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The paper presents a theoretical model of wave propagation through
groups of spacers in a multiconductor bundle. The important quanti-
ties; such as, energy of passed and reflected waves, respectively and the
energy dissipated in the spacers have been determined. It is shown that
oscillations can be reduced by a proper design of groups of spacers. The
theoretical analysis is illustrated with numerical results.
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1. Introduction

Multiconductor bundles are used in many high voltage power transmission
lines. The characteristic construction features of bundles favour the formation
of subspan oscillations. They are located within sectors — between the groups
of spacers.

The subspan oscillations are caused by aerodynamic shielding of leeward-
lying conductors by the windward ones (Claren et al., 1974). They occur within
the range of wind velocity from 7 to 18 m/s. The corresponding frequency
is associated with the subspan length. The wave length is usually twice the
subspan length. For the bundles with subspans 30 + 70 meters long, and
the tensions of conductors used in practice, the subspan oscillations occur
at frequencies lying in the range 1+ 3Hz. The conductors of upper pair in
subspans oscillate in phase opposition. The amplitudes of motion can be so
large that the collision of conductors can take place.
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Fig. 1. Three-conductor bundle

The subspan oscillations were described by Diana et al. (1990) and [5,6].
Both the occurrence and decay of oscillations depend on conditions determined
by the wind flow and construction parameters (mainly the number of conduc-
tors, the number of spacers and their configuration in groups, different lengths
of subspans) (Markiewicz and Snamina, 1995). Special visco-elastic spacers are
used to dissipate the energy of motion. The variety of atmospheric conditions
causes electric lines being often in favourable circumstances to form subspan
oscillations. It is, therefore, essential to design the bundles in which the oscil-
lations would be cut down quickly by the dissipation of energy in spacers and
conductors. Hence, it is a basic problem to investigate the propagation of wave
arising in a subspan through the groups of spacers (Mead, 1973).

The characteristic quantities: the energy of passed and reflected waves, and
the dissipated energy are used for a proper selection of construction parameters
of the spacers.

2. Model of a spacer

Spacers can differ in construction details, but the basic elements are com-
mon. In all constructions there is the rigid element of a spacer separated from
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conductors by flexible elements. The model of a spacer is general and can
be applied to any two-conductor spacer. It is assumed that the spacers are
connected in the planes perpendicular to conductors and they undergo plane
motion (Fig.2). The local co-ordinate system &7 is connected with the equili-
brium state of a spacer. The vector AOﬂBO, which connects the origin with the
end of a spacer in the state of equilibrium is parallel to the versor &, and the
point A coincides with the origin of the local co-ordinate systen.

rigid part of spacer
AQ) damping insert
conductor

Ap(1)

A
7

Fig. 2. Physical model of a spacer

The origin and the end of a spacer in the state of equilibrium coincide with
the points A, and By of the respective conductors. The points A°, BY, AJ,
BY stand for the positions A, B, Ay, By in the equilibrium state.

The motion of the conductors and spacer causes the points A, B of spacer

and A,, By of conductors to displace.
Assuming small angles of rotation (Fig.3) we obtain the linear equations

of motion around the static equilibrium in the local co-ordinate system

m505 :HAé +HB§
mgCn:HAn"'HBn (2.1)
16, = Hpy(b~d) — Hayd + (Hae + Hpe)a

where
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Fig. 3. Rigid element of a spacer

— mass of the spacer

moment of inertia of the spacer

— spacer length

a — distances defining the position of the spacer centre of

mass

dce,0cy  — local components of the centre of mass displacement
vector

do - angle of rotation

Ao~y
[

and Ha¢, H 4y, Hpe, Hpy — local components of the reaction forces from con-
ductors.
For small rotations the following relations hold

5/'\5 = 505 + (5(pa 635 = 6C§ + (5,‘0(14

(2.2)
Say = 6cn — 6,d Sy = dcq + 0,(b— d)

where 04¢, 04y, dp¢, OBy are the local components of the displacement vectors
of the origin and the end of spacer (index A stands for the quantities associated
with the spacer origin, index B — with its end).

Damping elements are described by the general linear physical law in the
form

LH =MA (2.3)
where
H - vector of the forces acting on the origin H 4 or the end Hp of
spacer
A - relative displacement vector of the origin A4 or the end Ap

of spacer
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o~

L, M - matrices of differential operators

L= {f/rt}r,t:l,Q M= {M\rt}r,t:l,‘z

with the follows differential operators are (r,t =1,2)

1

) d rt)

(
~ dm
Ly = Pf)rt) + + -9

dt TLET“ dtnﬁrt)

(rt)

= o, () d (rty d™
My =qy " +4q T +...+ qnért)dtTgrtT

0
A'=a) B~

Fig. 4. Displacement vectors

The physical law for each spacer is defined in the local co-ordinate system.
Writing down the components of forces Hy4, Hp and the components of
relative displacement vectors Ay, Apg in the local co-ordinate system, we
obtain from Eq (2.3)

(2.5)

where L, M | L, M stand for the matrices of differential operators

?

(Eq (2.4)).
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In accordance with the notations in Fig.4 we have

{AAE}:F%E}_WAE

| Won L d.an i

(2.6)

[4351 -UJSE}_—‘SB§~
ABT]J | Wsn _5Bn_

The transformation between the local co-ordinate system associated with
the spacer and the global one is represented by the transfer matrix

cosd@ sind
$ = 2.7
[ —sinf cosf } @7)

thus we obtain

Wpn | Wpz
(2.8)
’U)SE | _ & [ ’U)Sy :|
[ Wsn L Wsz
and
[ Hay — ! [ Hag
Hyz | Hian |
(2.9)

3. Propagation of the wave travelling through the group of
spacers

According to experimental results [5] we consider small vibrations and
describe the physical and geometrical characteristics of the structure by linear
differential and algebraic equations.

The equation of motion for the conductor lateral vibrations can be written
as follows 2 2 5

P~ N az T %o (3.1)
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where
w(z,t) — function representing the lateral displacement
7 — linear mass density of the conductor
N — tensile force
o — dimensional coefficient of dissipation.

The waves which propagate along the power transmission line must satisfy
the constraints resulting from the connection of conductors with spacers. The
analytical form of these conditions depends on the approach used for descrip-
tion the structure motion. We use the superposition principle, which is applied
here to travelling harmonic waves generated by all forces in the structure. We
also assume that, apart from the external original sources, the forces in spa-
cers are also the secondary sources of travelling harmonic waves entering the
superposition. We can describe the waves by making use of unknown forces in
spacers. These waves must satisfy the conditions resulting from the physical
characteristics of spacers.

The basic formula used in the method is the expression for a harmonic wave
travelling on each side of the point at which the steady state force is applied.
From the elementary equilibrium conditions for a cable sector it appears that
the force

F(t) = Fpe"* (3.2)

applied at the point z( of the cable generates a wave given by the formula

Fy . -
) = —e—1k|z—zo|ewt 3.3
Yo = N i) (3:3)
where
Fy, - complex vector of the force amplitude
v — circular frequency of the wave
k - complex wave vector, the real part of which is connected with

the wave length by the relation A = 27/R(k), and the imagi-
nary part is responsible for the decrease in the wave amplitude
with the growing distance from the source

b ()

The superscript f stands for the quantities associated with the fth spacer,
while the indices s and p are equal to the conductor number joined with the
end and with the origin of the fth spacer, respectively.
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From Eqs (2.2), (2.6), (2.8) we obtain

[ Al | _ar | why J B [ 6L+ 0faf }
A%, | L wh, || 6L, - sld!
(3.4)
A | [ vh } [ bt dged J
| A%, | L wl, || 6L, + a5 - df)

The components of displacement vectors of a cable are determined as a
superposition of deflections caused by the propagation of harmonic waves

f m l
wsy(t) o 1 FA
[ ’LU{Z(t) } N —ZikN(l + lav) {Z ([ Fi\i

=1

gsi+

l

F . n . .
Fll;y ‘| (1 - QSI)) Qslewlkh;f_l.[| - Z [ Y ‘| Gsle_lk]zf‘l.é"} ewt

+ l
Bz =1 PZ

In thel above relation

T - co-ordinate of the [th spacer section

'l - co-ordinate of section where the Ith harmonic
force is applied

P;,le -~ amplitudes of the complex components of the
lth force

Fiy,Fiz,Féy, FL, - amplitudes of the complex components of for-
ces acting at the origin and the end of the Ith
spacer

m - number of spacers

n - number of external dynamic harmonic sources
(forces)

Qs1, Qst, Gl - transformation coeflicients defined as follows:

1 when the sth cable is connected with the origin of the Ith
spacer

gs; = < 0 when the sth cable is connected with the end of the [th
spacer

2 when the sth cable is not connected with the [th spacer

0 { 1 when the sth cable is connected with the [th spacer
sl =

0  when the sth cable is not connected with the [th spacer
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C 1 when the [th external force is applied to the sth cable
l =
’ 0 when the /th external force is not applied to the sth cable

The coefficients ¢g and @, determine in Eq (3.5) the forces marked with
the symbol A ({associated with the origins of spacers) or the forces marked
with the symbol B (associated with the ends of spacers).

We define the complex amplitudes

f
[ 3¢ (t) Agf
vt
L) | = | Af [e
RO AL
(3.6)
[ wl, (1) } _ [ Wy, } ot [ w], (t) } _ [ Wi, } oivt
| wl.(t) Wi, wi, (1) Wi
and the operators
n(lrt) 7LgTL)
L= Y (iw)ipl” M= (vl (3.7)

Substituting Eq (3.4) into Eq (2.5), making use of Eq (2.9) in Eq (3.5) and
using Egs (3.6) and (3.7), we obtain the system of equations with unknown
complex amplitudes Flje, F/ﬂm, Fpe, Fh, of forces and complex amplitudes

Ag, AL, AL (1=1,2,...,m) of displacements
£ 2 4f _ pf f
m’v A€ —FA§+F35
24 _ pf f
—-mlv An _FAn+FBn

_IfU2A£ _ F}Efzr,(bf _ df) _ andf + (F/{(E + Fég)af

(3.8)
£ [ A
LAS {FAE _ MAf (I)f[wpfy} 3 A§+A£af
Fi, | Wi, Al — Afdf
[ i
s | Fre :Mgf{q)f[wsf;j}_ Al + Afof ”
Ff, Wi || Af+ AL - df)
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FlzBE —ik|zf 2! <N le/ —ik|zf —zl)|
+ Pl (1—gs) | Que - ; | o Ge P

Bn

f [ gl
I: WS?/ } . = @Z]—l FA§
w/, 21kN 1+1a1/ = i F/lér;

The formulae for Wpy, W can be obtained from Eqs (3.8) only by replacing

indices s with p.

In Eqs (3.8) LAS, MAS, LPS MBS stand for the matrices of algebraic ope-
rators defined as in Eqgs (3.7), associated with the origin (symbol A4) and with
the end (symbol B) of the fth spacer. Substituting Eq (3.9) into Eqgs (3.8)
we get the system of 7m equations in 7m unknown quantities. Such a system
must be written for each spacer in a group. After solving these equations we
use complex force amplitudes to calculate the complex amplitudes of travel-
ling waves. Then energy of the passed waves, energy of the reflected waves and
energy dissipated in the spacers can be found.

source ol waves
e S5 S5 A

P
| 7

Fig. 5. Group of spacers

When analysing the propagation of harmonic wave through a group of
spacers we have assumed that damping in a cable was negligible « = 0. As
the external sources of waves we consider two harmonic forces having the same
amplitudes and opposite phases. They are parallel to the y-axis of the global
co-ordinate system and are applied at a cross-section on the left-hand side of
spacers to cables No. 1 and 2 (upper pair — Fig.5).

The following dimensionless quantities have been introduced

Z
A
AL Al
A=A

7= (in the same way :ﬁé,Al Ep,Wsly, Wslz,bl a! d )

7
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1
o _ T (in th ay :FL, Fhe Fb Pl Ph
he = 7\/— I the same way L' 4, L' pe, Bty t 2

(rt)
RO R S RPN

% N T =
~rt) _ _(rt) 1 .o (rt) o
R §=0,1,2,..,n; r,t=1,2
( n(lrt)
L” = LTL — Z (27Ti)]],\)§rt)
0
= < I e
N — N 3
My = — My = — Z (27”)',65”)
) y 4
\ J=0
{ Il
LA LA

where T = 27 /v stands for the wave period.
Eqgs (3.8) take the form

o~ f%f _ °f - f
—47 mfAé—ﬁAg+FB§
2~ fAf _ 1of - f
—47 mfA,f,—FAn+FBn

4 TAL = L, (6 — &) - Bl & + (Fl, + B!

(3.10)
W Wi [ At ALal
~A A ~ A
N f ~f€ — M f{q)f ~py _ ~§ fw
| Fl, wi | LAl - AL
[ wi Al + ALt
il ~B§ VLI ~sy _ éN Nwa )
|, vl LA A -
f=12,...,m s=s(f) p=p(f)

where

12 - Mechanika Teoretyczna
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Fl

Wi, R he
- _r Z Ql} ! ~1 gsi+
ZB I (= A
(3.11)
FIB s 2 pl o
+ | =gy | QueizeE -3 R R
Fan =1 Pé

In numerical computations we assume that all spacers are made of the
same material and their construction is the same. The flexible elements of
spacers are represented by the standard model of visco-elasticity (Fig.6).

Fig. 6. Standard model of spacer holders
The algebraic operators have the following form (f =1,2,...,m)

A A B B
lef = L21f = L12f = L21f =0

A A B B
M12f = M21f = M12f = M21f =0

A A B B .
Luf = L22f = Luf = L22f =po + (iv)p;

A .
Mllf:M{;f :Mﬁszgf =qo+ (iv)gy

where
—1 00
Po q0 o+ 0
_ ﬁ . ﬁcl
pL= a1 =

C + ¢ ¢+ ¢
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The dimensionless parameters of the standard model have the form

5—@ 5_6_2/} F=r2_
L™ N TN T NT

The dimensionless distance between the spacers in a group is additionally
introduced 5
°=3
Rigid part of each spacer is a homogeneous rod with the centre of mass
lying in its geometrical centre (af =0; df = 8f/2).
The results of computations are shown in Fig.7 and Fig.8. The powers
shown In the graphs are dimensionless. The power of incidence waves is equal

to 1. They run from the left-hand side of the group of spacers.

1.1 1.0
LOF == 1S 0.9f (®)
0.9r ) . - 0.8f;
8'3: 0.7t -
0.6f ' issi (())i
0.5F 0'4? 8
0.4f A
03F ! Do 03&-’
0.2k u N 0,2:" o
0.1 0.1} R :
[ AJJ_/I\‘ ------- ol
001 05 09 L3 17 . 21 10 50 90 130 170 él210

Fig. 7. Power dissipated, power of the passed waves and power of the reflected
waves; ¢ =20, 3=16,0 =0.1, b = 0.01, m = 0.05

4. Optimal choice of damping coefficients

As an example we consider optimization of the spacer with respect to ma-
ximum of dissipated energy. Numerical calculations of the optimal damping
have been made the following method. The damping coefficients of spacers
01, B2, B3 are the parameters of optimization. We assume c¢; = oo and the
same ¢y in all spacers of the group. The numerical program calculates optimal
damping for arbitrary cg, using the sequence quadratic programming method.
To calculate the direction of the solution improvement the quadratic program-
ming problem is solved. The Hesjan is updated by the variable metric method.
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Fig. 8. Power dissipated, power of the passed waves and power of the reflected
waves; (a) ¢, =20, 8=16,6 =0.1, b = 0.01, m = 0.05;
(b) & =20, & =20,8=0.1, b=0.01, @ = 0.05;
(c) & =20,3 =20, §=16,b=0.01, 7 = 0.05
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After determining the direction of solution improvement of the maximization
in this direction is realized.

2.0

1.5

1.0~

0.5

Fig. 9. Optimal damping parameters

In Fig.9 the optimal damping parameters ), B2, B3 versus ¢y are shown.

5. Conclusions

The following conclusions can be drawn from the analysis of the diagrams
presented:

e Power of the passed waves varies with the stiffness parameter ¢;. For
¢1 = 0 the conductors in a bundle are independent of each other and the
source generates travelling waves in the two upper conductors, the power
of the passed waves is equal to 1. There are resonances of the system for
small values of ¢;. The power of the passed waves is nearly constant for
great values of c;.

e The curve representing the dependence of energy dissipated in the spa-
cers on the damping parameter [ reveals a maximum. The parameter
[ increase kinematically stiffens the spacers causing the decrease in the
motion amplitudes of the spacer holders.

e There are optimal damping parameters of the spacers with respect to
the maximum of dissipated energy for arbitrary stiffness parameters.
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The algorithm shown in this paper may be used in the designing of the
group of spacers. The energy of the passed waves and the dissipated energy
can be used as a criterion when choosing the optimal group of spacers.
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Analiza propagacji drgan odcinkowych przez grupy odstepnikéw
w wigzkach przewodow

Streszczenie

W pracy przedstawiono teoretyczny model przejScia fali biegnacej przez grupy
odstepnikéw w wigzce przewoddéw elektroenergetycznych. Wyznaczono energie fali
padajacej i fali odbitej oraz energie rozproszong w odstepnikach. Pokazano, Zze przy
odpowiedniej konstrukeji odstepnikéw mozna obnizy¢ drgania odcinkowe przewoddw.
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