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The paper presents a solution to the problem of harmonic vibrations
of a plate submerged in an unbounded medium of inviscid compressible
fluid. The solution is obtained, as a limiting case, by means of a solu-
tion to the problem of an infinite elliptic cylinder vibrating in the fluid.
The latter problem is solved with the help of the Fourier method of se-
paration of variables in the elliptic coordinate system. For comparison
purposes, a similar problem of circular cylinder vibrating in the fluid is
also investigated. From the discussion presented it follows, that the fluid
compressibility is essential in estimating hydrodynamical forces, espe-
cially in calculating damping of plate vibrations for higher frequencies.
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1. Introduction

In offshore engineering we usually deal with the problem of dynamical in-
teraction of structures and fluids. In many cases, in theoretical descriptions
of such problems, it is justified to neglect the small Juid compressibility. On
the other hand, there are also cases when the compressibility of the fluid must
be taken into account. Examples of the latter cases are sea piers, breakwa-
ters and elements of offshore structures loaded with impact pressure forces
resulting from water waves. For practical and theoretical reasons, vibrations

'A part of this work was presented at the XIII-th Conf. on Fluid Mechanics held at the
Technical University of Czestochowa, 1998.
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Fig. 1. Constant force induced vibrations of the floating plate
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of an elastic plate submerged in the fluid seems to be one of the fundamental
problems in this field. In order to learn more about the phenomenon, experi-
mental investigations of such a plate under impact the hydrodynamical forces
were carried out at the Institute of Hydro-engineering of PAS in Gdansk. The
experiments consisted in investigations into dynamic behaviour of a horizon-
tal plate suspended elastically in a hydraulic flume an loaded with water wave
forces. Among the experiments, there were also cases of the plate having a con-
tact with the surface of calm water (floating plate) forced to move by external
forces suddenly applied to its upper surface. In particular, the plate was loaded
with a constant force (the Heaviside function of time) or, with an impulsive
force of short duration. The plate model was equipped with pressure, acce-
leration and displacements gauges together with a recording unit. The data
obtained in experiments has the form of a sequence of numbers corresponding
to the sampling frequency of electronic devices used in the experiments. The
experimental records were then processed with the help of the Kalman filter
method which allowed for decomposition of vibrations into the components
corresponding to the dominant frequencies of the system mentioned. Typical
results obtained in this way are shown in Fig.1, where the acceleration record
of the plate together with the spectral density plot are given. The case shown
in the figure corresponds to a constant force applied to the plate at a certain
moment of time. The experirnents performed reveal the importance of the fluid
compressibility as well as the flexibility of the structure in proper estimation
of the dynamical interaction of the plate - fluid system. From theoretical po-
int of view, a very important task is to find a solution to the problem of the
floating plate vibrating with an assumed frequency. The problem considered
is a classical one involving coupling between the plate and fluid. The solution
to the problem in question is obtained indirectly. In the first step, a solution
to the problem of an elliptic cylinder vibrating in the fluid is constructed.
Then, in the second step, by making a limit in the results derived, the desired
solution for the plate is obtained. For comparison purposes, an analytical so-
lution to the problem of infinite circular cylinder vibrating in the fluid is also
constructed. We confine our considerations to the plane problem of steady
state vibrations of the cylinder cross-section in the fluid. The equations deri-
ved allow for calculating the added mass of fluid and damping of vibrations
associated with energy radiation by means of the outgoing dilatational waves.

5 — Mechanika Teoretyczna
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2. Harmonic vibrations of a circular cylinder in a fluid

We consider the plane problem of harmonic vibrations of a rigid circle
immersed in a compressible fluid. The geometry and the assumed coordinate
systems of the considered problem are shown schematically in Fig.2.

=y

Fig. 2. Rigid circle with the coordinate systems
The mutual relation between the Cartesian and polar coordinate systems is
T =7rCcosy Y = T78InY 0<r<oo o <Y< 2r (2.1)

The relevant unit base vectors e, and ey of the polar coordinate system are
expressed in terms of the Cartesian base e) and ey as follows

e =€) cosy + eysiny :
2.2)

€y, = —e| siny + ey cos

It is well known (cf Lamb, 1975), that, for small disturbances, the fluid mo-
tion starting from rest may be described by means of the velocity potential
&(z,y,t) satisfying the wave equation

V- —— =0 (2.3)

and the appropriate initial and boundary conditions. The boundary condition
imposed on the cylinder surface is that the normal components of the cylinder
and fluid velocities must be equal. For the discussed case of the steady-state
harmonic vibrations, the solution should satisfy the Sommerfeld condition at
infinity. In Eq (2.3) cis the velocity of sound in the fluid and V? is the Laplace
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operator. In the discussed case, the wave equation in polar coordinates assurnes

the form
O*¢ 100 16°0 10°P

— t =+ =535 — 555 =0 2.4
or?  ror  r206% 2 o2 (24)
The classical method of separation of variables in the velocity potential
&(r,0,t) = R(r)¥(0)T(t) (2.5)
yields the ordinary differential equations

d®T

2 . +iw

St T=0 = T()=Ae

2

Vs :
(27 + m‘ZW =0 = W(e) = Bei‘m (26)
d2R 1 2 2
e _(“’_ _ T_>R =0
dr?2  r\¢2 2

The third equation in (2.6) is the classical Bessel equation. Its solution is
expressed in the form of a linear combination of the Bessel or Hankel functions
(cf Morse and Feshbach, 1958, 1960). Let the circular cylinder vibrates in the
vertical direction according to the formula

w(t) = woe “e, (2.7)

The relevant velocity and acceleration are described by the equations

_dw

v(t) = il —iwwpe “te,
(2.8)
d .
a(t) = d_::, = —wlwge " “le,

With the help of the latter relations we can define the normal component of
the cylinder velocity
Uy = —iwowe ™! (2.9)
For the discussed case of outgoing dilatational waves, one has to substitute
m = 1 in Eqs (2.6). The procedure leads to the following formula for the
velocity field potential
wr

@@ﬁJ)zfuﬁ”(?jsmee““ 7Y =g +iv, (2.10)

where: J; and Y) are the first order Bessel functions of the first and second
kinds, respectively and Hfl) is the Hankel function of the first kind and first
order.
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The component of velocity field normal to the cylinder surface 7 = a is

= AT (42) - N ()] singe e (211)

r=a C C wa

09
- Or

Un

On the cylinder surface, the normal components of the cylinder and fluid are

the same, and thus
—icwo

A= (2.12)
1
Hy'(0) ~ 3 H{ ()
where « = wa/c is a dimensionless variable.
Having the velocity potential
: W) (wr)
—icweH “rlsinf
%) et (2.13)

T 1
Hy (@) ~ LH["(a)
it is a simple task to calculate of the fluid pressure on the cylinder surface

(1) ;

d - H :

ool ety
b Hy'(a) - 4H (a)

and finally, the differential of the normal force acting on the cylinder surface

(1) i .
iF — pwewoH " (o) sin § e “te a df (2.15)

- HP (@) - L ()

Integration of the equation with respect to @ yields the vertical resultant of
the Auid pressure

H ()

P, = pra*wyw?R(a) R(a) =
~aH{"(a) + H (e)

(2.16)

where R is the complex number
N = Fp +1fp (2.17)

Knowing the acceleration and velocity of the cylinder, Eqs (2.8), we may cal-
culate the corresponding hydrodynamical force applied to the cylinder

R, = —P, = pma® Fprio(t) + pra’wFPra(t) (2.18)
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Fig. 3. Components Fus(h) and Fr(h) for vertical vibrations of the circular cylinder

The first term in Eq (2.18) defines the added mass of fluid and, the second one
describes the damping of vibrations due to transmission of energy by outgoing
dilatational waves. For small values of a, the following relation holds

. 2
1 +i%-

1+i%% 70t (In % 4 0.11503 + 1)

1

R

(2.19)

The components of the resultant force (2.17) are depicted in Fig.3. From
the plots it is seen, that for A — 0 (h = wa/c), no damping is obtained, i.e., in
order to calculate the damping it is necessary to take the fluid compressibility
into account.

3. Harmonic vibrations of an elliptical cylinder in a compressible
fluid

Now, like in the previous case, let us consider, the plane problem of har-
monic vibrations of a rigid ellipse in the direction of its smaller axis. In order
to construct a solution to the problem mentioned, it is convenient to introduce
the elliptical coordinate system (see Fig.4).

The Cartesian and the curvilinear coordinates are related through the
transformation
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4’

Fig. 4. Eliptic system of coordinates

T = acoshncosy (31)

y = asinh#nsiny

where 2qa is the focal length of the ellipse and 0 < n < oo, 0 <Y < 27,
The base vectors of the elliptic coordinate axes are expressed as follows

0
a = T a(e; sinhn cosv + ez coshnsiny)
on
(3.2)
or . :
Gy = = a(—e) coshnsiniy + ey sinhncos)

From the dot products of the vectors, the components of the metric tensor
result
911 = g22 = a*(cosh® 7 — cos® ) g2 =0 (3.3)

Accordingly, the determinant of the tensor is
g = a*(cosh? 7 — cos? 9)? (3.4)
The outward unit vector normal to the surface 7 = 7y has the form

a . .
a, = —_ (e, sinhng cos 1y + e, coshng sin ) (3.5)
V9
For harmonic vibrations it is convenient to introduce the spatial potential

P(z,y) .
B(z,y,t) = p(z,y)e” " (3.6)

where w is the circular frequency of vibrations.
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Upon substituting Eq (3.6) into the wave equation (2.3) we obtain the
Helmholtz equation for the spatial potential

V2 + (%)Qg{) —0 (3.7)

Keeping in mind the time factor, we will confine ourselves to the space varia-
bles. In the elliptic coordinate system introduced, the velocity field is defined as

1 ,0¢ d¢
- iy d - —\ = -
v gradg(ny) = = (50 + 7ra) (3.8)
At the same time, the Laplace operator assumes the form
1 /0% 0%
2 .
V2$(n, ) = \/g(a772 + W?) (3.9)
From substitution of Eq (3.9) into Eq (3.7) it follows
0%¢ 0% 2 2 2 wa
6—772+6—7,b2+h((:08h 7] — COSs ¢)¢:0 h:TZO (310)

In order to find a solution to the equation, the method of separation of variables
is introduced, namely

b(n, ) = G(n)H () (3.11)
Upon inserting Eq (3.11) into Eq (3.10) the following equations are obtained

H"(4) + (b - %hg - %h2 cos 2¢)H(¢) =0 51

G"(n) ~ (b - %/ﬁ _ %h2 cosh 20)G(n) = 0

where b is a separation constant and primes denote the differentiation with
respect to independent variables.

The Mathieu equations (cf Morse and Feshbach, 1958, 1960) are obtained.
Substituting for % = iy into the second equation, the form of the first equation
is obtained. In the equations, h is a relatively small number (let us say h <
1.5), while H (%) must be a periodic function with the period equal to 2.
In what follows, we confine ourselves to the symmetrical, with respect to the
small axis, vibrations of the ellipse. Thus, let us consider now the vertical rigid
body motion of the ellipse according to the formulae

w(t) = woe ey v(t) = —iwwpe “ey (3.13)
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Multiplication of the second relation of Eq (3.13) by the vector (3.5) yields
the normal component of the cylinder velocity

lwwg cosh g sin e
2 2
a\/cosh Ny — coS* P

For the assumed motion, the solution to Eq (3.12); is expressed in the form of
the following series (for details see Morse and Feshbach, 1958, vol.1, pp.532)

(3.14)

Up = —

H(y) =Y Bpsin[(2n — 1)y] (3.15)

n=1

Making use of the relation

1 . 1 & .
cos 20 H (1)) = 5(—Bl + By)siny + 5 > (Bp_i+ Bnyy)sin[(2n — 1)) (3.16)
n=1
and substituting Eq (3.15) into Eq (3.12), an infinite homogeneous system of
algebraic equations in the constants B,, n = 1,2, ... is obtained. The system
of equations is approximated by the following finite system

h? h? h?
ZBL+(9+7—b)Bz+zBszo

h? h? h?

Bt (25 + 5 —b)B;;+IB4 =0 (3.17)
h? h? h?

S Baoi [(2n ~1)% + 5 - b Bu + %Bnﬂ ~0

Numerical calculations show, that for the cases we are interested in, the conver-
gence is very fast and thus, such approximation is justified. Nontrivial solution
to the equations exists only in the case when the parameter b is an eigenvalue
of the system of equations. In such a case, the constants B;, 1 = 1,2,...,n
are not independent, but depend on the form of the relevant eigenvector. In
general, in the case of n equations (3.17) and n distinct eigenvalues, we have
the n xn eigenvector matrix. As h — 0 we deal with the incompressible fluid
for which the matrix of the system of equations (3.17) is diagonal. In this case
the eigenvalues of the system and the corresponding solutions are as follows

b = (2r — 1)° H, = sin[(2r — 1)¢] r=1,2,.. (3.18)
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An interesting case is for small influence of the compressibility i.e. when the
parameter h is a small number. In this case it is convenient to expand the
relevant eigenvalues into a power series with respect to the parameter. For
instance (cf Morse and Feshbach, 1958, 1960)

by =1+ ah® + i’ by = 9+ agh® + Byh
by = 25 + a3h2 + ,33}14 (3.19)
H, = By siny + Brasin3y + Bpssinby r=1,2,3

Substitution of the relations into Eqs (3.17) yields

m=1

bi=1+ 1h* — oh’ Biy =1+ $5h? — o n!

Byt = —gyh? — 1o h! By = gp b

m=2

by =9+ 5% + gk h! Biy = gsh® — glagh’ (3.20)

By = § + 14gh? — spgsah’ B = —1hph® — ogsgh’
m=3

by = 25 + Sh? + pigh! Bis = g0

Bas = g4 ~ moza00 By = § = 500" ~ 1536000""
In a general case the eigenvectors of the system should be normalised according
to the formula (cf Morse and Feshbach, 1958, 1960))

N

> (2n—1)Bp =1 (3.21)

n=1

where N stands for the number of equations.
Knowing 7, 7 = 1,2,..., N solutions to Eqgs (3.17) we have to construct
solutions to the following r differential equations

Gu(n) — (br — h* cosh® )G (n) = 0 (3.22)

where r=1,2,..,N.
By virtue of the above relations the solution to the wave equation may be
expressed in the form (cf Morse and Feshbach, 1958, 1960)

®(n, 1, t) ZG g iwt (3.23)
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where H,, are defined above and
Gn(n) = [tanhnz ) T™(2n — 1)Bp|Jon—1(z) + 1Yon_1(2)] (3.24)

where z = hcoshn, By, are the elements of the eigenvector matrix and Jo,_;
and Yp,_, are the Bessel functions (cf Morse and Feshbach, 1958, 1960).

The Bessel function entering the last equation has the following asymptotic
expansion

Jan-1(2) + i¥an_1(2) = \/;Texp[ iz — g(2n - %)] (3.25)

For small values of & it is convenient to use the expressions

m 1 Z nmJ2n 1(hSinh77)

Joam-1 = Re(Gm)

DT B (3.26)
YO,Qm—l = Im(Gm) = \/gBle 2(_1)n_mBnm'
(o) B (o)

In Morse and Feshbach (1960) (vol.2, pp.529-530), there are given formulae
for derivatives of the Bessel functions in the limiting case b, — co

dJO 2m—1 1 'm—l\/7 Blm
2v02m~1 = Zh(—1 z
[ dn ]77:0 2h( ) szo:l(_l)n—anm

dYO,?m—l _ .
[ dn ]n:o B WBIZ V""" Bum

[ (2n = 1)(Jno1 Y + JnYno1) + A(Jn Yoo 1+JnY)]

(3.27)

where the arguments of all functions are equal to h/2.
For the assumed number of equations, Eq (3.23) may be rewritten in the
following form

P(n,,t) = CGB' S exp(—iwt) (3.28)

where
— vector of constants

G - diagonal matrix with elements G, G, ..., being the solutions
to Eq (3.22) and finally
S - vector with elements sin),sin 34, ....
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Knowing the normal component of the fluid velocity at the ellipse boundary

1 09

= — 3.2
Un g 0 In=no (3:29)
we can solve the system of equations
—iwpwa coshnp(l,0,0,...| = C%J BT (3.30)
On In=no

and obtain the vector C of constants of the solution. Having the solution for
the velocity potential we can straightforward calculate the Auid pressure and
the elementary force applied to the cylinder boundary

dF agpal(w =

= p—
ot (3.31)
= —piwaCGB T S(sinh 7 cos e, + cosh g sin ey )dep

where S is a matrix of trigonometric functions.

-0.5 5 - \ L L ! A

0.5 1.0 1.5 h=walc 2.0

Fig. 5. Components Fy(h) and Fr(h) for vertical vibrations of the plate

Upon integrating the last equation with respect to the angle in the range
0 — 27, the resultant of the fluid pressure applied to the unit length of the
elliptic cylinder is obtained. Taking the limit passage b, — 0 in the result
mentioned, the solution to the plate vibrations is obtained. With respect to
the displacement w(t) of the plate, the force may be expressed in the following

form
R = (t)pmb2 Fas(h) + 1 (t)wpmnb? Fr(h) (3.32)
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where the plots of the functions Fys(h) and Fr(h) are shown in Fig.5.

On the basis of the above results, one can calculate the hydrodynamic
pressure in the case of flexural displacements of a simply supported plate. For
instance, let the displacements are

T2 .
w(z,t) = wo[l - <E> ] exp(—iwt) (3.33)
The corresponding velocity component, normal to the surface of the elliptic
cylinder, is

v, — % —awpiw cosh g <sin’t/) _ %sin 31/,) exp(—iwt) (3.34)
ay/cosh? 79 — cos2 4
2.0
.,"
< sk S L—
i

0 0.4 0.8 1.2 1.6 0

h=walc 2

Fig. 6. Components Fpr(h) and Fr(h) for flexural vibrations of the plate

Further calculations are similar to those presented above and lead to similar
results. It may be interesting to note, that, within the accuracy of numerical
computations, the resultant of the pressure for this case is equal to 3/4 of the
relevant value for the rigid body motion of the plate. The components Fys(h)
and Fr(h) in this case are shown in Fig.6. In addition to the cases discussed
so far, let us consider now the case of rigid rotational vibrations of the elliptic
cylinder with respect to its longitudinal axis according to the formula

w(z,t) = ¢p exp(—iwt)a(— sinhng sinpe; + cosh ng coses) (3.35)

where the angle g represents the amplitude of rotation.



VIBRATIONS OF A PLATE IN FLUID... 281

The associated normal component of the velocity is

2 .3 9
Un = —iwo exp(—iwt) a’sin2y (3.36)
2(1\/cosh2 Ny — cos2
The resultant moment of the pressure reads
P ol g
M, = w(t)gmra Far(h) + <p(t)§p7ra wFr(h) (3.37)
The plots of Fyr(h) and Fr(h) are depicted in Fig.7.
2.0
LL!T I~
0 ' 1.0 ' 2.0 ' 30 pomae 30

Fig. 7. Components Fa(h) and Fr(h) for rotational vibrations of the plate

With the help of the solution derived, other cases of transverse vibrations
of an elastic plate can be investigated.

4. Concluding remarks

We have presented a solution to the plane problem of harmonic vibrations
of an elastic plate submerged in an unbounded medium of compressible fluid.
The solution was obtained by means of taking a limit passage in the solution
derived in the case of harmonic vibration of an elliptic cylinder immersed in
the fluid. In this way a kind of singularity at the end points of the plate was
defined. The solution for the cylinder was obtained with the help of separation
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of variables in the elliptic coordinate system. With the procedure mentioned,
the problem has been reduced to solutions of the Mathieu equations satisfying
the Sommerfeld condition at infinity. For comparison, a problem of circular
cylinder was also presented. From the analysis performed it is seen that the
fluid compressibility plays a fundamental role in calculating the damping of
vibrations resulting from transmission of energy by outgoing dilatational
waves.
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Drgania plyty w cieczy i ttumienie wywolane transmisja energii za
posérednictwem fal dylatacyjnych

Streszczenie

W pracy przedstawiono rozwiazanie zagadnienia drgan harmonicznych plyty za-
nurzonej w nieograniczonym obszarze §cidliwej cieczy nielepkiej. Rozwigzanie to otrzy-
mano za pomocy przejécia granicznego w zbudowanym rozwigzaniu dla nieskoriczo-
nego walca eliptycznego drgajacego w cieczy. Ten ostatni problem rozwiazano za po-
moca metody Fouriera rozdzielenia zmiennych w eliptycznym ukiadzie wspéirzed-
nych. Dla poréwnania, wyznaczono réwniez rozwigzanie dla drgan walca kolowego
zanurzonego w cieczy. Z przedstawionej dyskusji wynika, ze §ci§liwo§é cieczy jest pod-
stawowym parametrem w opisie sil hydrodynamicznych, a szczegdlnie — ttumienia
drgan plyty dla wyzszych czestoéci.
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