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The author analyse the stability loss in thin-walled orthotropic plates,
their principal directions of orthotropy being parallel to the wall edges,
for plates with the orthotropy ratio, g = E;/E, varying widthwise.
The analysis was carried out within the elastic range. Numerical tests
were made on thin plates with the loaded edges simply supported; unlo-
aded edges were tested for different kinds of support (clamped, simply
supported, free-edge). Plates were subject to loads causing uniform and
linearly varying displacement of edges. The problem was solved using
Koiter’s first-order asymptotic theory of conservative systems stability
(Koiter, 1963).

Results of numerical calculations were presented as graphs describing
the relationship between a critical value (force or moment) and the pa-
rameter defining orthotropy across the plate width.
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1. Introduction

Elastic buckling of isotropic and orthotropic plates and girders has been
dealt with in a number of publications (Lekhnitskii, 1947, Chandra and Raju,
1973; Kotakowski, 1993, 1994; Krélak, 1995). The test results presented in
these papers aim at showing the designers new possibilities of creating light,
safe and reliable structures. However, in the literature on stability problems
there is a shortage of analysis of how a widthwise variation of the plate (wall)
orthotropy may influence critical load values and buckling modes.

At present more and more carrying elements are made of composite mate-
rials with different, often very high degrees of orthotropy.
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Aiming to use composite materials with required strength properties as
carrying elements in thin-walled structures, the designers seek information
about the behaviour of those parts under different kinds of load. Particularly
dangerous for thin-walled structures are loads which cause a stability loss
(buckling) of their carrying elements.

Composite components give a substantial opportunity for variation of com-
posite global properties in selected directions or areas; hence it is possible to
obtain plates revealing variable strength properties. Such materials are, e.g.,
fibrous composites with adequately displaced (concentrated or diluted) fibres.
Composites are usually modelled as orthotropic materials. Taking into account
the variation of orthotropy ratio, 8(y) = E.(y)/E,, which can be a function
of y variable (Fig.1), enables the assumed calculation model to approximnate
real materials.
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Fig. 1. Band model of variable orthotropy plates; (a) sinusoidal orthotropy,

(b) orthotropic stiffening of edges (8y = 3.2292 — constant value of orthotropy ratio;
A — amplitude; b - plate width; [ - plate length; 8 = E;/E, - orthotropy ratio
equal to the ratio of the Young moduli along and across the direction of
compression, respectively)
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The present work discusses the problem of stability loss in the elastic range
of homogeneous orthotropic plates with a widthwise variable £ ratio.

2. Formulation of the problem

Assumption has been made that the principal orthotropy axes of plates are
parallel to their edges. Plates of loaded edges rested on simple supports and
longitudinal edges were simply supported, clamped or free, and were loaded
50 as to cause uniform or linearly distributed displacement of edges (Fig.2). In
order to characterize the loading mode a special load factor &« = ug/u, was
introduced, where u; and wus (Fig.2) are displacement values in the range of
—~1 to 1. All plates tested had geometrical and material axes of symmetry.
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Fig. 2. Loading modes; (a) uniform displacement of edges, « = 1, (b) linearly
variable displacement of edges, & # 1

The plate with widthwise variable orthotropy (Fig.1) was considered. A
model was assumed to be built of long and narrow orthotropic plates each of
which may have a different orthotropy ratio. This enables one to analyse the
effect of sinusoidal orthotropy across the plate — plate I. Plate II consists of
three bands of different orthotropy ratios; the two outside bands have the same
ratio between the Young moduli along and across the direction of compression
(this is a model of a plate with constant thickness and stiffened or weakened
edge bands).

As a consequence of the above, the critical values are the following: critical
force F.r [N] in the case of uniform displacement of edges; critical moment
M, [Nm] in the case of linear displacement corresponding to « = —1 (Fig.2b);
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critical force Fg [N], and critical moment M., [Nm], in other cases. It should
be noted that, if no axis of symmetry was assumed, the uniform displacement
of edges (Fig.2a) could refer to the case of eccentric compression.

The effect of widthwise variable orthotropy upon the stability of thin-
walled plates was analysed using the first-order approximation of Koiter’s
asymptotic theory of stability of conservative systems (Koiter, 1963) and the
solution method presented by Krélak (1995). The fundamental equations of
the method proposed by Krélak (1995), Krélak and Kolakowski (1995) are
presented below.

For the ith part of the plate, exact geometrical relationships are adopted
in order to allow for considering both the out-of-plane and in-plane bending
of each part of the plate

2 2 2
€xi = Uiz + 0.5(u; , +vj , +wi )
gy 202 2 2
Eyi = Uiy + O.o(ui’y + v, + wi}y)
Ezyi = 0.5(usy + Vig + UigUiy + ViaViy + WizWiy) (2.1)

Kgi = —W; 2z Kyi = —Wi,yy KRryr = — Wiy

Physical relationships for the ith part of the plate are formulated in the
following way

Ngi — waiNyi Nyi - VyziNzi Nzyi
g L Iyl Ty o MYy T PyaiTa e 29
b Eihi ‘vt Eyih; Eovi = on; Y
The relation between the Young moduli and the Poisson ratio in Eqs (2.2)

1s as follow
Ez:il/y:cz' = Eyil/l'yi (23)
The differential equilibrium equations resulting from the virtual work prin-

ciple and corresponding to Exs (2.2) for the ith part of plate can be written
as follows

Nzi,z + Nzyi,y + (Nziui,z),z + (Nyiui,y),y + (Nzyiui,z),y + (Nzyiui,y),z =0
Nyi,y + Nzyi,z + (Nzivi,z),z + (Nyivi,y),y + (Nzyivi,z),y + (Nzyivi,y),z = (2-4)
D;VVw; — (Nzi'wi,z),z + (Nyi'wi,y),y + (Nzyi'wi,z),y + (Nzyi'wi,y),z =0

The solution of these equations for each plate should satisfy kinematic and
static conditions at the junctions of adjacent part of the plate and boundary
conditions at the ends =z =0 and z =1.

The nonlinear problem is solved by the asymptotic Koiter methods. The
displacement field U, and sectional force field N, are expanded in a power
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series in the buckling mode amplitudes &, (£, is the amplitude of nth
buckling mode divided by the thickness of the first component wall h,)

(2.5)

where the prebuckling field are UEO), NEO) the buckling mode fields are Uﬁ"),
N

By substituting the expansion (2.5) into the equation of equilibrium (2.4),
junction conditions and boundary conditions, the boundary value problemns of
zero and first order can be obtained. The equations of first order boundary
value problem are shown in the literature (cf Krélak and Kotakowski (1995),
Eqgs (2.6) = (2.10) and appendix). The zero approximation describes the pre-
buckling state while the first approximation, which is the linear problemn of
stability, enables us to determine the critical load values and the buckling
modes. This question can be reduced to a homogeneous systemn of differential
equilibrium equations.

The results were obtained using an appropriate conmputer programine, in
which the procedure of finding determinante zeros was modified, and also
convergence of the Godunow ortogonalization method was tested. At present
the computer programme allows for analysis of plates and building girders
made up of those plates with open and closed cross-sections, respectively.
All these structures can consist of 400 narrow bands, each of them having a
different (although constant) orthotropy ratio g;.

A proper choice of orthotropy ratio for a particular band enables one to
express the ratio for the whole wall in the form of a specified function G(y).
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Fig. 3. Relations between the orthotropy ratio and G, E,; e — from literature,
— — obtained from the approximation
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Orthotropic materials, unlike the isotropic ones, show no dependence be-
tween the Young and shear moduli; however, the literature delivers a number
of approximate formulas which define this dependence. In order to obtain a
model with a sinusoidal orthotropy ratio g the following values, depending
on this ratio: Eg, Ey, (i, vz must be known. The required dependencies be-
tween the orthotropy ratio and Eg, Ey, G, vy (Fig.3) were obtained by the
approximation of material data published by Chandra and Raju (1973) and
have the following form:

e Young modulus along the direction of compression for the ¢th band

Eyi = BiFy,

Young modulus across the direction of compression for the ¢th band

11629 16821
E,; = 34807 — 11029

G B
e shear modulus for the ith band
7812 3464
G, = 14605 — - —
v B; B2
e Poisson ratio for the zth band
Veys = 0.3 t=1,..n

3. Numerical results

The results of numerical calculations have been presented in the form of
graphs illustrating the dependence of the critical values (force £, moment
M., or both at the same time) upon the parameter that describes the ortho-
tropy variation. The symbols on graphs have the following meaning: letters
stand for conditions on the longitudinal edges (p - simply supported, u -
clamped, s — free edge), numbers designate geometrical parameters (first are
the values of length [ to width b ratio where 05 means that [/b = 0.5; the
second, after a dash, are the values of width & to thick A ratio).

Plate I: a plate with orthotropy ratio [ varying sinusoidally across the plate
(Fig.1a) - this parameter is the amplitude A of a sinusoid which expres-
ses the orthotropy variation.
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Plate II: a plate with stiffened or weakened edges (Fig.lb) — the parameter
defining the orthotropy variation is [§* which is a ratio between the of
orthotropy ratios in the stiffened and not stiffened bands, respectively.

The following two plates have been considered.

3.1. Plate I (sinusoidal orthotropy variation)

Orthotropy ratios for individual bands in the model were assumed accor-
ding to the equation

27
i = By + Acos Ty
where
Bo — mean value of the orthotropy ratio across the plate,
Bo = Eg/Ey, = 3.2292
A~ amplitude of the sine curve, 4 €< —2,2 >
y — co-ordinate defining the band position relative to one of the
longitudinal edges
b - plate width
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Fig. 4. Variation of the Young modulus for the direction of compression FE, across
the plate at different A values

Fig.5 shows the results for flat rectangular plates of sinusoidal orthotropy
ratios. The values of A factor were assumed as an amplitude of sine curve be-
tween —2and 2. If A < 0 the Young modulus in the direction of compression
at the plate edge is lower than inside; if A > 0 the plate is more rigid at the
edges; if A = 0 then the orthotropy ratio J is constant on the whole width of
the plate (Fig.4). The results presented in Fig.5 were obtained for a load which
causes uniform displacement of the loaded edges x = us/u; = 1. The analysis
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Fig. 5. Critical force as a function of the parameter A defining the orthotropy
variation for the plates of b/h = 60

was performed for plates of different length to width ratios (L/b = 0.5;1;5)
and different supports of the unloaded edges (p - simply supported, « - clam-
ped, s - free edge). The curves on the diagram of F..(A) prove that in the
case of plates with one free edge (in Fig.h designated as "ps” and ”us”) the
introduction of widthwise variable orthotropy was pointless since the value of
A parameter in the analysed range had practically no influence upon the value
of critical force.

The maximum critical force value in the case of the above plates occurs
at A =0, i.e. for a plate with constant orthotropy. Somewhat different are
the results obtained for the plates with simply supported or clamped unloaded
edges. The weakening of edges, i.e. the lowering of A value from 0 to -2,
causes a decrease in the critical force value by about 25% for the square plates
and plates with [/b = 5. Increasing the A value from 0 to 2 in simply
supported plates makes the critical force grow by ~ 500N which gives a 10%
increase for short and 25% for the long ones. In comparison with the clamped
edge plates the increase in A value causes a significant growth of the critical
force, by about 1000 N (over 50% in case of square plates).

Fig.6 illustrates a dependence of critical force on the A parameter for
a plate loading mode which causes uniform displacement of loaded edges
£ = 1. The curves with corresponding to identical edge conditions but diffe-
rent dimensions, i.e. the plate width to thickness ratios b/h = 60 and 100
(in the description of Fig.6 the numbers after the dash) and different ratios
[/b = 0.5; 1; 5 (in the description of Fig.6 the numbers before the dash). Both
when b/h = 60 (Fig.5) and when b/h = 100, plates show a distinct growth of
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Fig. 6. The influence of parameter A upon the critical force for plates with different
[/b and b/h ratios; (a) plates clamped on unloaded edges, (b) plates simply
supported on unloaded edges

the critical force values (by about 50% for the clamped plates (Fig.6a) and by
about 30% for the simply supported plates (Fig.6b) accompanying an increase
in the A parameter from 0 to 2.

The following two graphs (Fig.7 and Fig.8) show the curves illustrating the
influence of A parameter upon the critical value M, in rectangular plates
with sinusoidal orthotropy; the loading mode causes a linear variation in the
displacement of edges k& = —1. In all the analysed cases an increase in A,
that is a stiffening of edges, causes an increase in the critical moment value.

Fig.7 refers to the plates with clamped unloaded edges, with different width
to thickness ratios b/h = 60 and 100 (the after-dash numbers in the descrip-
tion) and with different length to width ratios 1/b = 0.5, 1 and 5 (the before-
dash numbers in the description). In the above cases the critical moment grows
by about 26% with A increasing from 0 to 2 and is reduced by about 50%
with A changing from 0 to —2. The curves referring to [/b = 0.5 and 1
coincide just like the curves corresponding to [/b =5.
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Fig. 7. Critical moment versus the factor A4 in the case of plates with unloaded
edges clamped
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Fig. 8. The influence of factor A upon the critical moment in the case of plates with
b/h = 60

Fig.8 refers to plates with b/h = 60, different length to width ratios
[/h = 0.5, 1 and 5 (numbers 05, 1 and 5 in the description) and different
supporting modes of unloaded edges: simply supported, clamped, free edge
(supporting mode is designated by symbols p, u and s, respectively). All the
curves are increasing which allows us to say that an increase in A value, i.e. a
stiffening of edges, causes increase of the critical value which causes a buckling
of a plate under bending. The analysis of curves shows that an increase in A
value from 0 to 2 causes an ~ 25% increase in the critical moment value in
all the cases considered while a decrease in A value from 0 to -2 reduces
the critical value by about 50%.

The following two figures present the results in the form of graphs which
express the dependence of critical values (inoment and force) on the amplitude
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of the sine curve defining the orthotropy variation across the plate width. The
results were calculated for rectangular plates subject to loading with x =0
(Fig.2b). The interpretation of curves obtained for such a load is somewhat
more difficult than that of the others since for one A value two critical load
parameters were obtained, namely the moment M and the force F,.
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Fig. 9. The influence of orthotropy variation factor A upon critical values;
(a) unloaded edges clamped, (b) unloaded edges simply supported

In Fig.9 and Fig.10 the critical moment value M., grows together with
the A value whereas the critical load value not always shows an increase.

The plates with width to thick of plate equal 100 and 60 and length to
width of plate /b = 0.5, their unloaded edges being siinply supported, show
a slight decrease in the critical force value (F, variation no more than 5%)
when A changes from 0 (constant orthotropy) to +2. In the two above cases
the critical moment M., grows by about 45% when A goes up from 0 to 2.
This observation enables one to conclude that an increase in the amplitude of
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Fig. 10. The influence of factor A upon the critical values in a plate of 6/h = 60,
subject to loading which causes displacement of loaded edges as in the case of
eccentric compression

the sinusoid defining the orthotropy variation (orthotropic stiffening of edges)
results in an increase in the critical load values causing the stability loss.

3.2. Plate II (stepwise variable orthotropy)

The following geometrical dimensions were assumed: plate width b= 100
and 60 mm, length to width ratio [/b = 0.5, 1 and 5, thickness h = 1 mm.

Below are presented the results of numerical calculations for plates with
stepwise variable orthotropy, a model consisting of three bands (Plate II).
Analysis was made of plates with stiffened edges (designations: 1b - 20%;
2b - 40%; 3b — 60% of plate width, respectively) and with a stiffened centre
(designations: 2s — 20%, 4s — 40%, 6s — 60% of plate width, respectively).

Fig.11 and Fig.12 present curves obtained for plates under a Joad causing
a uniform displacement of edges (x = 1).

Fig.11 shows F,.(8*) values for long plates (I/b = 5) with the unloaded
edges simnply supported (Fig.11a) or clamped (Fig.11b). It can be seen that an
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Fig. 11. The influence of parameter 8~ upon the critical force value for plates with
1/b =5 subject to loading which causes a uniform displacement of edges;
{(a) unloaded edges simply supported, (b) unloaded edges clamped
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Fig. 12. The influence of B* upon the critical force value in plates with different /b
ratios subject to a load causing a uniform displacement of edges; one unloaded edge
is clamped, the other one free, (a) 1/b=0.5,(b) /b=1,(c) }/b=15
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increase in 8* leads to an increase in the critical value. In plates with stiffened
edges the growth of §* from 1 to 7 resulted in an increase in the critical force
value by about 4 times; in the case of centrally stiffened plates the respective
increase was no more than 50%.

Fig.12 shows F(8*) curves for plates of various lengths (b/h = 100,
[/h = 0.5, 1, 5) with one unloaded edge simply supported. the other one
free. An analysis of these diagramns proves that the variation in critical value
depends not only on whether the plate was stiffened on the edge or in the centre
(curves in Fig.11) but also on the portion of plate width being stiffened.

In Fig.12 a,b all dependences are linear which is not the case in Fig.12c; this
results from a change of the buckling mode when (* goes up, i.e. it depeuds
on the number of half-waves which are formed along the plate (Table 1). This
effect is particularly evident in case of long plates (e.g. /b =5).

Table 1

" Thekindof [ f*=[1]119165[27] 6.36
stiffened edge ‘ {/h | Buckling mode — nwmber of half-waves m

3b 111L1_]L1[ ;

5 3/ 3 3 |2
4s 1 11 [ 1 |1 1
5 |3/ 3 | 3 | 2 2
6s 1 1 [t 1
5 (8] 3 [ 38 ]2 2
(®)
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Mer 00} e
600 7
sooﬁ e
400 - —_
300] P
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Ls —-—lbﬂ
- — =2 —--=2b
----- 3s

Fig. 13. The influence of §* upon the critical force value in plates with /b= 0.5
subject to load causing an displacement of edges as under pure bending;
(a) unloaded edges simply supported, (b) unloaded edges clamped
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Fig. 14. M., as a function of 3 in plates where the edge displacement distribution
is assumed to be linear x = —1

The curves in Fig.13 and Fig.14 illustrate the dependence of critical mo-
ment upon the parameter of orthotropy variation §* for plates where the load
distribution can be characterized by x = —1 (Fig.2b). Fig.13 presents curves
obtained for the plates with [/b = 0.5 (short plates) and with different ways
of the support of the unloaded edges. Fig.14 shows the curves M (5*) for
plates with different {/b: 0.5, 1 and 5, and with different boundary conditions
on the unloaded edges: simply supported — free edge.

It can be concluded that stiffening makes sense only on the plate edges;
stiffening the central part of the plate does not contribute to an increase in
the critical load values.

4. Conclusion

The results of numerical calculations presented in this paper prove that,
in the structures tested, higher orthotropy ratios at the plate edges result in
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higher critical load values in plates which are loaded causing a uniform (k = 1)
or linearly variable (k = 0) displacement of the loaded edge. If the plate is
subject to a load causing a linear displacement of the loaded «dges (k = —1)
an orthotropic stiffening of the plate centre practically does not bring about
any increase in the critical stress values.

The above allows one to conclude that, given the loading mode, edge con-
ditions the geometry of the structure, it is possible to choose for the plate or
for each girder wall a function that would describe the orthotropy variation
across the plate so that the critical load could have a desired value.
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Wptlyw zmiennej ortotropii na statecznosé konstrukeji cienkoéciennych

Streszczenie

W pracy analizowano utrate statecznodci cienkodciennych plyt ortotropowych
o gléwnych kierunkach ortotropii rownoleglych do krawedzi $cian. Badano plyty
charakteryzujace sie zmiennym wzdluz szerokodci wspolczyunikiem ortotropii § =
E;/Ey. Analiza prowadzona byta w zakresie sprezystym. Badano plyty cienkie pod-
parte na obcigzonych brzegach przegubowo, a na nie obcigzonych brano pod uwage
rézne rodzaje podparcia (utwierdzenie, podparcie przegubowe, swobodny brzeg).
Plyty poddano obcigzeniom powodujacym réwnomierne 1 liniowo zmienne zblizenie
brzegow. Zagadnienie rozwigzano przy zastosowaniu pierwszego rzedu asymptotycznej
teoril statecznosci uktadéw zachowawcezych Koitera.

Wyniki obliczen numerycznych preedstawiono w postaci wykreséw opisujacych
zalezno$¢ wielkodct krytycznej (sity lub momentu) od parametru okreslajgcego zmien-
10$¢ ortotropii wzdluz szerokodcei plyty.
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