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In this paper a finite difference solution is presented for the 2D, unste-
ady incompressible Navier-Stokes equations for laminar flow about fi-
xed, oscillating or rotating cylinders. Equations are transformed to a
non-inertial system fixed to the cylinder. Convective terms are handled
by a third order upwind difference, other space derivatives by fourth
order central differences, and time derivatives by forward differences.
The computed Strouhal numbers for fixed cylinders compare well with
experimental results. The variation of time mean and root- mean-square
values of lift and drag coefficients with rotation parameter « is also
shown for a rotating cylinder for two different grids. Amplitude bounds
of locked-in vortex shedding due to crossflow cylinder oscillation were
determined for Re = 180.
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1. Introduction

The vibration of structures in a fluid flow has received much experimental
and numerical study due to its practical importance. Numerical studies of
vortex shedding have dealt with the flow of a uniformm stream normal to a
fixed cylinder, e.g., Karniadakis and Triantafyllou (1989). If the cylinder is
vibrating, either in forced or natural motion, a non-linear interaction occurs
as the cylinder frequency approaches that of vortex shedding. In this case
vortex shedding occurs at the cylinder vibration frequency over a range of
flow velocities, a phenomenon called lock-in. Among the several papers dealing
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with the numerical simulation of lock-in are Hulbrut et al. (1982), Meneghini
and Bearman (1995), Baranyi and Shirakashi (1999).

When the cylinder is rotating, it can be a means of boundary layer control.
Hyung et al. (1995) carried out experimental tests on the flow past a rotating
cylinder in uniform shear flow. Cheng et al. (1997) developed a hybrid vortex
scheme for flow past rotating cylinders.

The present study, based on the finite difference method, transforms the
Navier-Stokes equations to a non-inertial reference frame fixed to the mo-
ving cylinder. Computational and experimental results for low about fixed
cylinders are compared. Amplitude bounds of locked- in vortex shedding due
to crossflow oscillation of a circular cylinder are determined for Re = 180.
Computational results are presented for lift and drag coefficients of a rotating
cylinder as well.

2. Problem formulation

Incompressible laminar flow past a circular cylinder undergoing in-line and
crossflow oscillation and rotation is considered. The two components of the
non-dimensional Navier-Stokes equations in a non-inertial or relative system
fixed to the cylinder are
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The equation of continuity has the form

ou Ou

= 5 + By 0 (2.2)
The body force due to gravity is included in the pressure p. Here Re is Rey-
nolds number based on cylinder diameter d; z,y are Cartesian co-ordinates;
u,v and agg, Gy are the z,y components of velocity and cylinder accelera-
tion, respectively; @ is dilation; ¢ is time; « is the rotation parameter defined
as the ratio of the peripheral velocity and freestream velocity o = £2d/(2U).
Here {2 is the angular velocity of the cylinder, positive when the rotation is
counter-clockwise.
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Roache (1982) recommends using a separate equation for pressure p, obta-
inable by taking the divergence of the Navier-Stokes equations, and neglecting
all but one terms of dilation ©, giving the Poisson equation
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Equations (2.1) +(2.3) remain valid for flows when the cylinder is just rotating
apz = oy = 0, just oscillating o =0, or fixed ap; = agy =0 and a=0.

2.1. Boundary, initial conditions and mapping

In the relative system it looks as if the parallel low were rotating at the
physical plane (Fig.1) with non-dimensional angular velocity —{2. At time ¢
the freestream velocity U includes an angle of 9 = §2¢ with the z-axis.

Boundary conditions (BCs) on the surface of the cylinder R, (see Fig.1):
— velocity: no-slip condition

u=v=0

— pressure
dp |- 2
— =—Vu, —apn +2
on  Re n T Gn T A
where 7 refers to components in the direction of the outer normal.
BCs far from the cylinder R,:

— velocity: uniform flow in the inertial system

u = [U — uo(t)] cos(2at) — vo(t) sin(2at) — 2Ry singp
v = —vp(t) cos(2at) — [U — uo(t)] sin(2at) — 2R, cos ¢

where
up,v0 - Z,y components of cylinder velocity
Y — polar angle measured in the relative system; zero along the
positive z-axis, and is increasing in the clockwise direction.
— pressure
9
on

It should be noted that the assumption of uniform flow along R, is reasonable
except for the narrow wake ,since the outer boundary of the physical domain
is very far from the cylinder.

Initial conditions for the whole domain

u=U —up(0) — 2aRsinp
v = ~vg(0) — 2aR cos
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and pressure p is considered to be constant at ¢ = 0.

The physical domain and governing equations are transformed into a com-
putational plane (see Fig.l). Since a boundary-fitted co-ordinate system is
used, BCs can be imposed accurately, and interpolation, often leading to poor
solutions, can be omitted.
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Fig. 1. Physical and computational planes

A unique, single-valued relationship between the co-ordinates on the com-
putational domain (£,7,7) and the physical co-ordinates (z,y,t) is given as

z(§,m) = R(n) cosg(£)] y(&,m) = —R(n) sin[g(¢)] t= (T |
2.4

where 7 is time on the computational plane, and the dimensionless radius is
R(n) = Ry exp|f(n)] (2.5)

This mapping assures that the grid is orthogonal on the physical plane for
arbitrary functions f(n) and g¢(€) and can provide a very fine grid in the
vicinity of the cylinder and a coarse grid far from the body. Transformations
(2.4) and (2.5) are unique and single-valued only for a non-vanishing Jacobian.
Both the co-ordinate system and the grid are fixed to the accelerating cylinder.
As the mapping is given by analytic functions, the metric parameters and co-
ordinate derivatives can be computed in closed forms leading to high accuracy
solutions.
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3. Results and discussion

A computational code was developed based on the finite difference method.
The time derivatives are approximated by forward differences, and the fourth
order central difference scheme is used for the diffusion terms and for pressure
derivatives. The modified third order upwind scheme by Kawamura (1984)
proved to be successful in handling the convective terms. The Navier-Stokes
equations are integrated explicitly, giving the velocity distribution at each
time step. After determining the velocity distribution in an arbitrary time
step, the pressure is calculated from the transformed Poisson equation by
using the successive over-relaxation (SOR) method. The condition of @ =0
was imposed at each time step. The computational grids used were 145 x 79
and 241 x 131 O-grids. The number of grid points was chosen to assure the
conformal property of the transformation. The diameter of the outer boundary
of computation was 30d. Dimensionless time steps used were 0.001 or 0.0005.
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Fig. 2. Strouhal number vs. Reynolds number

Computations were carried out for the flow around a fixed circular cylinder
for different Re numbers. The calculated Strouhal numbers St and the results
of Roshko’s (1954) experiments compare well, as seen in Fig.2. Several other
quantities are calculated, e.g., instantaneous lift and drag coefficients; the di-
stribution of velocity, vorticity, pressure and stream function; the location of
the front stagnation point, the lower and the upper separation points changing
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with time. By applying the Fast Fourier Transform (FFT) to the oscillating
signals, their spectra can be obtained, and the frequency of vortex shedding
can thus be determined.

The amplitude bounds A of locked-in vortex shedding due to forced cross-
flow oscillation of a circular cylinder for Re = 180 were investigated as a
function of the dimensionless frequency of cylinder oscillation St./St, and the
results are shown in Fig.3. Here St is the Strouhal number for fixed cylinder
at Re = 180, St. is the Strouhal number based on the frequency of cylinder
oscillation.
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Fig. 3. Amplitude threshold values for crossflow cylinder oscillation

Computations were done for a rotating cylinder at Re = 180 with 145 x79
and 241 x 131 grids for different « values. Fig.4a shows the mean values for
lift and drag coefficients against « for the two grids, and remarkably good
agreement was obtained. It can be seen in the figure that the absolute value
of Cy, increases almost linearly with «. It is known that for frictionless ideal
fluid-flow around a rotating cylinder, the 1ift coefficient C7 ;4 is also a linear
function

CrLia = —2ma (3.1)

It can be seen that at this Re number and in the investigated « domain,
the real lift (Fig.4a) is only about 40% of that predicted by (3.1). Fig.4b
shows the variation of the root-mean square (r.m.s.) values of lift and drag
coefficients with « for the two grids mentioned. While Cp,,.s. values agree
very well over a wide range of « domain, the Cpr.,;m.s values for the two
grids differ from each other over the whole « range. It looks as if the accurate
prediction of the r.m.s. values of the lift coefficient is a challenging test of
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Fig. 4. Time-mean and root-mean square values of lift and drag coefficients vs.
rotational parameter «

the computational method not only for fixed or oscillating cylinders but for
rotating cylinders as well.

4. Conclusions

The finite difference method has been applied for the numerical simula-
tion of unsteady, laminar incompressible fluid flow past fixed, oscillating and
rotating circular cylinders.

By introducing boundary-fitted co-ordinates in the non-inertial system fi-
xed to the moving cylinder, more accurate computational results were obta-
ined.

Agreement between experimental and computational results for fixed cy-
linders up to Re = 200 was found to be excellent, suggesting that extension
of the computation to oscillating cylinder is a promising approach.

Amplitude threshold values for locked-in vortex shedding due to forced
crossflow cylinder oscillation were determined for Re = 180.

Computations carried out for rotating cylinders showed that (a) real lift
is only about 40% of that predicted by the Magnus effect, and (b) a coarse
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grid is adequate for prediction of Cp, Cp and Cpym.s., but a fine mesh is
required for the r.m.s. value of the lift coefficient.
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Modelowanie i analiza nieustalonego przeplywu laminarnego wokdét
drgajacych i wirujacych cylindréw kolowych

Streszczenie

W pracy przedstawiono uzyskane metodg réznic skofczonych rozwigzanie réwnas
Naviera-Stokesa opisujgcych dwuwymiarowy, nieéci§liwy przeplyw laminarny wokél
cylindréw. Réwnania przetransformowano do inercyjnego uktadu wspélrzednych zwig-
zanych z cylindrem. Czlony konwekcyjne przedstawiono za pomocg réznic wstecznych
trzeciego rzedu, inne pochodne przestrzenne — réznicami centralnymi czwartego rzedu,
a pochodne czasowe — réznicami progresywnymi. Obliczone w ten sposéb liczby Stro-
uhala dla cylindréw utwierdzonych s3 zgodne z wynikami do$wiadczalnymi. Zmien-
noé¢ czasowych wspotczynnikéw sit noénych i oporu w zalezno$ci od parametru rotacji
« przedstawiono réwniez dla wirujacego cylindra i dwéch siatek podziatu.
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