) (3.8)
m,n=1
16 1
Honn (1) = —5%% ()  myn=13571,... (3.9)

The differential equation for unknown functions Sp,(t) has the form
(3.10), and its solution is given by Eq (3.11), which depends on whether the
value of damping coefficient (, is smaller or greater than unity, see Eqgs
(3.12) and (3.13)

& . 16 1
Sy (8) + 2wmnCmnSmn (t) + W Smn(t) = F%% ) (3.10)
t
16 q0 1 1
Smn(t) = ——— - 11
malt) = o 0/ hran(t = 7) () dr (3.11)

and
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— for (pmn <1

T _ 2
Ymn = Wmn = Wmay/ 1- Cmn

(3.12)

. | 0 t< T

mnlt —7) =
n e—wmnCmn(t_T) Sln[wmn(t - 7_)} t 2 T

— fOI‘ Cmn >1

h | 0 t<T

n(t —7) =
m ( e—u)mn(mn(t_T) Slnh[a}mn(t - T)] t 2 T

3.3. Random excitations

Assume that the excitation has the form Z(z,y,t) = z0f(t) (see Egs
(2.4)), where f(t) is a random stationary process with a known correlation
function Kyg¢(t1,t2) = Kfp(7); T = to — t1, and the mean value equal to zero
< f(t) >=0.

The solution to the problem is proposed in the form

400
w(z,y,t) = Z wmn(Iay)Smn(t) (3.14)

m,n=1,3,5,...

The correlation function of the process w(z,y,t) takes the form

wa(tlatZ) =
(3.15)
+00 400 +00
- / / Wi 2,9) S (1) S Wik (,9) Smn (12)p(21, 203 1, 1) dz1d2
—00 —00 5k=1

where p(z,z9;t),12) is the two-point distribution density of the random pro-
cess f(t).

After suitable averaging over a group of realizations one obtains the cor-
relation function in the form
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256 2 e T
0 S — 3 fkwmn(z,y)wjk(z,y)'

wa(tlu t2) mn
(3.16)

T 9.0
T ph mn=1,35,. T k=135,

t to
. /hmrt(tl —Tl)/lljk(tQ_TQ)Kff(Tl,TQ) dTldTQ
0 0

The dispersion of displacement o2 (t) is obtained directly from the correla-
tion function putting t) = to = t. For the known form of correlation function
K¢¢(71,79) the area of integration is divided into four subareas: I, II, I1Ja and

IIIb depending on the relationship between ¢, and ty (Fig.2).
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Fig. 2. Partition of the area of integration into the four subareas I, II, Illa and IIIb

If the correlation function of the velocity normal to the surface of a shell
K, is of interest, it can be easily obtained by applying Eq (3.27). For a
stationary process, Eq (3.27) takes the form (3.28). It is assumed that due to
small curvatures of shallow shell, V, = w is the most important component
of the normal surface velocity vector. Therefore, the value of normal surface
velocity is approximately equal to the component V,, and the dispersion of
this component only is analysed

BQwa (tl; t2)

Ky (t1, = 3.1
(t1,12) Bt, 0t (3.17)
2
Ko (T) = T Kuulr) (3.18)
d?r

where 7 =19 — ;.
The dispersion of displacement or velocity can be obtained by setting
tp = to = tin Egs (3.7) or (3.18).
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The dispersion of shell displacements will be obtained in the case of exter-
nal force excitation by a random process of white noise type. In this case we
have Eq (3.19), where (7 — 79) is the Dirac delta function

256 22 RO | R |
0-121) (1"7y/t) = e 0 Z —wmn(zay) Z —w]k(zc,y) ’

1 2p2 -
T p*h* L S, mn iks1a Ik (3.19)

t T
. /hmn(t—Tl) dT1/hjk(t—T2)5(Tl—T2) dry
0 0

After integration and some arduous transformation, one obtains the formulae
for dispersion of displacements in the form (3.20) and for the normal surface
velocity in the form (3.21), where the functions Gmnji(t) have the form (3.22)
for (mn < 1 or the form (3.23) for (p, > 1. In Egs (3.20) and (3.21)
underlined symbols w, G and K denote different values of the parameters
depending on the value of (., (see e.g. Egs (3.5) and 93.6)) which is denoted
by an overline (for (mn, < 1) or a tilde (for (pp > 1)

256 z2 1N 1
2 _ 0 . .
ou(2,y,t) = 27r4 thanZ_ls mngimnwmn(l:y)
o dydyenn (3.20)

+oo

——— Wk (%, Y) G i (t)
- JEW ik
5,k=13,..: J

256 23 X 1
2 0
. t = 2— .
(;w(z,y, ) o p2h2 mnéls mngmn’wmn(l’ay)
o= Ly Jye. (321)
+o0

jkw N ’lUjk(fL', y)Kmnjk(t)
j?kzllsl"' _J

G 'k t) = F ik — [ + I} w +
mnjk( g {FTanjk + (Wmn + Wjk)? ["r?nnjk + (@Wma — wjk)Q]

2 Tomie + @mn + @) T + (@mn — @jk)?
-sin((Wpmn + @k )t] + (3.22)

anjk COS[(wmn - wjk)t] anjk COS[((an + ‘_ij)t]]

+1I 'k[ — — - — —
e Fgmjk + (wmn - wjk)2 Frgmjk + (wmn + wjk)2
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_{(wmn + Wjk) SIN[(@mn + Wik)t]  (Wmn — Gjk) SIn[(@mn — wjk)t]] }
an]k + (Wmn + w]k) Fr%mjk + (wmn - wjk)

~ 1 1
Gmnjk(t) an]k l:‘l—"’z],n]k (wmn n (:)jk):z + F,injk — ((Dmn — (:ij)Q} +
1 o~ Tmnsit [ wmn~+ Wik _ + (T)mnN— Wik _ ] .
I’,zmjk — (@mn + wjk)2 F,fmjk — (@mn — wjk)2
-sinh|[(@mn + W)k )t] + (3.23)
+anjk[ (Qrosh[(C)mn + &v}jf)t] . ;:osh[(&,,in - (Djf)t] J N
L2 ik — @mn +@55)* D2 — (@mn — @jk)?

+{(‘Dmn + w]k) Slnh[(‘zmn + ‘Djk)t] _ (Wmn — ‘Djk) Sinh[(amn - ‘Djk)t] ] }
T2 (mn + @jp)? 2 (Gmn — 0jk)
mnjk mn Jk mnjk mn jk
where

Ik = WinnCmn + wikCik

Due to the fact that some of the components reach zero very fast Eqs (3.22)
and (3.23) can rewritten in the approximated formulae

1 1
G ik (t) = it = Lmnik + — —
] Gmnj mnj [Fzmk + (wmn + w]k) Frgznjk + (Wmn — lec)z}
(3.24)
~ ~ 1 1
G k(t) ~ G ik = I, ik = + ~ =
mnj mng g {Fén]k (WOmn, + w]'k)2 F,rinjk — (W — W]2-k)2]

The dispersion of the normal surface velocity is given by the approximate
formulae

Kmnjk(t) ~ Kmnjk =

ik [wmncmnwjk b wjkgjkwm" wmnCmnwjk + wjijkmeLJ +
" L mnjk + (Wmn + w]k) F2 mnjk + (wmn - w]k)
(3.25)
+ o | ! + 1 }
& _ R _ -
T e+ (@ )2 Tl + (@mn — k)

'(Tmnjk + wmnwjk)
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Kmnjk(t) ~ Kmnjk -

= Do wmnCmn(:}jk + wjk(jk&mn WmnCmn‘I}jk + w]'k(jk&mn:l
™ Ff?m]k (wm” + &jk)2 FTQRTZ]/C (wm” - G}jk)Q
(3.26)
- 1 " 1 ]
" - _ _ _ .
mnjz I?nn]k (u)mn + w]k)Q F12nnjk i (wmn — wjk)2

'(Tmnjk + wmn“’jk)

where
Tmnjk = wmn(mnwjijk

The dispersion of displacement and velocity are functions of the surface
variables (z,y). It is useful to average them over the whole surface of the
element and calculate new parameters — the surface averaged dispersions ()
and (02), as defined by the integrals (3.27).

Due to the fact that in the definitions of the dispersions only the eigenfunc-
tions wmyn(z,y) are functions of surface variables, after suitable integrations,
and taking into account the approximate formulae (3.24), (3.25) and (3.26),
the averaged dispersions are not functions of time too, and take the final forms
(3.28), where App; i are defined in Eq (3.29)

e b
ib// (z,y,t) dzdy
0

(3.27)
a b
L// ) dad
p (z,y,t) dzdy
0
256 28 1 X 1 =
(0%) =2 505~ ——— Gk Amnjk
w 7 p2h24m,n:21,3,...m"—“—’mn j,k;&..:kﬂjk mnjkiimng
(3.28)
256 28 1 X 1 @
(05) =24 557 D, > o KongiAmagn
W s ph24m’n:1’3 MNWmn ;57 _jkgjk
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a b 1
—ab for m=7 An=k
Amnjk = // wmn(l'ay>wjk(way) dzdy = 4 !
a0 0 for m#j5 VvV n#k
(3.29)

4. Numerical example

Let us consider a shallow shell in the form of an elliptical paraboloid,
whose equation of the middle surface has the form (4.1), where f is the shell
deflection (see Fig.1)

(22 —a)®  (2y-— b)Q]

2ayy) = f1 - (4.1)

In this example we limit the analysis to the case of a shell whose projection
on the plane zy has the form of square a = b. The dispersion of displacements
and velocities for the shell with a deflection f = 0.1 m is compared with the
values for the corresponding square plate f = 0m. We assume the following
values of parameters: ¢ = b=1m, h=0.002m, f=0m and f = 0.1m,
E = 21-10"Pa, p = 1900kg/m3, v =03, ¢ = 0.001, zy = IN/m”.
For these values of parameters, the eigenfrequencies and dimensionless modal
damping coeflicients for the odd modes are given in Table 1.

Table 1. Values of eigenfrequencies [rad/s| and dimensionless modal dam-
ping coefficients for a plate and a shallow shell for the lowest odd modes

Mode Plate Shallow shell | Shallow shell
f=0 f=20.05m f=01m
(m,n) Wmn l Cmn Wrnn ‘ Cmn Wmn J Cmnj

61.6 | 0.031 | 1033.0 | 0.517 | 2063.2 | 1.032
308.0 | 0.154 | 1076.2 | 0.538 | 2085.2 | 1.043
564.4 | 0.277 | 1170.7 | 0.585 | 2135.5 | 1.068
800.7 | 0.400 | 1305.6 | 0.653 | 2212.3 | 1.106
1047.1 | 0.524 | 1469.6 | 0.735 | 2312.9 | 1.157
15639.9 | 0.770 | 1853.2 | 0.927 | 2573.8 | 1.287
1539.9 | 0.770 | 1853.2 | 0.927 | 2573.8 | 1.287
1786.3 | 0.893 | 2062.5 | 1.031 | 2728.3 | 1.364
2279.0 | 1.140 | 2501.4 | 1.251 | 3073.6 | 1.537
3018.2 | 1.509 | 3189.4 | 1.595 | 3655.5 | 1.828

e N N N S S N s N S

AN TN TN TN N T o e e
~ Ot w ot w = e
~N N~ N T Ot OT W o
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The values of dispersion of displacement (¢2) and normal velocity (afb),
averaged over the surface, for the chosen values of deflection f are given in
the Table 2.

Table 2. Values of averaged dispersion of displacement and normal surface
velocity for some values of deflection

Cfm] ] 0 [ 001 [ 002 [ 005 | 02
(¢2)[m?] 10.367-107° 0.258-10‘8l0.210-10‘9}0.103-10‘1° 0.401-10—13)
%)Eﬁ] L0.150-10qg157-10—3 0.578-10*4 0.238-10 0.110-10—j

5. Conclusions

e The analysis results show an important influence of the shallow shell
deflection on dispersion of displacement and dispersion of normal surface
velocity, averaged over the middle surface of the element, for external
force excitation of the white noise type.

e The same conclusions have been obtained in the case of excitation by a
deterministic force (for harmonic and poliharmonic excitation).

e The analysis of random vibrations of the shell excited by coloured noise
should be carried out next, which is planned to be done by the authors
in the near future.
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Drgania lepkosprezystych powlok matowyniostych poddanych
wymuszeniu losowemu typu biatego szumu

Streszczenie

W artykule oméwiono rezultaty analiz drgan powlok malowyniostych wykonanych
z materialu lepkosprezystego i poddanych wymuszeniu losowemu typu bialego szumu.
Jako parametr opisujacy drgania przyjeto dyspersje skladowej predkosci normalnej
do powierzchni $rodkowej powloki. Wybdr tego parametru jest uzasadniony faktem,
iz jego warto$é moze by¢ miarg warto$ci mocy akustycznej promieniowanej przez
drgajacy element.
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