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The problem of critical values of external loadings for a circular plate sub-
ject to bending and radial tension is discussed. The deformation process
of a perfectly elastic-plastic sandwich plate clamped on a rigid shaft ter-
minates, when radial strain in one of the layers tends to infinity. Then the
plate reaches its decohesive carrying capacity, because further increase of
loadings leads to inadmissible discontinuity of the radial displacement.
For the plate subject to tension and bending (uniformly distributed mo-
ment over the outer edge), corresponding curves of elastic and decohesive
carrying capacities are found.
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1. Introduction

For some perfectly elastic-plastic structures, attempts at finding the li-
mit carrying capacity, connected with certain mechanism of plastic collapse,
fail. The limit carrying capacity cannot be reached, because earlier some in-
admissible discontinuities of displacements occur. The corresponding external
loadings were called by Szuwalski and Zyczkowski (1973) decohesive carrying
capacity.

This effect is observed due to an infinite increase in one of the strains -
derivative of displacement. The process cannot be continued, as the increase
of external loadings would result in a displacement jump; i.e., division of the
structure into two parts.

The problem was investigated for bar systems, and disks by Szuwalski
(1980), (1986). For beams the decohesive carrying capacity is connected with
formation of the first plastic hinge (full plastification of the first cross-section).
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For statically determined beams it coincides with the limit carrying capacity,
while for statically indetermined beams it is smaller than limit carrying ca-
pacity, calculated with the help of plastic hinge concept. Tran-Le and Zycz-
kowski (1976) using the concept of decohesive carrying capacity, clarified the
well known Stussi-Kollbrunner paradox. Other examples may be found in the
survey by Szuwalski (1990).

In the present paper, for the first time, the possibility of the decohesive
carrying capacity occurance in the case of two-dimensional bending is investi-
gated. The problem of disk with a circular rigid inclusion, subject to in-plane
tension, discussed earlier by Szuwalski (1979), is generalized by adding out-
of-plane bending, as well. As the integration over the thickness of the plate
would involve to significant complications, the sandwich structure is assumed.

2. Elastic carrying capacity

The circular plate of perfectly elastic-plastic material, clamped at the inner
perimeter is investigated. The plate is subject to uniform tension at the outer
radius p, and bending with the moment m uniformly distributed over the
outer radius b. It has two thin load carrying layers, located at a constans
distance H (Fig.1). In both layers of the thickness A the plane stress is
assumed.

Fig. 1. Circular sandwich plate under combined loadings

The internal equilibrium conditions in polar coordinates, for the discussed
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plate have the form

n, + %(nr —ng) =0 m,. + %(mr —my) =t (2.1)
where
nr,nyg  — Intensities of radial and circumferential normal forces
my,mg — intensities of bending moments
tr — shear force intensity (in the plate under consideration
equal to zero)
() — derivatives with respect to the radius.

For the sandwich plate the relations between generalized internal forces,
and stresses have the form

my = (o, —of)Hh my = (o5 —op )Hh 2.9)
ny = (o, + 0, )h ng = (o5 + og )k ‘
the subscript ”+” corresponds to the upper load carrying layer, while ”-” to

the lower one.
Substituting Eq (2.2) into Eq (2.1) leads to the internal equilibrium equ-
ations, expressed in stresses

(2.3)

Taking advantage of the Love-Kirchhoff hypothesis, the strains in both layers
may be expressed in terms of the radial displacement « and the vertical one
(deflection) w

et =M — k. H=u+Hu"

T

wl

" (2.4)
e =M+ k. H=2 — Huw"

Eg:M—MH:$+H

!

U w
€g =M+ rgH = -~ H—
T T

The first one of the internal equilibrium conditions (2.3), after making use
of Hooke’s law, can be rewritten as

1 1
U” + ;Ul - ﬁu =0 (25)
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defining the radial diplacement
B
u(r) = Ar + - (2.6)
The second one of Eqs (2.3) helps to find the deflection w

2 1 1 (r)

v " " 1 q

where ¢(r) stands for the surface loading intensity, in our case equal to zero,
and

2EhH?
D= 2.8
1-v? (28)
is the plate stiffness. :
The general solution of Eq (2.7) may be written as follows
w=F, + Fyr*+ F3r?Inr + Fy Inr (2.9)
The integration constants can be found from the boundary conditions
for r=a w=0 w' =0
(2.10)
for r=19 m, = —m tr =10

The stress intensity according to the Huber-Mises-Hencky hypothesis, for
the loadings shown in Fig.1, is maximal at the inner radius a in the upper
layer. When this maximum takes the value of yield stress o,

ol +0} —or0p =02 (2.11)

the first plastic deformations occur and the elastic carrying capacity is exhau-
sted. This condition may be rewritten in terms of the internal forces intensities

mr(a) 2ho,
mrle) ¥ H T 1-v+.2

where the upper signs apply to the upper layer, while the lower ones to the
other; v stands for the Poisson ratio.

Expressing the internal forces acting at the radius a, by the external
loadings, we come to the equation of elastic carrying capacity in the loading
plane

(2.12)

_ 2 v 1-v
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where the dimensionless external loadings were introduced

1/;,

o mm
2hao = SHho,

(2.14)

and [ stands for the ratio between radii § = b/a. In the 1), u coordinates
Eq (2.13) describes four straight lines, forming a square (Fig.2). The diagonal
of it A, has a length equal to the doubled value of the right hand side of Eq
(2.13).

3. [Elastic-plastic range

For positive values of loadings (Fig.1), first plastic deformations occur in
the upper layer in the vicinity of inner radius «. In the plastic zone, for
a £ r £ 7y, the stresses must satisfy the Huber-Mises-Hencky yield condition.
This will be ensured, by application of the Nadai-Sokolovsky parametrization
2 2 T
- + .

0, = —0,sin 0, = —=0,sin|( + —) 3.1

T \/g o C [} \/g o (C 3 ( )
Distribution of the parameter ¢ may be determined from the second equation
of (2.1) in the form of reversed function

V3
exp (3¢
r=0C M (3.2)
sin(¢ - 1)
This parameter may take values 7/2 < ¢ < 27/3.
To establish the integration constant C7, the boundary condition
ega) =0 (3.3)

formulated for strain, not stress, must be used. Therefore, the strains in the
plastic zone must be found. To this end, the deformational theory assuming
proportionality of stress and strain deviators, combined with the law of elastic
volume change is used. They finally lead to the equation

deg
iid:d 3 3.4
i +/3¢p = 3\/_Ksm(<+6) (3.4)
solution of which has the form
ef = sin ¢ + Cy exp(—v/3¢) (3.5)

3\/_K
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where K = E/[3(1 — 2v)] is the bulk modulus.
Taking advantage of the compatibility condition

£ = €g + TEY (3.6)

and Eq (3.5) the radial strain may be found

Cy T
+ .
€ sin( ¢ + + sin({ — < | exp(—Vv3 3.7
= grmeom(C )t ppsin(C- g ee-va) @)
It is worth noticing, that for ¢ — m/2 this strain will tend to infinity.

To determine displacements of the plate, the lower layer (which remains
elastic) must be taken into account. Expressing strains in this layer by the
displacements (Eq (2.4)), and taking advantage of Hooke’s law, from the equ-
ation of internal equilibrium (2.3), we come to

rw" +w' — lw' L —[(re) — e ] (3.8)
T 2H 0 ’
This equation may be treated, as the second order equation with respect to
the deflection angle « = w'. After integration we arrive at the solution

T
=S —ey .
a=Sr + + S0 (3.9)
with two integration constants: 7 and S. From the second one of Egs (2.3),
the radial displacement may be found

T
w=—H(Sr+ ;) + ge; (3.10)

The described above one-side plastified zone a < r < 7, is surrounded by the
totally elastic one 7 < 7 < b, in which the elastic solutions (2.6) and (2.9)

found earlier may be applied.
The complete elastic-plastic solution may be found with the help of twelve
boundary conditions

for r=a u® =0 w'®) =0 (=4

for 7 =1, ulP) = e w'(P) = ' (e) (=¢
niP) = n'e) m'P) = e UZ_+(6) =0,

for r=19 mge) =-m ni’” =7p 58) =0
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They enable one to determine the following twelve unknowns: integration con-
stants in elastic zone A, B, F», F3, Fy and in the plastic zoue Cy, Co, S, T,
values of parameters (; and (,, and radius dividing both zones r,.

When the magnitude of one of external loadings is much bigger than the
other, it is possible, that plastic deformations may occur also in the lower layer
of the plate. Then three zones in the plate should be distinguished: both-side
plastification a < 7 < 77, one-side plastification r; < r < 77, and elastic
zgone for 7y < r < b It turns out, that in the layer plastified up to the
radius 777, from the continuity coditions on the radius ry it results, that the
constants C) in Eq (3.2) and Cj in Eq (3.6) are the same on the both sides
of ry. Consequently, in this layer only one plastic zone for a < 7 < 777 may
be discussed, no matter if the other layer is also plastified, or not.

4. Decohesive carrying capacity

The first plastification always takes place at the clamped edge, for r = a.
Then the parameter ( is
V3

tan Za = E}——l (41)

and may take values from = /2 for v = 0.5, to 27/3 for v =0.

Further increase in external loadings is associated with the occurance of
plastic zone in the vicinity of radius a, where the parameter ¢ is always smaller
than (,. The parameter in this zone is a monotonic increasing function of the
radius, so it reaches its minimal value at the inner radius, but it never can be
smaller than /2.

The denominator of the formula for radial strain e (3.7) contains cos¢,
while the constant C, in the numerator is always nonzero. As a result, when
the parameter at the inner radius ¢, reaches the value 7/2, the radial strain
tends to infinity. According to the geometrical relation

_du

== (4:2)

Er
it means infinitely large derivative of radial displacement wu. Continuation
of the process (increase in external loadings) is impossible, because it would
result in a jump of radial displacement at the radius «, inadmissible from the
viewpoint of continuous medium. Consequently it leads to separation of the
upper layer from the rigid shaft. The external loadings for which the continuous
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solution ceases to exist, represent the decohesive carrying capacity, the set of
maximal admissible loadings.

To establish the decohesive carrying capacity of the plate, the complete
elastic-plastic problem, with the help of twelve boundary and continuity con-
ditions (3.10), must be solved. One of the unknowns will be already given,
because the parameter (, may be assumed equal to /2, as it is in the
moment of decohesion. Instead of it, the relationship between the external lo-
adings at the moment of exhaustion of decohesive carrying capacity may be
found.

After some transformations, this relation may be rewritten as

~ o300+t 8* - p} m
+ph=—=:5 —(1 - 2v)=—Zexp|V3(= — 4.3

Y+ 2\/562 ing —( v) 2\/?;)62 xp[ (2 Cl)] (4.3)

where [ = b/a represents the width of the plate, while p; stands for the
dimensionless radius separating the elastic and plastic zones in the upper layer

of the plate
="l = exp [ (¢~ 5)] ()
¢ 2sin (¢ - §)

The value of the parameter at this radius (; is established by the transcen-
dental equation

v = % + %gcos ¢, exp[\/g(cl - g)] (4.5)

From the above equations it can be seen that, the width of the plastic zone,
at the moment of decohesion, depends only on elastic constant — Poisson ratio
v, and is independent of plate dimensions. The solution of Eq (4.5) for v = 0.5
is ¢; = m/2. Consequently p; = 1, i.e. the plastic zone cannot spread out and
the decohesive carrying capacity coincides with the elastic carrying capacity —
instant decohesion. The plastic zone is widest for v =0, when p; = 1.084.

Taking into account all possible combinations of the external loadings sen-
ses, from Eq (4.3) the equations of four straight lines may be derived. These
lines create a square in 1u plane, completing the decohesive carrying capacity
curve. Both the elastic and decohesive carrying capacity curves are presented
in Fig.2.

Let us notice that such a formulation of the problem admits the possibility
of termination for the plastic deformation process, also due to compression,
as & — —00. Such a criterion is a purely mathematical one, however, within
the framework of the small strain theory, it establishes termination of the
continuous elastic-plastic solution.
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Fig. 2. Elastic and decohesive carrying capacity for the plate subject to tension 1,
and uniformly distributed moment p; I - elastic range, II — elastic-plastic range
(one layer plastified), 111 - elastic-plastic range (two layers plastified), 1 ~ elastic

carruing capacity, 2 — decohesive carrying capacity

Parameter ( in the plastic zone on the compressive side takes values from
3n/2 to 5m/3, and at the moment of decohesion is equal to 37 /2. Therefore,
Eq (4.4) must be slightly changed

by — eXP[@(CL - %“)] (4.6)
2sin (¢ + 2r)

and Eq (4.5) should be replaced by

?cos ¢ exp[\/g(Cl - §7r)] (4.7)

1
Y7y 2

In the first and third quadrants in Fig.2 the limiting states are reached in
the lower layer, while in the second and the fourth — in the upper layer. In
the elastic-plastic range regions of one-side and both-sides plastification are
distinguished. In the vicinity of axis 1) stresses (and strains) in both layers
have the same sign, while in the vicinity of axis u — different signs.
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The dimensions of diagonals of squares in Fig.2 depend on material of plate
(Poisson’s ratio v) and its geometry (width ). The courses: of A, for elastic
carrying capacity, and Ay for decohesive carrying capacity are presented in
Fig.3 in the form of spatial diagram.

ABA
1.182

Fig. 3. Dimensions of the limiting curves for various materials (v) and disks (3)

With an increase in the plate width [, both capacities decrease, and for
an infinite plate they asymptotically tend to the minimal value, depending
on v. The curve for v = 0.5 is common for both surfaces — elastic and
decohesive carrying capacities coincide. The differences between decohesive,
and elastic carrying capacities decrease, with an increase of Poisson’s ratio v
(up to zero for incompressible material v = 0.5). The values of both capacities
simultaneously increase.

The case of very narrow plate should be discussed separately. When the
ratio between radii f is smaller than the dimensionless radius separating the
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elastic and plastic zones, at the moment of decohesion p, (4.4), the whole
plate (at least one of the layers) is fully plastified before decohesion. In spite
of this, further work of plate is possible. It can carry external loadings, even
of larger magnitudes than at the moment of full plastification. The loading
increase results in redistribution of stresses, but the displacements may be
precisely determined - the mechanism of plastic collapse does not exist.

The process may be continued up to the moment, when the parameter (,
at the clamped edge reaches the value /2. So it is terminated by the infi-
nite increase of the radial strain (exhaustion of decohesive carrying capacity),
described by the equation

~ 2 ~
Y+ = —=sin( (4.8)

V3

The value of parameter Eb at the outer radius b, may be found at this moment
from the relationship

e[ (G- 1)) = yfein(6 - 1) (19
In this case the decohesive carrying capacity does not depend on the elastic
material constants (Poisson’s ratio v), as it was observed earlier Eq (4.3). Tt
results from the fact, that elastic zone in the layer, in which the parameter
reaches the value of 7/2 (or 3m/2i), vanishes.

In the present paper the case of rather simple external loadings (Fig.1)
is investigated, because only then the shear force is equal zero, what makes
it possible to find the analytic solution. Such a solution was necessary for
examination whether the continuous solution, may be prolonged up to the
limit carrying capacity. It turned out, that earlier inadmissible discontinuity
of the displacement occured and solution vanishes.

Determination of the curves of decohesive carrying capacity for plates with
non-zero shear force ¢, (2.1) is much more difficult. It needs a numerical ap-
proach and will be presented separately. The most important is the qualitative
conclusion from here presented analysis, that continuous elastic-plastic solu-
tion will be terminated then, again, when parameter at radius a reaches the
critical value 7/2 or 3m/2. The range of admissible loadings will be bounded
by four segments of curves (not straight lines). However, it may be proved,
that in the limiting case of incompressibility, these curves become straight and
coincide with the elastic carrying capacity. The plastic zone cannot spread out
then, and instant decohesion is obtained.

13 — Mechanika Teorctyczna
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5. Concluding remarks

The problem of decohesive carrying capacity, associated with termination
of the elastic-plastic deformations process, was earlier discussed for disks sub-
Jject to tension in its plane. In the present paper, for the first time, the loadings
perpendicular to the plane of disk, causing bending, were taken into account.
For simplicity, the sandwich structure was discussed. It turned out, that the
process terminated when, in one of the layers, radial strain tended to infinity.
It means that the derivative of the radial strain becomes infinitely large, so
continuation of the process must result in jump of radial displacement and
separation of this layer from the rigid shaft.

The decohesive carrying capacity, in contrast with the limit carrying ca-
pacity, depends on elastic material constants. In the case of incompressible
material (Poisson’s ratio v = 0.5), it coincides with the elastic carrying capa-
city. The plastic zone cannot spread out then, and e, — oo at the moment of
first plastification.

The next step in investigations, should be connected with the replacing the
sandwich structure by another one. It would cause significant complications,
as a simple addition should be then replaced by integration over the plate
thickness. One may anticipate, that the process will be limited, as it was
observed in beams. Application of the finite strain theory would not introduce
major qualitative changes. As it was proved by Zyczkowski and Szuwalski
(1982), the decohesive carrying capacity again will occur, and will be even
slightly smaller. This time it will be caused by inadmissible discontinuity of
the stress field.
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Noénoéé rozdzielcza kotowej plyty sandwiczowej

Streszczenie

W pracy zajeto sie problemem wyznaczania krytycznych wartosci obcigzen ze-
wnetrznych dla kolowej ptyty poddanej rozcigganiu i zginaniu. Proces odksztalcen
dla idealnie sprezysto-plastycznej sandwiczowej plyty osadzonej na sztywnym wale
konczy sig, gdy odksztalcenie promieniowe w jednej z warstw zmierza do nieskon-
czono$ci. Uklad osigga wowczas swojg nosnosé rozdzielczg, poniewas dalszy wzrost
obciazen prowadzitby do niedopuszczalnych niecigglosci przemieszczenia promienio-
wego. Dla plyty poddanej réwnomiernemu rozcigganiu w kierunku promieniowym
i zginaniu réwnomiernie rozlozonym na obwodzie zewnetrznym momentem wyzna-
czono odpowiednie krzywe nosnoéci sprezystej i nodnoéci rozdzielczej.
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