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Using a central limit theorem we will describe a wide class of thermal di-
spersive phenomena occuring in macrohomogeneous systems. More pre-
cisely, we will focus on the diffusions X, generated by an operator
L having periodic coefficients. The central limit theorem asserts that
/\_i(X,\t — AUht), t > 0, converges in distribution to Brownian motion
as A — oco. Here b is the mean of b(z). In the present contribution the
functional dependence of the dispersion matrix D of this limiting Brow-
nian motion on the velocity parameter Uy and the period a is analysed.
We will give precise analytical conditions imposed on the geometry of
functions b; which determine the asymptotic behavior of elements Ei]-
as functions of Up. Specific examples are given to illustrate computation
of the macroscale coefficients as functions of the comparable microscale

data.
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1. Introduction

Based upon a rigorous, physico-mathematical description of microtran-
sport processes occuring in heterogeneous systems, macrotransport processes
describe a large class of material and non-material dispersive phenomena oc-
curing in macrohomogeneous systems.

Applications of macrotransport theory are presently recognized in nume-
rous fields of scientific and engineering research. In the last years, application of
the microcontinuum theory to increasingly complex macrocontinuum systems
has emphasized the need for wider theoretical context than that previously
provided by the classical microtrangport theory.
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Various methods have been developed for determination of the macroscale
behavior and properties of some heterogeneous complex systems. These inc-
lude the method of moments, homogenization method, statistical and volume-
averaging methods and probabilistic methods based on central limit theorems
(see Bensoussan et al., 1978; Brenner and Edwards, 1993; Ene and Paga, 1987).

Now, we use a probabilistic method based on a central limit theorem for
Markov processes to get a macrotransport paradigm for thermal transport
phenomena.

Such non-material dispersion phenomena have been considerably less
known than the material transport phenomena.

It proves useful to accept the concept of tracer for all forms of continu-
ous transport, material or otherwise and, thereby, to establish a Lagrangian
description both for material and non-material processes.

The viability of pursuing such a novel Lagrangian perspective in thermal
dispersion problems was demonstrated by introducing the notion of a gene-
ric conserved tracer entity, called a thermion in the case of internal energy
transport (see Brenner and Edwards, 1993).

By assuming the existence of such a tracer, we are able to extend the
macrotransport theory to cover internal energy transport processes and to
establish a macrotransport paradigm for thermal transport phenomena.

The microtransport equation governing the evolution of temperature
T(t,z) in continuous insulated systems may by represented as

oT
pcp79?+V-J:0 (1.1)
with
J=pc, Ul — K7 -VT (1.2)

The appropriate initial and boundary conditions are imposed upon Eq (1.1).

Note that energy dissipation and kinetic energy contributions are neglected
in this microtransport equation.

It is supposed that the thermal properties are nonnegative definite every-
where. Moreover, the thermophysical properties p, ¢, KT, as well as the fluid
velocity U are regarded as spatially periodic.

Since inhomogeneities in ¢, occur typically only across the phase boun-
daries, where n-U =0, a term of the form —TU - V(pc,) generally vanishes
identically and for this reason will be excluded from our analysis.

Introducing two positive scalars Uy and a, interpreted as the velocity and
spatial scale parameters, respectively, we can express the fluid velocity U in

the form .
Ulz) = U0V<E) (1.3)
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As we shall see in the next section, we can assume, without loss of gene-
rality, that the spatial scale parameter « is held fixed at « = 1, while the
velocity parameter Uy varies.

Now, we are especially interested in getting the Fickian approximation
of the microtransport equation (1.1). This new partial diferential equation
with constant coefficients will govern the evolution of terperature T(t,z) for
large t.

Here, we begin by considering the state space 7 as being 7 = IR*. In
practice, of course, the space will be always bounded by boundaries. One may
first construct a Markovian motion that satisfies the equation and then imnpose
the appropriate boundary conditions in order to arrive at the correspounding
p(t;y,z). This p will satisfy the imposed boundary conditions (see Timofte,
1996)

T(t,2) = [ (e W)p(t:,2)T(0,) dy (14)
T
we will consider the associate It6 stochastic differential equation and we shall
see that pc,p may be interpreted as the conditional probability density of the
therrmal tracer.

Note that the conditions on coefficients of Eq (1.1) that guarantee the uni-
queness and necessary sinoothness of the fundamental solution p are assumed
throughout.

So, the analysis of the asymptotic behaviour of temperature 7'(¢,z) for
large t is equivalent to the analysis of the asymptotic behaviour of Markov
process X; defined by the associate Tt stochastic equation for large t.

This connection between the temperature 7" and the probability density
pcpp will allow us to use a central limit theorem to get the desired Fickian
approximation of Eq (1.1) and to express the macrotransport coefficients pc,,
U and K7 in terms of the prescribed microscale data and the system geometry.

However, in a more general context, X, can be regarded as diffusion
generated by a diferential operator of the form

1k 92 k P
L= 5 Z aij(.’ll‘)éxlij + Z UObl(z)T_’LZ (1"))

i,j=1 i=1
the coefficients of which satisfy the following assumptions:

(1) Matrix [a;;(z)] is symmetric and positive definite

(2) Functions a;;(z) and b;(z) are real valued and periodic, i.e.
aij(x+v) = ai(x), bi(x+v) = bi(x), for any x and any vector v with
integer coordinates

7 ~— Mechanika Teoretyczna
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(3) Functions a;;(z) have bounded second order derivatives and b;(z) have
continuous first order derivatives

(4) Up is a real parameter.

Let (£2, A, P™) be a probability space in which are defined:

e Random vector X (0) = Xy, where Xy is a k-dimensional random
vector independent of B(t) and distribution =’

s Standard k-dimensional Brownian motion B(t) = [B)(t),..., Bx(t)]
which is independent of Xj.

Let {X(t), t > 0} be the solution (continuous and nonanticipative) to Ité
stochastic integral equation

t t
X, :X0+/U0b(X(s)) ds+/a(X(s)) dB(s) (1.6)
0 0

where o(z) is the positive square root of [a;;(z)]. Periodicity of the coefficients
allows us to work in the state space 7% = [0,1)* since the coefficients are
periodic (see the condition (1.2)), with the process X(t) = X(t)(mod 1)
having a transition probability density function p(t;z,y) and an invariant
probability density w(z) on [0,1)* such that

/ sz, y)n(z) de = 7(y)  ae on [0,1)F (1.7)

Let us consider the real Hilbert space L2([0,1)*,7) with the inner product

(f,9) = / f@Wey)r(y) dy (1.8)

[0,1)%
and let {T}, t > 0} be the strongly continuous semigroup of contractions in
this space, defined by
(T.f)(z) = /?(t;z,y)f(y) dy  for z€[0,1)" (1.9)
(0,1)*

The central limit theorem asserts (see Bhattacharya, 1985) that on the
assumptions (1) = (4), no matter what the initial distribution =’ is, the
stochastic process

{Zt,A =ATF( Xy = AUpth), £ 0} (1.10)
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converges weakly, as A — 00, to a Brownian motion with zero drift and the

dispersion matrix D = [D;;] given by

Dyj = —U(bi, 9;) — Ug(bj, gi) + asj +

(1.11)
£ 9 0
+ / Uo[:w) > gy—(arj(y)vr(y)) t9Wd 5 (ariy)m(®))] dy
[0,1)% r=1 9T r=1 ~JT
where 3 (
b = (b;, 1) 1<i1<k
ai; = {ay, 1) L<ey,j<k (1.12)
In Eq (1.11), g; is solution the unique in D) 1+ of the equation
A\gi =b; - b (1.13)

and A is the infinitesimal generator of the strongly continuous semigroup
(T}, t > 0} on the domain D

We will be especially interested in the functional dependence of the asymp-
totic dispersion coefficients Eij on the velocity and spatial scale parameters.
As we shall see in the next section, D;; depends only on the product alUy, the
result being in accordance with all the experimental studies that have been
done.

We will give precise analytical conditions on the geometry of functions b;
which determine the asymptotic behaviour of the elements Eij for large al).

The results of application to thermal dispersion processes in periodic media
are shown.

Some examples are given in Section 3 to illustrate the computation of the
macrotransport coefficients as functions of the comparable microscale data.

The first examples provide closed-form solutions of the macroscale coef-
ficients, while in the last one, the macroscale coefficients are only shown to
exhibit their expected growth as functions of alj.

2. Functional dependence of the asymptotic dispersion
coefficients on the velocity and spatial scale parameters

In 1989, R.N. Bhattacharya, V.K. Gupta and H.F. Walker showed that
in the case of solute dispersion in periodic porous media, the macroscale di-
spersion matrix D depends only on the product aUp (see Bhattacharya et
al., 1989).
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An extension to cover a more general class of diffusion processes is given
by Timofte (1996).

In particular, for the special case of thermal dispersion phenomena, let the
large scale dispersion matrix D be denoted by D = D(a,Up) to indicate its
dependence on the spatial scale and velocity parameters. It can be proved (see
Timofte, 1996) that if a central limit theorem holds for the solution X (t) of
the 1t6 stochastic equation

X(t Xt
qu)::Mw(—il)dt+a(—il)dBU)
a a
(2.1)
X(0) =X,
then D depends on @ and U only through their product aUj.
In particular _ _ -
D(aa UO) = D(UOa a’) = D((LUO, ]-) (22)

This interchangeability of velocity and spatial scale parameters in the large-
scale dispersion matrix enables us to assume that the spatial scale parameter
a is held fixed at ¢ = 1, while the velocity parameter Uy can vary.

A more precise analysis of the functional dependence of D;; on these two
parameters can be done in the special case when a;; are constants and b; are
continuously differentiable periodic functions satisfying the condition

divb =0 (2.3)

Taking the period of b; to be one in each coordinate, we can work on the
state space 7 = [0,1)* with the invariant distribution 7(z) = 1.
Let D denote the following operator

1 & o2
T2 EZ: 4 oz, 31] (2.4)

In this case, the macrodispersion coefficients are given by
Di: = ;. U2 . . 5. 2 . . 7. =
i =i~ U / g(z)(b5(z) - b;) dz — U / 9;(z) (bi(w) = b;) dz (2.5)
T T

We shall work with the following spaces of complex-valued functionson 7T
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H = {h//|h(a:)|2da:<oo, /h(z)d:r,:
T T

and h satisfies periodic boundary conditions}

Hl

{he HO//|Vh(z)|2 dz < ) (2.6)

H—‘Z

}LEHl /2\3181] oo}

We shall take the following inner product on H*

(h,u)y —/ Z aij agg a{;ij) dz (2.7)

3,7=1

for any h,u € H'.
For a given f; € H' let g; be a unique solution in H? to the equation

Lgi=Ji (2.8)
Putting
Ey; = By (Uo) = —Uff/gi(z)fj(z) dz (2.9)
T
we get
Dij = aij + Ejj + Ej; (2.10)

with f; = b; — b;.
Noting that the operator D is one to one on H? onto HO, we can

introduce
Hg(z) =D 'b(z) - Vg(z) (2.11)

As an operator from H' to itself, H is compact and skew-symmetric and
has the eigenfunctions {¢n}n>1 corresponding to the eigenvalues {iX,}n>)
which reveal the following properties:

e ), arereal and lim, ,,o A, =0

o {¢n}n>1 is a complete orthonormal set on H'N\N*, where N7t is the
orthogonal complement of the null space of H in H'
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e BEach h € H' can be represented as

h=hy+>_ antn (2.12)

n=1
with hy € N and a, = (h, ¢,).

If for any g € H? and f € H® we consider the representations

20
g=gnN + Zan(j’n

n=1

(2.13)
D= (D v+ Y fudn
n=1
we get
Eij(UO):Ug{« le)Na(D f] N 1+Z 11_3:7‘:1(3];7;\ }
(2.14)

Bus) = U0 w4 3 ¢ )

n=1

Such expressions were given by Bhattacharya et al. (1989) for the special
case of solute dispersion in periodic porous media and by Timofte (1996) for
a more general class of diffusions generated by a differential operator of the
form (1.5), coefficients of which satisfy the conditions:

® a;; are constant and the matrix [a;;| is symmetric and positive definite
e b; are continuously differentiable periodic functions satisfying the condi-
tion divb=0.

It is obvious that Ey;(Up) = O(UZ) if (D~ fi)n, (D™ fj)n)L # 0 and
E;;(Up) = o(U¢) otherwise.
We also note that N is just the null space of b-V in H'.

Proposition 2.1. If f; € H'(|N, then either f; = 0, in which case
E;;(Up) = 0 for each j, or E;(Up) = O(UE).

Proof. Since f; € H' MV, it follows that

(f D7) = —/fi(:v)Q iz (2.15)
T
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If fi =0, obviously E;;(Up) =0, for each j.
If f;#0, then ('D_Lfi)N # 0 and finally, Ezz(UO) = O(Uoz)
The converse proposition is also true.

As an operator on H' b- V has the range R in H°

:{feHU/f:b-Vh, forsomeheH'} (2.16)
Theorem 2.2. If f; € R, then
lim Ey(Up) = ||hs||? (2.17)
Uo—rOO

where h; is the unique element of H'(VN= such that f; =b- Vh,.
Also, for i #j

E;j(Up) = O(Up) ~ Up{hi, D™ f;) _
(2.18)

E;i(Ug) = O(Up) = =Uo(D™" f;, ki)

for large Up.
In particular, if the inner products in Eqs (2.18) are zero, then FE;;(Up)
and Eji(Uo) are O(Uo).

Proof. Since f; € R, it follows that

o0 o0
hi =Y YinPn D7'fi=Hhi =Y i\YinPn (2.19)
n=1
Then
lim By(Uy) = lim 2% Jalinl Yinl? = ||/ (2.20
A Bal00) = Jim U5 3 72 }:wm» = llnali? (2:20)
For j # 1, we get
ZUOAn'Ym,B
E;;(Uy) = 0T BV — O(U) ~
1]( 0) OZ 1+ iU, ( 0)
~ Up Z'Yinﬁjn = Uop(hi, D™ i1
n=1

(2.21)

B U — :O Upy) ~
4i(Uo) Uongl Tt ilon, (Uo)
0o
~ —Up Y BinWin = —Uo(D7" fj, ki)
n=1

for large Uy.
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These results formn the extension of those given by Bliattacharya et al.
(1989) for the case of solute dispersion in periodic media.

A more precise analysis of the asymptotic behaviour of the dispersion co-
efficients ﬁzj as functions of alUy can be done if we make more restrictive
assumptions about & (see Timofte, 1996).

3. Applications

As a first example, we shall consider the problem of pure conduction in
a layered medium.

The medium is assumed to possess thermophysical properties which vary
only in the direction =z, i.e.

p=p(z) cp = cp(2) Ky = Kr(2)I (3.1)

and the phenomenological coefficients p, ¢, and K7 are supposed to be
integrable nonnegative definite periodic functions, having the period [,.

With o = Kr/(pcp), the evolution of the temperature T(t,z) will be
governed by the following equation

g (f)QT ) 0T dZT) LdKT oT
ot oz?  Oy? Bz
with the initial condition 7(0,z) = Ty(z).

Using general formulas given by the above central lirnit theorem we arrive

at the following formulas for the effective volumetric specific heat pec, and the
effective thermal diffusivity dyadic @

2
pey dz 0Oz (3:2)

L.

pep = 1_1_ / cp(u) du (3.3)
0
and
L
Q= Qo = z—l“ Kr(u) du
Ofp(u)cp(u) du 0
Qa3 = ! L (3.4)

l,
plu)ep(u) du Ofmrlﬂ du

|
O o~

;5 =0 forany ¢ #75, +¢5=13
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As a second example, let us consider the problem of internal energy
dispersion in a layered periodic porous medium saturated with a viscous in-
compressible fluid.

Let us suppose that the thermophysical properties p, ¢, and Kr are
constant and the velocity field U is given by
21z

U= {U()(l—l—cos l

), Uy cos 2mz

Z ZZ

0] (3.:5)
With o = Kr/(pcp), the evolution of the temperature T(¢,z) will be
governed by the following equation

g B (82T + o*T + 82T)
o — N2 T a2 T 8

(3.6)
2wz OT 21z OT
- U0<l+cos . )a*Uo 0s L ay
with the initial condition 7'(0,z) = Ty(z) imposed.
Obviously B
U = [Us,0,0] (3.7)
Using the general formulas given by the above central limit theorem, we
have
Ugl? _
all—agg—a+87r2a 033 = &
(3.8)
Ugl? _
5122521:8022 Qi3 = a3 =03 =gy =0
e

This example proves that the macrotransport coefficients @;; grow quadrati-
cally with {,Uy.

If we add a non-zero uniform velocity Uyw in the vertical direction, we get
(cf Timofte, 1996)

U = [Uy, 0, Uyd] (3.9)
and
Gl =09 = o+ aleg Qigy =
LT = O S ora)? + (Unl,@)?] 3=
(3.10)
. _ aleOQ - B . .
Qg = 0oy = Q3 = a3 =gy =03 =0

- 2[(2ma)? + (Upl,w)?
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It is obvious that for small values of [,Uy, coefficients @;; depend quadratically
on [,Uy. However, as [,Uy — oo, each @;; becomes asymptotically constant.

We can also consider the problem of internal energy dispersion in an in-
compressible viscous fluid moving under laminar flow conditions between two
parallel, insulated porous plates separated by a distance h. The upper plate
moves at a velocity Up parallel to it in the z-direction. Simultaneously, there
exists a uniform flow across the channel (in the negative g-direction) at a
constant velocity wp.

In this case, the fluid velocity field U is given by

U= g/%yz'—voj (3.11)

At ¢t =0, an amount of heat is instantaneously added to our system over
some region of the infinite domain between the plates in the form of some
initial temperature distribution Ty(z).

Assuining that the thermophysical properties p, ¢, and Kr are constants,
evolution of the temperature T'(t,z) will be governed by the following equation

oT  Uyy OT or

= I e = aAT 12

ot T Th o Moy~ © (3.12)

with the initial condition T(0,2) = Ty(z) imposed. In Eq (3.12)

a = Kr/(pep).
Introducing the dimensionless parameter

vo/

p="2 (3.13)
a

and considering the incomplete gamma function
B
M+ 1,0 = [erexp(=6)dg  n=0,12,.. (3.14)
0

the macroscale thermal velocity U is given by

U="Ui (3.15)
e o Un.p) 16
A(1,8) '
If we consider the mean axial fluid velocity
v = o (3.17)

2
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we get

U_ 220 (3.18)

vV By(1,8)
So, the thermal velocity U is different from the mean axial fluid velocity V.
As the cross flow velocity becomes vy — 0, correspouding to tlie limit
0 — 0, we see that

U
g0V
As wg — oo, then 8 — oo and
limn g =0 (3.20)
B—ooo

Using again the general formulas given by the above central limit theorem,
we see that the only component of the effective thermal dispersivity dyadic @
which is different from zero is

L2V

0y = a+ k(ﬁ)*'ai (3.21)

with

K(B) = - [UBEN 2R 0) (56,

7 lhae! B e (3.22)

The last example deals with the problem of internal energy dispersion in
a two-dimensional periodic porous medium saturated with an incompressible
viscous fluid having the velocity field U(z) = Uyb(z) given by

bi(z,y) =2 — cos[2n(sin(27z) — y)]
(3.23)

by(z,y) = 2w cos(2mz)by (z, y)

We assume that the spatial scale parameter « is fixed at ¢ = 1 and the
phenomenological coefficients p, ¢, and K are strictly positive constants.

Obviously, b, =2 and by = 0 (cf Timofte, 1996).

For this example, the closed-form solutions of the macrotransport coeffi-
cients @;; cannot be obtained.

However, the analytical theory developed in Section 2 shows that, as
Uy = o0, ) =a+ O(U()?), Qg = ¢ + (9(1) and Qs = @) = O(U()) .

This example reflects the influence of the geometry of the flow curves on
the asymptotic behavior of macrotransport coefficients.
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Asymptotyki dyspersji termicznej w o$rodku periodycznym

Streszczenie

Korzystajac z twierdzenia granicznego opisano pewng klase termicznych zjawisk
dyspersyjnych w oérodkach niejednorodnych. Uwage zwrécono na dyfuzje X, genero-
wane przez operator L o wspolezynnikach periodycznych. Z twierdzenia granicznego
wynika, e /\”%(X,\t — AUpbt), t > 0 jest zbiezne w sensie dystrybucyjnym do ruchu
Browna, gdy A — 0o. Powyzej b jest wartoScia érednig b(z). W pracy analizowano
wplyw macierzy dyspersji D granicznego ruchu Browna na parametr predkosci Up
i okres. Podano $ciste warunki analityczne dla funkeji b;, okreslajace asymptotyczny
charakter D jako funkeji Up. Celem zilustrowania obliczesi makrowspdlezynnikéw
jako funkeji odpowiednich parametréw mikroskopowych podano przyklady szczegdlne.
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