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A comparison between the applicability of statistical linearization me-
thods with moment criteria and criteria in probability density space to
the determination of quasi-optimal external control for the nonlinear dy-
namic system excited by a coloured Gaussian noise and the mean square
criterion is discussed in this paper. To determine the quasi-optimal con-
trol two modified versions of a standard iterative procedure are proposed,
where three versions of statistical linearization with moment criteria and
two versions with criteria in the probability density space were combi-
ned with the optimal control method for linear systems with the mean
square criterion. The detailed considerations are given for a nonlinear
2-degree-of-freedom system with external control force excited by a co-
loured Gaussian noise which is treated as an output of 2D linear filter.
The control is assumed as a linear feedback. The obtained results are
illustrated by a numerical example.
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1. Introduction

Considerable progress has been made over the last three decades in active
control applications in mechanical and civil engineering. In a general case,
for nonlinear stochastic models the problem of the determination of optimal
control remains unsolved (Stengel, 1986; Zhu et al., 1999). Therefore, several
approximate approaches were proposed. One of the most attractive was appli-
cation of the statistical linearization and Linear Quadratic Gaussian (LQG)
theory to an iterative procedure (Beaman, 1984; Heess, 1970; Yoshida, 1984).
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The linearization coefficients were determined from the mean square criterion.
Since in vibration analysis of stochastic systems in mechanical and structu-
ral engineering several criteria of statistical and equivalent linearization were
proposed, the objective of this paper is to compare these approaches when
applied to the study of optimal stochastic control for nonlinear systems. A
simple comparison between three statistical linearization techniques applied
application to determination of quasi-optimal active control of a nomnlinear
2-degree-of-freedom vehicle model was given by Socha (1999b).

The objective of this paper is to study applicability of a new lineariza-
tion technique, namely, the statistical linearization with probability density
criteria and LQG theory to the determination of quasi-optimal control. In this
approach the linearization coefficients are found basing on the criterion of li-
nearization which is a probabilistic metric in probability density space. The
elements of this space are found as probability density fuctions of random va-
riables resulting from linear and nonlinear transformations of one-dimensional
Gaussian variables. This linearization technique was presented by the author
(see Socha, 1999a). In contrast to the mean square and other moment criteria
determination of the linearization coefficients using criteria in the probability
density space requires an application of a minimization procedure.

A nonlinear 2-degree-of-freedom system is considered in detail, subjest to
an external control force excited by coloured Gaussian noise treated as an out-
put of a 2D linear filter. The mean square criterion is proposed when solving
the optimal control problem and the control is assumed as linear feedback. To
find the coefficients which determine the quasi-optimal control first, the sta-
tistical linearization is applied and next the standard LQG procedure is used
(cf Kwakernak and Sivan, 1972). The solution is obtained from an iterative
procedure, where the Riccatti and Lyapunov equations are solved and a stan-
dard minimization procedure is applied. The obtained results are illustrated
by numerical example.

2. Short review of statistical linearization techniques

The earliest works ofin the theory of statistical linearization applied to con-
trol engineering were conducted independently by Botton (1954) and Kazakov
(1956). The method consists in nonlinear elements appearing in the model by
linear forms, while the coefficients of linearization can be found basing on a
specific criterion of linearization.
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To review these approaches and other linearization techniques we consider
a nonlinear stochastic model of dynamic system described by the Ito diffe-
rential vector equation

M
dz(t) = B(z)dt + Y Grdiy(t) (2.1)
k=1
where
z - state vector, z = [z1,...,25]"
& - vector nonlinear function such that $(0) =0,
&=[F),..,P,)"
Gy - deterministic vectors, Gy = [Gi1, .-, Gin] "
& - independent standard Wiener processes.

We assume that a unique solution of Eq (2.1) exists.

The objective of statistical linearization is to find for nonlinear elements of
vector &(z) the corresponding equivalent ones ”in some sense” but in a linear
form. Let z; be a linear combination of elements z;, [ = 1,...,n of the state
vector z, i.e.

n
z; = Z 4 7174] j = 1, ey (2.2)
=1

where «;; are constant parameters. Then the substitution can be done for
nonlinear elements into Eq (2.1)

Yj = ’(/)j(il?j) ] = 1, ey (2.3)
using a linearized form
Yj = C;Tj i=1l..,n (2.4)
To obtain the linearization coefficients of the linearization techniques may
be employed. They can be devided into the two groups; namely, statistical
linearization with moment criteria and statistical linearization with criteria in
probability density function space. Hereinafter we quote these approaches.

2.1. Moment criteria

The following criteria for scalar functions 4;(z;), j = 1,..,n are
considered:

Criterion 1. Equality of second order moments (Kazakov, 1956)

B|(e1325)?] = B[(w3(25))’] (25)
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Criterion 2. Mean square error of displacements (Kazakov, 1956)
B|(cojz; - $3(25))?] — min (2.6)

Criterion 3. Mean square error of potential energies (Elishakoff and Zhang,
1992)

E[(/[C3j1) — ¥;(v)] dv) 2] — min (2.7)
0

where ¢;j, 7 =1,2,3, j = 1,...,n are the linearization coefficients.

In these criteria the expectation does not depend on the linearization co-
efficients and the corresponding probability density functions depend on 1D
variables. We note that the linearization coefficients c¢,; are nonlinear func-
tions of variances of variables z; which can be calculated from second order
moments of coordinates of the state vector z. It follows from the equation

o2 = B|(S )] i=Len 28)
I=1

2.2. Criteria in the probability density functions space

Bellow the two equivalence criteria in probability density space for scalar
functions ;(z;), j = 1,...,n are presented

Criterion 4. Square probability metric (Socha, 1999a)

+o0
I, = [ lon () — g1 (u))? dy; (2.9)

—0o0

where gn(y) and gr(y) are the probability density functions of the
variables defined by Eqs (2.3) and (2.4), respectively.

Criterion 5. Pseudo-moment probability metric (Socha, 1999a)

+o0
I; = / (51l (y5) — 92(ys)| dy; I=12,.. (2.10)
—00
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If we assume that the input processes are the Gaussian ones with the mean
values m;, =0 for j = 1,...,n and the probability density functions

1 3
gr(z;) = ;/Tozjexl%—@) (2.11)

where ogj = E[x;’f], then the output processes Y; for 5 =1,...,n from the sta-
tic linear elements defined by Eq (2.4) are also Gaussian and the corresponding
probability density functions are given by
1 y;

(i) = ——ex (——) 2.12
g (yJ) \/2—71'63'0'2;]- P 26?0-%]- ( )

To apply the proposed criteria, Eqgs (2.9) and (2.10), we have to find the
probability density functions gn(y;). Unfortunately, except for some special
cases it is impossible to find them in an analytical form. It is well known
that one of these special cases is a scalar strictly monotonically increasing or

decreasing function
Y; = ¢;(z;) i=1.,n (2.13)

with continuous derivatives }(z;) for all z; € R. Then the probability
density function of the output variable (2.13) is given by

gy (y5) = gr(h(y;)) IR (y;)] j=1.,n (2.14)
where gr(z;), 5 = 1,...,n are the probability density functions of the input
variables and h; are the inverse functions to ;(z;)

2= hi(Y;) =97 (%) j=1L.yn (2.15)

In a general case when the nonlinear functions ;(z;) are not strongly mono-
tonically increasing or decreasing or not differentiable everywhere the appro-
ximation methods have to be used (Pugacev and Sinicyn, 1985).

In contrast to the standard statistical linearization with criteria in the
state space one can not find the formulae for linearization coefficients in an
analytical form. However, in some special cases some analytical considerations
can be done. For instance, for the criterion I, defined by Eq (2.9) and for an
input Gaussian process with the mean equal to zero the necessary condition
of minimum can be derived for j =1,...,n in the following form

ol (t) T . .2

2 ) PN SIS . _

ac; _2/[9N(y1,t) gL(yJ,t)]cj (1 ngg)g[/(y],t) dy; =0 (2.16)
—00
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To apply the proposed linearization technique to the determination of the
linearization coefficient k and response characteristics one may use an iterative
procedure involving minimization of one of the proposed criteria and a solution
of the Lyapunov differential equation. A proposition of such a procedure will
be given in Section 5.

3. Vehicle model

Consider the linear two-degree-of-freedom vehicle model shown in Fig.1
with one nonlinear suspension spring between the masses m; and mg. wu(t)
denotes the active suspension force (acting independently of the forces in the
passive elements).

”; TZZ

8(z-21) €2 hZL,—' u

I

Fig. 1. Two-degree-of-freedom vehicle model

The equations of motion of the system after a simple transformation can
be written as

dzy, = xzadt dzo = T4dl
1
dzs = m—{——clzz;l — hyz3 + cozy + hazy + g(z2) —u +
1

+ mifaraozs + (a1 + (n)(l)s]}dt — qd¢ (3.1)
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1
dog = —[-coms — hows — g(z2) + uldt +
ma

1
+ ;n—[—clazl + hyz3 — como — hozy — g(zo) + uldt
1

dzs = zedt dze = [—a10925 — (a1 + ag)ze|dt + gdf

where the state variables are defined by

Tr=21—Y Ty = 29 — 2] T3 =21 -9
. . . (3.2)
Teg=29 — 21 T5=1Y Te =Y
and
c1,C — gtiffness constants
hi, ho —~ damping constant parameters
£ - standard Wiener process
aj,a2,9 — constant parameters of the linear filter defined by
a1 = ajv a2 = ayv qg=q"/aazv (3.3)

where a}, a3 and ¢* are constant parameters of the random road profile and
v is a constant speed of the vehicle.

4. Performance index and optimal active control

The active control u aims at minimization of the joint performance index
I defined by the stationary response characteristics of the system (3.1)

I'=pi1i + pala + p3lz + paly (4.1)
where the partial performance indexes:
I} — the measure of a ride comfort
I, -~ limit of the space required for suspension
I3 - avoids loosing contact between the wheel and road
Iy - limits the control force
pi — weight coefficients, (¢ =1,...,4).

This criterion is a modified version of the criterion given for a linear model
by Haé (1985). In new state variables the performance index I has the form

2
I = %E[(cwz + hozg + g(z2) ~ u) ] + sz[x%] + PsE[CEf] + ,04E[u2] (4.2)
2
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Here the stationary moments are considered. If the following linearized form
can substitute the nonlinear stiffness g(z2) in

g(z2) = akz, (4.3)

where « is the constant parameter and k is the linearization coefficient, then
the optimal control problem can be transformed to the standard one

dz = [A(k)z + Bu|dt + Gd¢

(4.4)
I =Elz"Q(k)z + 2z N(k)u + ru?] — min
where
T - state vector, £ = [z1,..., 26| "
A(k),Q(k) - matrices dependent on linearization coefficient &
B,G,N(k) - vectors
T — scalar defined by the parameters of Eqs (3.1).

In this paper we compare three methods of statistical linearization for the
Gaussian excitations corresponding to the following moment criteria:

Criterion 1. Equality of second order moments (Kazakov, 1956)
B((kez27] = B[ (s(22)) ] (45)
Criterion 2. Mean square error of displacements (Kazakov, 1956)
E[(kbzg - g(zQ)) 2] — min (4.6)

Criterion 3. Mean square error of potential energies (Elishakoff and Zhang,
1992)

/[kcfu - d’u ] — min (4.7)

where c¢rj, 7 =1,2,3, j = 1,...,n are linearization coefficients.
and two criteria in the probability density functions space:

Criterion 4. Square probability metric (Socha, 1999a)

/[gy(y) 91(y, ka)]*dy — min (4.8)

where gn(y)and gr(y) are the probability density functions of variables
defined by Eqgs (2.3) and (2.4), respectively.
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Criterion 5. Pseudo-moment probability metric (Socha, 1999a)

+00
[ wPilov () ~ gr(v, kil dy > rin (4.9)

where the 1D nonlinearity Y is defined by

Y = 1(zq) = cozg + g(z2) (4.10)

In this case the linearized form substitutes the nonlinearity v(z2)
P(z2) = k"2 (4.11)

where k* is the linearization coefficient. Then the optimal control problem
can be transformed to the problem represented by Eqs (4.4) for k = k*.
We note that if g¢(0) = 0 then &k,, ky and k. are nonlinear functions of
the stationary second order moments k; = k;(E[z2]) for a, b and c. As an
example of nonlinear function g(z,) we consider

g(z) = az} (4.12)

One can show (cf Elishakoff and Zhang, 1992; Kazakov, 1956) that the corre-
sponding linearization coefficients have the form

ko = V15 E[z2] ky = 3E[z?] ke = 2.5E[z2] (4.13)

and in the case of criteria 4 and 5 the nonlinear function (z9) and the
corresponding probability density function for a nonlinear variable have the
form

PY(za) = caza + oz:l:g‘
(4.14)

_(v1+v2)2]i(a+y+a-y)

1
= ex ery L T
9v (v) Nz p[ 202 Bac \ v? v2

where

3l y ¥ g 3y y2 | a
v = \/2a Vi T 7 V2= \/;a Vi T 2708
(4.15
4¢3
g2t 2
@ Yo+ 27¢

)
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The probability density of the linearized variable

y =k, (4.16)
has the form
1 y2
)= exp{ -2 4.17
9y k) = = exp( 2WU%) (4.17)

where o2 = E[z?] is the variance of the input Gaussian variable, k* is equal
to k4 or k. on criterion 4 or 5.

To determine the optimal cotrol for a nonlinear system employing nonli-
near criterion we accept the idea proposed in the literature; e.g., by Beaman
(1984), Yoshida (1984) consisting in application the statistical linearization
and stochastic optimal control method to a linear system with mean square
criterion. These two standard approaches are basic steps in the two iterative
procedures which are given in the next section.

The linearization coefficient results from minimization of criterion (4.8) or
(4.9). To obtain the quasi-optimal control one can use the iterative procedu-
res A and B proposed in Section 5.

5. Iterative procedures

The difference between both the approaches i.e. statistical linearization
techniques using the moment criteria and criteria in the probability density
space, respectively, implies differences between the iterative procedures for the
determination of quasi-optimal controls for the Nonlinear Quadratic Gaussian
problem. In the case of statistical linearization using moment criteria deter-
mination of the linearization coefficients requires a modified version of the
standard iterative procedure (cf Yoshida, 1984) while in the case of statisti-
cal linearization using criteria in the probability density function space a new
iterative procedure can be applied. The following two procedures are proposed.

5.1. Procedure A (for criteria 1+ 3)

Step 1. Assume that one of the linearization coefficiets is equal to zero, for
instance, k =k, = 0.
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Step 2. Calculate A= A(k) and N = N(k) in Eq (4.4); and then solve the
algebraic Riccati equation

-
P(A- 1BNT) +(A- 1BNT) P-PBR'BTP+ (Q- lNNT) ~0
T T T

(6.1)

The solution is a symmetric positive definite matrix P.

Step 3. Find the optimal control and the matrix C
1

u(t) = —Cz(t) = —=(N + B"P)z(t) (5.2)

r

Next, substitute for C, A(k) and N(k) into the covariance equation
(A— BOV, + Vi, (A—BCO)T +GG" =0 (5.3)
and solve the equation. The solution of Eq (5.3) is V.

Step 4. Substitute for the element of covariance matrix E[z3] = Vp,, obta-
ined in step 3 into the linearization coefficient k&, defined by Eq (4.13).

Step 5. Calculate P, u and Vy using Egs (5.1) + (5.3) and the linearization
coefficient k obtained in the last step.

Step 6. lterate steps 2+ 5 until V and P converge.

Step 7. Calculate the optimal value of criterion I,p; using the solution of the
Riccatti equation obtained in step 5

Iyt = tr(PGGT) (5.4)

5.2. Procedure B (for criteria 4 + 5)
Step 1. Assume k* = ¢o.

Step 2. Calculate A = A(k*) and N = N(k*) in Eq (4.4); and then solve
Eq (5.1). The solution of Eq (5.1) is P.

Step 3. Substitute P obtained in step 2 into Eq (5.2) and find the matrix C.
Next, substitute for C and A(k*) into Eq (5.3) and solve the equation.
The solution of Eq (5.3) is V.

Step 4. For C obtained in the previous step calculate for linearized element
the variance o2, = E[z3] of the input Gaussian variable and next the
corresponding probability density functions given by Eqs (4.14); and
(4.17), respectively.

9 - Mechanika Teoretyczna
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Step 5. For nonlinear element find the linearization coefficient k* which mi-
nimizes, for instance, Criterion 4.

Step 6. Substitute to the linearization coefficient k* from step 5 into Eq
(5.3) and then solve the equation.

Step 7. If the error of accuracy is greater then a given parameter £, then
repeat steps 4 + 6 until Vi, converges.

Step 8. Calculate new A(k*) and N(k*) and next using these matrices
calculate P, C and Vi using Eqgs (5.1) + (5.3).

Step 9. Iterate steps 4 + 8 until V; and P converge.

Step 10. Calculate the optimal value of criterion I, substituting the solu-
tion of Riccatti equation obtained in step 8 into Eq (5.4).

To determine the probability density function from Eq (2.12) we have to
solve moment equations higher order for the whole nonlinear dynamic system
using one of closure techniques and then to calculate higher order moments
for variables from the domain of nonlinear elements.

6. Numerical results

To illustrate the results obtained a comparison of the criterion I, de-
fined by Eq (5.4) versus parameter « has been shown. In this comparison
three moment criteria i.e. equality of second order moments of nonlinear and
linearized elements, mean square error of the displacement, mean square error
of the potential energies and two criteria in the probability density function
space 1.e. square probability metric and pseudomoment probability metric are
considered. The numerical results denoted by lines with squares, stars, circles
crosses and triangels, respectively, are presented in Fig.2. The parameters se-
lected for calculations and simulations are m; = 100, mg = 500, ¢; = 100,
c2 =50, hy =1, hg =5, a} =0.025, a = 0.075, ¢* = v0.0067, v = 20,
o =1, ps =1000, p3 =10000, pg = 1.

Fig.3 shows the dependence of the criterion I,y upon the speed of vehicle
as it changes from 10° to 102. The other parameters are the same py = 100,
p3 = 1000 and o = 20.
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Fig. 2. Comparison between optimal criteria obtained by application of different
statistical linearization techniques versus parameter «a; I — crit. 1, * - crit. 2,
o —crit. 3, + — crit. 4, A —crit. 5 (broken line)
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Fig. 3. Comparison between optimal criteria obtained by application of different
statistical linearization techniques versus parameter v; O — crit. 1, * — crit. 2,
o —crit. 3, + —crit. 4, A —crit. 5
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7. Conclusions and final remarks

In this paper the problem of quasi-optimal control for nonlinear 2-degree-
of-freedom vehicle suspension under external white noise excitations with non-
linear criterion has been studied. To determine the quasi-optimal control mo-
dified versions of the standard iterative procedure were modified. The three
versions of statistical linearization methods with moment criteria and two ver-
sions with criteria in probability density functions space were combined with
optimal control method for linear system with mean square criterion.

The convergence of the proposed iterative procedures was established in
numerical studies.

From the numerical results obtained it follows that for theverified numeri-
cally mean square criterion of minimization (5.4) for a control problem there
are no significant differences between the considered linearization methods.
We note that the smallest value of criterion (5.4) was obtained by the applica-
tion of the statistical linearization using criterion 4 i.e. the square probability
metric. However, to draw general conclusions regarding the applicability of
the discussed linearization methods to control of nonlinear stochastic systems
further examples should be studied.
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Zastosowanie statystycznej linearyzacji w nieliniowych uktadach do
wyznaczania kwazi-optymalnego aktywnego sterowania

Streszczenie

W pracy przedstawiono poréwnanie zastosowania kilku metod statystycznej line-
aryzacji z kryteriami momentowymi oraz z przestrzeni gestosci prawdopodobienstw
do wyznaczania kwazi-optymalnego, addytywnego sterowania w ukladach nielinio-
wych 2z wymuszeniem w postaci kolorowego Gaussowskiego szumu i ze §rednio kwa-
dratowym kryterium optymalizacji. W celu wyznaczenia kwazi-optymalnego sterowa-
nia zaproponowano dwie zmodyfikowane wersje standardowej procedury iteracyjnej,
gdzie trzy wersje statystycznej linearyzacji z momentowymi kryteriami i dwie wersje
z kryteriami w przestrzeni gestosci prawdopodobieristw wykorzystano tacznie ze stan-
dardowym algorytmem wyznaczania sterowania optymalnego w ukladach liniowych
ze §redniokwadratowym wskaznikiem jakosci. Szczegélowa analiza zostala przedsta-
wiona dla ukladéw o dwu stopniach swobody z zewnetrznym wymuszeniem w postai
Gaussowskiego szumu kolorowego traktowanego jako wyjécie z dwuwymiarowego fil-
tru liniowego. Sterowanie przyjeto jako liniowe sprzezenie zwrotne. Otrzymane wyniki
zilustrowano na przykladzie numerycznym.
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