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The Adaptive Neuro-Fuzzy Inference System (ANFIS) has been applied
to the analysis of three problems: prediction of fundamental periods of
vibrations of 5-storey prefabricated buildings, estimation of proximal
femur strength, estimation of fracture toughness of dense concret. The
results obtained by means of ANFIS are compared with those empirical
formulae and forward neural networks. The ANFIS results have been
proven to be superior.
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1. Introduction

Fuzzy Inference Systems (FIS), Artificial Neural Networks (ANNs) and
Evolutionary Strategies (ES) create the background of the so called soft com-
puting (cf Jang et al., 1997). A natural tendency is interaction and joining
the components of the above mentioned approaches; e.g. fuzzy-networks are
worth emphasising as a new efficient tool for the analysis of various simula-
tion and identification problems. This concerns especially the problems with
experimental evidence.

Applications of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to
the analysis of three problems are briefly discussed in the paper. ANFIS has
been used to the analysis of experimental results obtained when solving the
following problems of structural mechanics and biomechanics:

e fundamental period of vibration of 5-storey buildings

14 — Mechanika Teoretyczna



430 7. WASZCZYSZYN, M.SELONSKI

e strength of proximal femur

e fracture toughness of dense concrete.

The common feature of all these problems is that only one output variable
is considered. The fundamental periods of vibrations were computed basing
on the dynamic responses measured on real buildings. The strength of pro-
ximal fernur and bone properties were measured during in vitro experiments.
Laboratory tests were performed on special specimens made of dense concrete.
One-to-one correspondence of the input and output data took place in the first
two problems considered. It is not the case of fracture toughness estimation
since, as usually in laboratory tests, the specimens made of the same concrete
revealed various magnitudes of the fracture force. Another common feature is
that a relatively small number of tests can be carried out.

The problems were briefly discussed in the contributions presented at the
EANN’99 Conference, cf Waszczyszyn et al. (1999), Putanowicz and Wasz-
czyszyn (1999), Ziemianski et al. (1999). In these papers the attention was
focused on the results obtained by means the forward neural networks, i.e.
Back-Propagation NN and Regularization NN.

2. Fuzzy Inference System (FIS) and ANFIS

The basic idea of FIS is to perform the mapping f : ' — 7' using crisp
values for the components of input and output vectors z’ and %' without
a priori given relationships between them and using intrinsic fuzzy inference
rules. That means that looking from the outside we use crisp data but opera-
tions inside the system are performed on fuzzy sets.

In what follows we restricted our considerations to the mapping

z, € RY -y, € R for p=1,...P (2.1)

where P - number of patterns. The components of input vector z;) and scalar
output y;, are assumed to be crisp values.
In FIS we use the fuzzy sets according to the definition

A= {(z,pa(z))| z € X} (2.2)

where pu(z) — membership function. In what follows the following two mem-
bership functions are specified:
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a) singleton

1 for z=c¢
pal(z;c) =d(z —c) = { 0 for ¢ (2.3)
b) Gaussian function
_ (z —c)?
pa(zic,o) = eXP(‘w) (2.4)

In Fig.1 a scheme of standard FIS is shown. Fuzzification of a crisp value
z' to fuzzy set A’ is usually performed by singleton, substituting ¢ = z’ into
Eq (2.3).

———{ fuzzification = fuzzy reasoning = defuzzification ——m=

!

——— fuzzy rule base

Fig. 1. Scheme of standard FIS

A fuzzy inference rule can be written in the following general form of fuzzy
implication A* — BF

R® . 1F (zis A¥) THEN (yis B¥) (2.5)

and fuzzy reasoning is performed according to the fuzzy composition of set A’
and implication A% — BF

B* = A’ o (A% » BY) (2.6)

Defuzzification is associated with the application of the formula for extrac-
ting a crisp value that best represents a union of the fuzzy sets B¥.

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a modification of
standard FIS. The modification consists in accepting the following assumptions
(cf Jang et al., 1997):

e Partition of input space
e Sugeno fuzzy rule

e Hybrid learning.
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In Fig.2 the two partitions are shown for the 2D input space (z),zs2). As
an example four Sugeno first-order rules are written for the grid partitioning

R®) — R(kLE2) _
(2.7)
=IF (z, is A¥* AND z, is A%?) THEN y;, = ay + 6%z, + 08xy

2 b
9y () “
AZ
2 RN p(I=R122) R
R
g RS
R(A—)
Aly R(l)=R(l'l) R(3):R(3-1) R
X X
A A3

Fig. 2. Partitioning of input space: (a) grid partition, (b) scatter partition

In Fig.3 a scheme of ANFIS is shown. Fuzzy neurons correspond to the
membership functions p4; and weights wy which are computed by means of
the algebraic product

wi = pliy (2 s (2h)- i (27,) (2:8)
The weighted centroid formula is used for computing the crisp output v/’

K
> WkYk
(2.9)

Hybrid learning is associated with forward computation of consequence
parameters ay, b¥, b§ in (2.7). The error backpropagation method is used
to compute the premise parameters of fuzzy-neurones (in Fig.3 the Gaussian
membership function (2.4) is assumed so premise parameters are ¢; and o).
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Fig. 3. Scheme of ANFIS

The analysis of the problems discussed in the following Sections has been
carried out using the Fuzzy Logic Toolbox Matlab (1998). The corresponding
computer program ANFIS enables us to select automatically the number of
Sugeno’s rules associated with the scatter partition of input space. Besides
the Gaussian membership functions the first-order Sugeno rule (2.7) has been
assumed.

3. Fundamental periods of vibrations of prefabricated buildings

Estimation of the fundamental periods of natural vibrations is usually re-
quired in assessment of real buildings by means of expert systems. The main
approach is related to processing of the measurement results on buildings in
natural scale in order to obtain the "experimental” periods of vibrations. The
empirical formulae are formulated to establish the building fundamental pe-
riods for both structural and soil basement parameters.

In the paper by Ciesielski et al. (1995) the analysis results for a group
of medium-height buildings were discussed. The group consisted of 13 Polish
prefabricated, 5-storey flat buildings. In Fig.4 there are shown the plan and
vertical cross-section of a building segment (tested buildings were made in
large panel and large block technologies, cf Table 1). The tests consisted in
measurements of horizontal vibration components in the z and y directions,
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lLe. transverse and longitudinal directions, respectively.
Kuzniar and Maciag (1999) selected the following three representative in-
puts:

e elastic uniform vertical deflection of soil basement C,
e building plan dimension b, cf Fig.4

e equivalent bending stiffness ky = > ; FI;/a, where FE - building wall
Young modulus, I; - moment of inertia of the ¢th wall, a - length of

the building segment, cf Fig.4.

|

WYY

|
|

Fig. 4. Medium (5-storey) building, WBL type

5x2.80

11.7

b

The input vector &’ and scalar output 3’ are

z' = {C,, bk} Yy =T (3.1)

where all components C,, b, ky are transformed to the range [0.1, 0.9].

The set of P = 31 patterns listed in Table 1 was split into L = 22 tra-
ining(learning) patterns and 7 = 9 testing patterns. The selection of testing
patterns (marked in Table 1 by the superscript T in column 3 was discussed
by Kuzniar and Maciag (1999). In Fig.5a the training and testing processes
are visualised using the Root-Mean-Square-Error

v
RMSE = \l % Z[Téﬁ},(s) —TE ()] (3.2)
p=1

where
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The learning process was continued up to S = 100 epochs. It was stated that
for sx = 80 epochs the testing error RMSE(s*; T') was minimal. In Fig.5 the
errors RMSE(s; L) are related to the training process as well as the testing
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experimental and computed fundamental periods of
vibrations
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quent presentation of all the training patterns L, one
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Table 1. Relative errors ef,zg for the fundamental periods of 5-storey
building vibrations

Direction | Pattern | Measured erel = [1 — Texp/Tcom|[L00%
Building of number | periods | BPNN| RBT [ANTIS Formula
vibration Tezp [s] (35) | (36)
[ L I | 3 1 4 1 5 [ 6 | 7 [ 8 [ 9 |
DOMINO-68 (I) transverse L 0.256 6.0 1.9 0.1 2.6 17.4
longitud. 2 0.230 0.6 4.1 0.0 11.6 20.4
DOMINO-68 (IT) transverse 3 0.256 6.0 1.9 0.1 2.6 17.4
longitud. 2 0.230 0.6 4.1 0.0 11.6 20.4
WUT-T-67-S.A./V | transverse 57 0.253 7.0 3.1 0.4 5.0 17.6
longitud. 6 0.240 3.5 1.0 0.0 22.4 14.0
WUF-GT | seg.(1) transverse 7 0.175 4.3 2.5 1.5 3.5 14.4
84 (1) longitud. 87 0.185 15 35 5.9 5.4 9.9
seg.(IT) | transverse 9 0.180 1.8 0.4 0.2 9.3 1.9
longitud. 107 0.169 2.3 3.2 1.0 0.0 0.9
WUF-GT | seg.(I) | transverse 11 0.157 7.8 9.4 7.7 3.1 20.5
84 (1) longitud. - - - - - - -
seg.(IT) | transverse 12 0.180 5.6 1.6 4.5 10.7 5.7
longitud. 13 0.177 6.8 5.0 0.0 8.8 8.5
TC/MBY/V (1) transverse | 147 0.172 6.8 4.9 80 | 138 | 45
longitud. 15 0.192 9.3 8.8 2.6 26.9 3.6
C/MBY/V (II) transverse | 167 0.185 5.2 5.6 2.2 1.9 12.5
longitud. 17 0.213 3.4 6.3 1.6 17.0 2.4
C/MBY/V (IIT) transverse | 187 0.227 1.7 5.8 1.0 11.4 16 |
longitud. 19 0.223 04 | 33 | 01 | 139 | 57
BSK (I) [seg.(I}) | trangverse 20 0.155 4.2 10.5 4.3 1.5 14.2
longitud. 217 0.233 2.0 9.3 2.3 53.5 QM
seg.(IT) | transverse 22 0.155 5.8 10.8 2.2 1.5 155 |
longitud. 23 0.233 1.1 10.4 0.5 53.5 20.0
BSK (IT) | seg.(}) transverse - - - - - - -
longitud. - - - - - - -
seg.(IT) | transverse 24 0.156 5.1 10.1 1.5 3.1 14.6
longitud. 25 0.233 I1 | 104 | 05 | 535 | 200 |
WWP transverse 26 0.270 1.7 2.4 0.4 5.4
longitud. 277 0.294 6.2 14.9 0.9 14.7 5.2
WBL transverse 28 0.294 10.6 10.1 0.2 14.7 7.7
longitud. 29 0.263 2.9 0.0 0.0 2.6 14.7
WK-70 transverse | 307 0.256 37 | 29 6.6 0.0 | 105
longitud. 31 0.227 0.1 1.3 0.0 11.4 13.0 \
€avr 1.1 56 | 1.8 ] 128 [ 11.9 |
e 93 | 149 | 77 | 535 | 205 |
0.967 | 0.876 | 0.987 [ 0.768 | 0.793 |

In Fig.5b,c the experimental values Téﬁ; are marked as o and the results
of training and testing are marked by * as corresponding to s* = 80.
In Table 1 the following relative errors are put together

P
(p)—ll T(L; 100% e —lZe(p) e — max e?)
rel p) 0 avr — P rel maL T SRR Trel
TCO"L =

(3.3)
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where p=1,...,P and P = L + T - total number of patterns used for lear-
ning(training) and testing. In order to compare better the networks used for
the estimation of natural periods of vibrations the linear correlation coefficient
was computed

r = min(ry,r7) (3.4)

where 7y, 77 — coefficients of correlation of the measured and computed
periods of vibrations Téé’z),, {P) for the training and testing sets of patterns
L and T, respectively.

In Table 1 also the relative errors corresponding to the results yielded by
two forward neural networks are given. In column 5 the results are referred to
the Back- Propagation Neural Network (BPNN) of structure 3-4-1. In column 6
the results correspond to a simple regularization network with the Radial Basis
Functions (RBF), discussed by Putanowicz and Waszczyszyn (1999).

Columns 8 and 9 of Table 1 present the results obtained by means of two
empirical formulae:

— according to Ciesielski et al. (1995)

T, =0.98//C, (3.5)

— according to KuZniar and Maciag (1999)

T, = 1.2/Y/C, +0.003(ky + k,) /b (3.6)

where: ky = Y, Fl;/a, ks = >, GA;/a — equivalent bending and shear stiff-
nessses of partition walls of the segment shown in Fig.4.

The comparison of results points out that the neural predictions are much
better than those yielded empirical formulae. The ANFIS estimation is supe-
rior to the estimation by neural networks.

4. Strength of proximal femur

In the scope of cooperation with KU Leuven, Belgium the neural networks
were applied to estimation of the strength of proximal femur. The strength is
defined as an input load which causes cracking of the femur. The experiments
were performed in vitro using the setup shown in Fig.6. Bone tissue properties
were estimated by DXA (Dual X-ray Absorptiometry) and QCT (Quantitative
Computer Tomography) techniques.
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Fig. 6. Experimental setup for the bone strength measurement

From among the tests described by Druys (1998) only a group of 36 male
femur specimens is considered. On the base of linear regression analysis Druys
formulated the following formula

Py = -0.9+8.83:-Troch BMD + 1.9 - Ward BMD + 3.79 - Pg densT +
(4.1)

+ 0.00015 - BMOIC — 0.33 - Pgq areaC — 0.000022 - BMOIT

where: Troch BMD, Ward BMD - bone mineral densities evaluated using the
DXA and other inputs were evaluated by means of the QCT.

The six variables used in Eq (4.1) were assumed to be inputs in ANFIS.
In Fig.7 the experimental strength loads P, versus the computed loads
P,,,, are shown. The computed loads were obtained for sx = 39 epochs
corresponding to the minimal value of error RMSE(sx*; T'), where T = 6 is the
number of selected testing patterns.

Table 2. Comparison between male femur estimations

Estimator ‘ T ‘ Ste W
Linear regr. (4.1) | 0.971 | 0.509
BPNN: 6-4-1 0.989 | 0.236
RBF: 6-30-1 0.973 | 0.412
ANFIS: 6-F-1 0.991 | 0.142

In Table 2 there are put together the values of linear coefficients of cor-
relation 7 and standard error Ste for various estimators. The statistical
parameters 7 and Ste were computed for all the patterns Pégz), versus Pc(fT,)L
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Fig. 7. ANFIS prediction of male femur strength P,,,, versus the measured strength
Pezp

for p = 1,...,P, where P = 36. Besides the regression formula (4.1) the
BP network of structure 6-4-1 and RBF regularization network were used, cf

Ziemianski et al. (1999).
The comparison between the results shows a superiority of ANFIS over
forward networks and regression estimators.

5. Estimation of dense concrete fracture toughness

Dense concrete (of p > 2600 kg/m?) used in special structures have brittle
properties. Estimation of the fracture toughness of concrete is performed by
means of laboratory tests on especially prepared specimens. In Fig.8a the so
called Model II specimens is shown, ¢f Rawicki and Wojnar (1992). The tests
on such specimens were made at the Cracow University of Technology, cf Kopta
and Nizidrski (1991), Prejzar (1998).

From among the experimental evidence the results corresponding to the
two groups of tests (test I performed in 1998, test IT in 1991) are used as a
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Fig. 8. (a) Model II of concrete specimens, (b) force-displacement relation for
Model 11

background to compute the stress intensity factor

5.11P,
2BW

where the specimen parameters and the force value Pg are shown in Fig.8. In
Table 3 the values of factor K. are put together for two concrete mixtures
(concrete A and B). For the fixed values of concrete strength f. six tests I
were carried out on the specimens with notches. 60 specimens of this group
were used for learning by ANFIS. 8 average values of the factor Ky, computed
for tests II were explored for testing.

Krre = Ta [MN/m’/%] (5.1)

Fig.9a depicts the processes of ANFIS learning and testing. The minimal
value of testing errors RMSE(s; T) is obtained for sx = 4. The testing errors
RMSE(s; T) were computed for the average values of Kyr.(f.) listed in Table 3
for tests I1.

For each concrete strength f. average values of Kjj. are computed accor-
ding to regularization properties of ANFIS, cf Fig.9b. The results of testing
are shown for sx = 4, cf Fig.9¢. In Fig.10a the linear correlation coefficients
for tests T are computed separately for concrete A and B. The maximal
relative errors for average values of Kjj. for tests II, computed by ANFIS
trained on tests I, are about 3.5% for concrete A and 6.5% for concrete B.
These results are slightly better than those obtained by means of the RBF
regularization network, c¢f Putanowicz and Waszczyszyn (1999). In this paper
the linear correlation coefficients 74 = 0.877 and rp = 0.897 were computed
versus 74 = 0.870 and rg = 0.924 by ANFIS.
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Table 3. Stress intensity factor K7, [MN/m?®?] for concrete A and B
taken from Tests I and Tests II

Type of Tests 1 Tests 11
concrete
fc[MPa] | 25.8 | 30.1 | 35.1 | 36.6 | 40.2 | 27.2 | 30.2 | 35.5 | 41.0
2.36 | 2.70 | 2.84 | 3.00 | 3.32 | 2.38 | 2.71 | 2.94 | 3.29
2.48 | 2.82 1292 | 3.35 | 3.72 | 2.19 | 3.20 | 2.89 | 3.20
A 2.62 | 3.00 | 2.97 | 3.30 | 3.25 | 3.25 | 3.12 | 3.12 | 3.86
2.52 | 2.65 | 3.10 | 3.12 | 3.82 | 2.66 | 3.37 | 2.85 | 4.35
2.48 | 2.90 | 3.05 | 3.05 | 3.42 | 2.55 | 2.05 | 3.04 | 3.29
2.63 | 2.69 | 3.00 | 3.46 | 3.35 | 2.34 | 2.79 | 2.96 | 3.20

average

values | 2.52 | 2.79 | 2.82 | 3.21 | 3.48 | 2.56 | 2.87 | 2.97 | 3.53
fc[MPa] | 19.8 | 21.9 | 28.1 | 32.7 | 37.7 | 19.6 | 22.5 | 28.9 | 28.4
2.31 ] 236 | 2.46 | 3.15 | 4.12 | 2.30 | 2.79 | 2.38 | 2.96
2.42 | 2.30 | 2.84 | 3.66 | 3.65 | 2.38 | 2.46 | 2.88 | 4.27
B 2.70 | 2.63 | 2.56 | 2.82 | 4.02 | 2.71 | 2.55 | 2.46 | 2.79
2.63 | 2.56 | 3.02 | 3.62 | 3.85 | 2.22 | 2.38 | 2.46 | 4.11
2.29 | 296 | 2.92 | 3.26 | 4.17 | 230 | - | 2.96 | 4.68
2.58 | 2.89 | 2.70 | 3.02 | 4.00 | 2.79 | - - | 419

average
values 2.49 | 2.62 | 2.75 | 3.26 | 3.99 | 2.45 | 2.55 | 2.63 | 3.83

In Fig.10b the relations Ky (f.) are depicted. The curves Kjr.(fe; A)
and Kiyr.(fc; B) are closer both to the empirical estimation, c¢f Kopta and
Niziérski (1991) and to the results yielded by BP networks, cf Dabrowski et
al. (1996), than to the curves computed by means of the RBF network, cf
Putanowicz and Waszczyszyn (1999).

6. Conclusions and final remarks

On the basis of the results discussed in the paper the following conclusions
seem to be justified:

e Neuro-fuzzy system ANFIS can be efficiently applied to the analysis of
simple problems of experimental mechanics and biomechanics.
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Fig. 9. (a) Training errors RSME(s; L) and testing errors RSME(s; T') for the
concrete patterns, (b) stress intensity factors Ky, for the training patterns,
(¢) Ky for the testing patterns

o In the considered problems the results yielded by ANFIS are superior to
those emerging from empirical formulae and those obtained by means of
forward neural networks (Back-Propagation NN and simple version of
Regularization NN with Radial Basis Functions).

e MATLARB version of ANFIS is fully automated so it makes it easier into
use for special applications.

The paper is treated by the authors as their first step towards recognition
of new possibilities of soft computing in the field of experimental mechanics
and biomechanics. Application of ANFIS to the analysis of more complicated
problems is planned to be continued in the near future.



Stress intensity factor K;, [MN/m3?

Computed K,

ANALYSIS OF SOME PROBLEMS...

4.2 T T T
(a) 3 P
o aini | - t l:’ ’
4.0 ) lrynmg patterns A |- 5 o4 oo
o training patterns B | |
3.8 * testing patterns A L,,,,,,,, S
% les\mg pauerns B } // ‘
| \
3.6(- T \‘ T —t7~
| owao, 00
3.4 — -
/7
3.2 e (QOD/ /dog O’ ™
, |
3.0 ) | \
' o olhoo [
| % ! i
28 R e
4 |
2.6 Aoy A - "0 895 |
[oFNe2) -
mOnP oo ,B—o 926 |
2.4 - S
/
2.2L7
2.5 3.0 3.5 4.0
Measured K.
4.2 T T
b | a
(b) ‘ !‘ [ o \

4.0 O training patterns A — 5]
o training patterns B A
3.8 R — Ox ¢ N

. % lesting patierns A
x lesting palterns B 'y 4 5 ?
3.6 — I
‘ * |
3.4 1o 4
| n 4 1 8/4
39 Kllc(fc;B) ]
ye /\ Ku (fe: )
3.0 R 8 o/ n
E 58
o
2.8 : : -0
I
26l @ B Jé //f -
. - &
8 >
2.4 = 5 |
g o
2.2 | ‘
15 20 25 30 35 40 45

Concrete st

rength £ [MPa)

443
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Analiza wybranych zagadnienn do$wiadczalne] mechaniki i biomechaniki
za pomoca neuro-rozmytego systemu ANFIS

Streszczenie

Adaptacyjny neuro-rozmyty system ANFIS zostal zastosowany do analizy trzech
problemdéw: okreélenie podstawowych okreséw drgai 5-pietrowych budynkdéw prefa-
brykowanych, okreslenie wytrzymalosci gérnej czesci kodci udowych oraz oszacowanie
odpornodci na zniszczenie betondéw ciezkich. Wyniki otrzymane za pomoca systemu
ANFIS poréwnano z wynikami, jakie daja wzory empiryczne i jednokierunkowe sieci
neuronowe. Wykazano, ze najlepsza dokladnosé daje system ANFIS.

Manuscript received October 27, 1999; accepted for print December 16, 1999

15 — Mechanika Teoretyczna





