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Continuum damage mechanics model is used in the finite element cal-
culation of fatigue process in a cemented hip prosthesis. The cement
mantle is assumed to be subjected to the fatigue damage resulting in
evolution of the damage-induced material anisotropy and leading, even-
tually, to loosening of the prosthesis. Fatigue parameters and loads are
assumed to be random variables. The reliability analysis is carried out
for a linear approximation of the limit state function and, eventually,
some corrections are presented to improve the fatigue lifetime probabi-
lity distribution assessment.
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1. Introduction

In total hip arthroplasty an implant is often fixed into the marrow cavity
of bones using a poly-methylmethacrylite called a bone cement. It forms a
mantle around the prosthesis. The mantle should assure the implant fixation
to be durable and reliable. However, forces acting upon the prosthesis due to
the human activity generate complex multiaxial stresses varying in time and
resulting in deterioration of the endurance of the fixation due to cement-stem
debonding and development of fatigue damage process in the cement mantle.
It leads to loosening of the implants and requires replacement.

Modelling of the damage accumulation in cemented hip prostheses involves
many uncertainties associated with the initial conditions, material properties,
geometry and loading. Their random nature can be modelled by parameters
assumed to be random variables or functions. Thus, the fatigue damage appe-
ars to be a stochastic process and the time to implant loosening is a random
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variable. The reliability of the prosthesis defined as the probability of loosening
at a given time depends on the probabilistic features of the random quanti-
ties characterising the quality of materials and surgical treatment, level of
conservation of technological regimes and the variety of the patient activity.

In the present contribution the loading and fatigue resistance of bone ce-
ment are assumed to be random. The damage evolves randomly in the volume
of the cement mantle and in the both stem-cement and bone-cement interfa-
ces. It results in formation of the pathways along which some wear particles
can migrate from the joint space to the fractured sites (Anthony et al., 1990).
These wear particles activate the bio-degradation of bone and accelerate the
loosening. Therefore, the prosthesis lifetimme depends substantially on the mo-
notonically increasing process of damage in the cement mantle and in the
interfaces. Due to the random fatigue resistance properties of material the da-
mage process reaches a critical level at a random instant. With an appropriate
definition of the critical damage this event is considered as the failure. Its
probability means the probability of the prosthesis failure and is an increasing
function of time.

2. Mechanical foundations

Verdonschot and Huiskes (1997) applied a model based on the theory of
continuum damage mechanics to fatigue lifetime assessment of cemented hip
prosthesis. In the three-dimensional finite element analysis a tensorial variable
D is introduced to describe the amount of accumulated damage in multiple
directions at every integration point ¢p and, eventually, the cracking leading
to loosening of the implant. In what follows, the main features of the approach
are sketched and some innovations accounting for an interaction of the damage
intensity and damage rate resulting in a progressive damage growth model are
proposed.

In the FEM the bone, cement and steel prosthesis are appropriately model-
led by isoparametric elements. Some gap-elements are introduced to simulate
the debonded stem-cement interface. All materials are considered to be ela-
stic, initially isotropic with deterministic Young moduli. Loads acting on the
prosthesis head and on the greater trochanter simulate the loading genera-
ted during the stance phase of walking. One parameter load description is
admitted.
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2.1. One-dimensional fatigue damage evolution model of bone cement

Fatigue experiments performed on bone cement specimens provide mostly
a relation between the stress amplitude Ac and the number of cycles to
failure Np. Davies et al. (1987) proposed such a relation in the form of the
S-N (Wahler) curve

log Np = —mlog Ao + log ¢y (2.1)

with the material parameters m = 4.68 and log ¢y = 8.77 (g = 5.89 - 108) for
the uncentrifuged bone cement. The stress amplitude Ao means the nominal
stress amplitude and is defined as the ratio of the load amplitude to the no-
minal (initial) area of the specimen. Eq (2.1) defines also the number of cycles
when a specimen fails due to the damage process undergoing in the material.
The effective stress amplitude in the specimen A& can be determined in the
following form

Ao

1-D

Ac

where 0 €< D < 1 denotes the damage parameter so that D = 0 for unda-
maged material and D = 1 at failure. The damage parameter can be related
to the effective area of a section, current stiffness of an element, local hard-
ness, etc. Independently of the physical interpretation the damage parameter
is monotonic increasing in the course of cyclic loading. Since the experimental
evidence on the fatigue behaviour of bone cement is rather scant the formula
for the damage parameter growth rate D can be only postulated. It is as-
sumed that D depends on the current effective stress amplitude AF. The
evolution equation of the damage parameter can be defined in the following
form

S em Ag \m
D =cAc —c(l_D) (2.2)
where ¢ = [(m + 1)cg|™! results from the assumption of the S-N curve (Eq
(2.1)), as the failure condition. Integrating Eq (2.2) over the time ¢, from
t =0 when D = 0 up to the failure ¢ = Tr, when D = 1 and assuming
one cycle as a time unit, i.e. Tr = Np, the S-N curve is restored in the
non-logarithmic form as follows

1

= A —m _ A_m'
mt1)e 0 —@de

Nr

Integrating the damage parameter evolution equation (2.2) over the time in-
terval n € [0,N)| provided that D = Dy at n = 0 the damage intensity
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D = D, at n = Nj or the number of stress cycles n = N; that augments the
damage intensity up to D = Dj, can be calculated as follows

Ag™
o

Di=1- '"+\‘/(1 ~ Dg)m+t — =2 Ny

Ny = coAo(1 — Do)m+1 [1 _ (1:_1;(1))m+1]

2.2. Three-dimensional damage-induced material anisotropy

Let us assume an initial damage intensity in a material element to be given
by the damage tensor D. The presence of the so-defined damage implicates
some anisotropy of the initially undamaged isotropic material element. The
principal directions of D determine the directions of the material orthotropy
and the principal values D,, D,, D3, affect the initial compliance S(0) and
stiffness C(0) tensors. The stress-strain relation in the damaged material
becomes (cf Lu and Chow, 1990)

e=SD):0=S:0 or c=C(D):e=C:¢

where S and C denote, respectively, the compliance and stiffness tensors
of the damaged material. The effective stress tensor ¢ is also related to the
existing damage by means of a damage effect tensor M(D) being a fourth rank
symmetric tensor. Adopting the Voigt notation

[6] = [o11, 022, 033, 023, 031, 012] T
€] = [e11,€22, €33, €23, €31, €12] |

the damage effect tensor can be written in the principal co-ordinate system as
follows
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where D; =1 — D; and the effective stress tensor is given by
o6=MD): 0o (2.4)
Admitting the complementary elastic energy equivalence hypothesis
W¢(o,D) = W¢(o)

which assumes the complementary elastic energy of the damaged material
2We(o, D) =0‘:€=0‘:S(D):aza:g:o‘tobeequalto
the corresponding complementary elastic energy of the undamaged material
2We(o) =0 : € = 0 : S(0) : 0 except that the stress variable is replaced by
the effective stress (2.4) (cf Cordebois and Sidoroff, 1982), the damaged elastic
compliance tensor S= S(D), can be obtained as follows

S(D) = M(D) : S(0) : M(D) (2.5)

Since the undamaged elastic compliance matrix S(0) for an isotropic mate-
rial is

[ 1 —-v -v 0 0 0 ]
v 1 -v 0 0 0
1| -v —v 1 0 0 0
SO=%10 o o 2(1 4+ v) 0 0
0 0 0 0 21 +v) 0

L0 0 0 0 0 21 4 v) |
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the compliance matrix § = §(D) for the damaged material can be calculated
from Eq (2.5) and takes the following form

1 v v 0 0 0
D? DDy DDy
v 1 v 0 0 0
D,D, DI DyDs
—v —v 1
v | BB, B, 2 090
¢ 3471 3472 3
= - — 2'
>=30)=5 0 0 o 4w 0 20)
Dy D5
2(1
070 0 0 i+2)
DsD,
2(1
0 0 0 o o 2ty
i DD,

The stiffness matrix of the damaged material as the inverse of the compliance
~ ~_1
matrix C=C(D) =S""(D)=C  can be written as follows

C=C(D) =
(2.7)
i 2(1 - I/)E% 211.51_52 21/.51.53 0 0 0 1
1-—2v 1-2v 1-2v
21/]52ﬁ1 2(1 - l/)ﬁ% 21/132133
0 0 0
1-2v 1-—2v 1-2v
_ 21/_5351 21/.53_52 2(1 - l/)bg
=G 1-2v 1-2v 1 -2 0 0 0
0 0 0 DyD3 0 0
0 0 0 0 D3D; 0
0 0 0 0 0 DD, |

where G = E/[2(1+v)] is the shear modulus of the initially isotropic material.

2.3. Three-dimensional fatigue damage failure

It is assumed that the current damage due to a load cycle is governed by
the amplitudes As of the principal stresses 8 = [s1, 9, 83|, generated by the
loading in a material element. The damage existing in the structure is defi-
ned by the damage tensor field D(z). Thus, the damage induces a material
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non-homogeneity and anisotropy described by the compliance S(z) =S(D; z)
or stiffness C(z) = C(D;z) tensor field that have to be taken into account
while looking for the stresses generated by a maximum and minimum of the
loading cycle. It is obvious that the solution for a non-homogeneous aniso-
tropic structure has to be found numerically, e.g. by using the finite element
method (FEM). Assuming that the principal directions of the stress tensor do
not change during the following load cycles the solutions yield the amplitudes
of stresses Ag® = gt — g7 in every integration point ¢p and, eventu-
ally, the amplitudes of the principal stresses As? = [AsT, Asy, AsP| for the
ongoing loading history. All calculated stresses are nominal for material with
the damage intensity defined by the damage tensor D”. Thus, the new da-
mage develops on the planes perpendicular to the stress principal directions.
In order to take into account the existing damage D' and to employ the da-
mage evolution equation (2.2) the equivalent nominal stress amplitude As;*
corresponding to the undamaged material has to be calculated as

Asﬁp’eq = As::p(l - DZ’)

where D::f denotes the 7z diagonal component of the existing damage tensor
transformed into the principal stress co-ordinate system at the zp integration
point. .

The number of cycles to failure N;? for every principal stress direction
i = 1,2, 3 can be calculated from the failure criterion (2.3)2 with the equivalent
nominal As?*? or calculated nominal As;® stress amplitude, and with the
damage intensity parameter DZ’ , ie.

ip,eq
Asi .

_ D

1 Dii

NP = cof ) (- D) = co(As) (1~ DY)

The direction z’}’ for which the number of cycles is the smallest one, i.e.
N/? = min N/?
ol i ?

is assumed to be critical. Thus, on the plane perpendicular to the ipth axis
the damage failure criterion is fulfilled after the N;? load cycles.
2.4. Damage-induced updating in the FEM procedure

The analysis described above is performed for all integration points invo-
lved in the FEM procedure. The integration point ipp for which the number
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of cycles to failure Niilf is the smallest one, i.e.

N’pF = m;’anﬁ (2.8)
is considered to be critical in the current calculation step and a damage option
will be introduced at it.

Before going on with further calculation the increment of damage due to
the N:If load cycles is added to the existing damage at all integration points.
Hence, the diagonal components fo-’ of the existing damage tensor D in the

principal stress co-ordinate system at any integration point ip are updated to
DP™ according to Eq (2.3); that takes the following form

Dz?zz_i,up —-1— m+\1/(1 _ Dzy'lp)mﬂ —
(2.9)

(Asl:p)m ipp
o(l = DF) *F

[

=1-(1-DP m+{l1—

Eq (2.8) determines an integration point ipg, where a diagonal component
of the damage tensor Dzﬁ ;. represented in the principal stress co-ordinate sys-

tem reaches its critical value DZ’; £, =1after NP load cycles in the current
calculation step. In order to model this event the cracking option offered in
the MARK numerical FEM code (MARK Analysis Corporation, Palo Alto,
CA) was employed in Verdonschot and Huiskes (1997). This option assumes
a crack perpendicular to the critical principal direction. As a consequence it
nullifies the material stiffness for tensile and shear in this direction and retains
it while the crack is forced to be closed due to compressive stresses.
Moreover, in order to accelerate the calculation and to assure the results
to be conservative the cracking option is applied at the integration points
and for the principal directions of the updated damage tensor for which the
corresponding principal values D;p are not smaller than a given critical value
D, smaller than one, i.e. _
D? > D,

1

while D, = 0.95 is assumed. Also in this paper such an approach is recom-
mended in modelling of the fatigue damaging process of the bone cement.
The damage tensors D*P are updated at every integration point 1p,
see Eq (2.9), over the cement mantle. In order to proceed with finite element
calculation the mechanical properties of elements have to be defined. The
updated damage intensity of the element is proposed to be determined as an
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average of the updated damage over the integration points belonging to the
element ip; =1,2,...,I1P;, where IP; is the number of the integration points
in the jth element. Thus, in each finite element the updated damage tensors
D57 at the integration points have to be transformed into a common co-

ordinate system and their components Ei’,u” are then averaged as follows

]’up _ lp]rup
[ IP ZD (2.10)

sz=1

The principal directions of the averaged updated damage tensors D’ define
the new orthotropy directions of the damaged material in every element of the
finite element mesh. The compliance or stiffness matrix of an element involves
the principal values D" of the damage tensor B]’UP, see Eqs (2.6) or (2.7),
respectively. Thus, substituting D?""’s for D;’s into Eqs (2.6) or (2.7) the
updated damage-induced compliance or stiffness matrix is accomplished.

Repeating this procedure for all elements the damage-induced anisotropy
and non-homogeneity are updated for the next step of the FEM calculation.
Now, the calculation is performed as proposed in Sections 2.3 and 2.4 with the
assumption that the damage tensor D" describing there the existing damage
at an integration point ip is equal to the respective averaged tensor B]’UP,
ie. D = D™ for all ip's in the jth element.

2.5. Global damage criteria

Different damage measures may be formulated to define some criteria of a
critical stage of the prosthesis and determining its lifetime Nf counted in the
load cycle number. In Verdonschot and Huiskes (1997) defined the following
damage measures:

e Total damage Diy(n) accumulated in the cement mantle

P 3

Digt(n) = Y. S DP(n) (2.11)

ip=11i=1

e Total number of cracks Ngpqcr defined as
IP 3

Nerack(n) = 3_ 3 H(D{(n) - De) (2.12)

ip=11i=1

where H(-) is the Heaviside function and n denotes the number of load
cycles elapsed.
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Admitting some critical values of the total damage diy r or number of
cracks Tcreck,r the number of load cycles to failure npp or npy can be
determined from the failure criterion of the following type

D(nr)=df (2.13)

where D(np) denotes any damage measure, e.g. Eegs (2.11) or (2.12), and
nr denotes the corresponding lifetime npp or np n, respectively.

3. Reliability formulation

The material parameters of bone and cement, some geometrical parame-
ters and the loading itself are of random nature and should be considered as
random quantities. However, the complexity of the mechanical problem itself
does not allow us to introduce very complex stochastic model without making
it impractical. In the present contribution the fatigue strength parameters cgy
and m, see Eq (2.1), as well as the load parameter A are assumed to be the
random variables Cp, M and A, only. They are called the basic variables
and compose a random vector X = [X;, Xo, X3] = [Cy, M, A] with known
joint probability density function fx(z). Thus, any damage measure becomes
a function of the random vector X for any number of cycles and the failure
criterion, see Eq (2 13), defines a boundary D(z,n) = dr, between the safe
Ags(n) = {z : D(z,n) < dr} and failure Ap(n) = {z : D(z,n) > dr},
domains in the space X of samples of the basic variables = = [z, 29, z3).
Hence, the failure at a given number of load cycles np is a random event with
the probability Pr(nr,dr) defined as follows

Pp(np,dp) = ]P[D(X,’np) > dp] = / fx(z) dz (3.1)

Ar(nr)
where IP[A] denotes the probability of the random event A. Since the damage
measures are increasing functions of the number of fatigue cycles Eq (3.1)

defines also the probability distribution Fy,(n|dr) of the random fatigue
lifetime Np(X,dr) for a given critical damage intensity dp, i.e.

Fxp(nldr) = P|Np(X,dr) < n| = P|D(X,nF) > dr| (3.2)

It is obvious that numerical multidimensional integration in Eq (3.1) is im-
practical to be carried out because any verification of a point z whether or not
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it belongs to the integration domain (failure domain) Ap(ng) would require
a complete solution of the very time-consuming fatigue problem discussed in
the previous section. Therefore, a method with a minimal number of fatigue
problem calculations has to be searched for to efficiently provide an estimate
of the fatigue lifetime probability distribution function in the range of very
small probability values. This range is the most interesting for the reliability
and, eventually, usefulness assessment of the prosthesis.

4. Reliability assessment

The method developed by Y.T. Wu (Wu et al., 1989) and discussed by
Wisching et al. (1991) seems to be especially useful in assessment of the pro-
bability distribution of the fatigue lifetime for limit state functions resulting
from the involved finite element analysis. The point is that the number of
cycles Np(z,dr) defined in the space X of samples of basic variables =z
is transformed into the space U of standard Gaussian variables Uj. Such a
transformation denoted here as

u; = ¢! [Hi(ivill'l,l'm ---1$i—l)] = T;(z)

involves the standard Gaussian probability distributions @(u) and conditio-
nal probability distributions H;(z;|z1,za, ..., z;—1) of the basic random varia-
bles z;. It was proposed by Rosenblatt (1952) and is a standard procedure in
reliability analysis, cf Hohenbichler and Rackwitz (1981).

A linear approximation of the number of cycles Np(z,dr) in the space U
is looked for. Thus, we need the K + 1 solutions of the fatigue problem defined
in the previous sections where K denotes the dimension of the basic variable
vector X (K = 3 in the present contribution). It is proposed to look for the
solutions in g = T()?) = T()?l, vy Xy o, XK), where X; denotes the median
of X;, and in the K values of zp = T_l(‘uk) shifted with respect to up, e.g.
= [ug,1,-..,upk £0.1,...,up k|. It is easily seen that for independent basic
variables #g = 0. The sign ”+” is chosen for the components & corresponding
to loading and the sign ”-” for those corresponding to the material strength.
The linear approximation of the lifetime in 2
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K
NF(uadF) :NF(XadF)+Z
k=1

nr(&g, dr) — Np(X,dr)
+0.1

(ug — uox) =
(4.1)

K
= Np(X,dr)+ ) Sk(ur — uog)

k=1
is admitted in the limit state function Ng(z,dr) — n; = 0, see Eq (3.2), used
in calculation of the probability that the number of load cycles to failure is
smaller than a given number n;, j = 1,2,...,J. Due to axisymmetry of the
Gaussian probability measure in the If space the probability can be estimated
as  Prp(nj,dp) = &(—0;), where f; is the reliability index defined as the
shortest distance between the linear approximation of the limit state function
in U and the origin. For the approximation (4.1) the reliability index can be

determined as R
_Nr(X,dp) —mnj — SrC | Sk k

B; =
’ V Z?:l 51?:

)

IB.
RS> Y

belonging to the transformed limit state function and closest to the origin in
U is called the design point. In order to improve the probability estimate the
fatigue problem is again solved for the point &} = T(u) that is the counter-
part of u in the original space X. The solution provides a corrected number
of cycles to failure, i.e. Np(a:;,dp) = n; corresponding to the previously
calculated probability. Thus, the probability @(—p0;) is now admitted as the
value of the lifetime probability distribution function (3.2) for the =} load
cycles, i.e.

The point

Fyp(njldr) ~ &(-0;)

Repeating the reliability analysis for J various numbers of load cycles n; and
solving the fatigue problem J times for every 7, i.e. for every retransformed
design point u;-, we obtain J values of the lifetime probability distribution
or, equivalently, of the reliability index fB; = B(n]|dr). Thus, the K +J +1
solutions to the fatigue problem are necessary to estimate the relationship § =
B(n|dr) between the reliability index [ and the number of load cycles n over
a segment of the load cycle number. A polynomial fit S(n|dr) =~ Z?:o agnd,
with a4 calculated from several approximate solutions appears usually to be
a very good approximation of the relationship.
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5. Concluding remarks

The fatigue damage analysis presented in the paper is based on the appro-
ach proposed by Verdonschot and Huiskes (1997). Some simplifying assump-
tions are introduced. They allow us to take into consideration the evolution of
the damage-induced material anisotropy and non-homogeneity developing in
the course of fatigue loading process. For successive calculation steps the stif-
fness of the cement mantle is related to the increasing damage intensity and
updated. The damage evolution equation is also assumed to account for an
increase of the fatigue damage growth rate due to the increase of the damage
intensity itself. It is expected that the proposed modifications will alter the
numerical results presented in Verdonschot’s and Huiskes’ (1997) paper where
an asymptotically ceasing character of the total fatigue damage process was
obtained. Decrease of the fatigue damage rate while no additional effect like
bone remodelling, load sequence interaction, material hardening are taken into
account seems rather surprising since most observations collected in fatigue
experiments show an exploding character of the fatigue damage process. Now,
the numerical calculations are being in progress. The first preliminary results,
however, have already showed that the modifications significantly affect the
fatigue damage process calculation. After accomplishing the computation the
results will be published elsewhere.

The complex numerical procedure inhibits the application of any advanced
reliability algorithms. The proposed reliability calculations are also extremely
reduced by application of a linear approximation of the limit condition in the
standard Gaussian probability space. It allows us to carry out the reliability
calculations almost analytically without employing any reliability software.
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Szacowanie uszkodzert zmeczeniowych i niezawodnoéci cementowanej

protezy biodrowej

Streszczenie

Do modelowania procesu zniszczenia zmeczeniowego cementowanej protezy bio-
drowej zastosowano metode elementéw skoiczonych oraz kontynualny model mecha-
niki zniszczenia. Otoczka cementowa tworzaca zamocowanie protezy narazona jest na
uszkodzenia zmeczeniowe, ktére powoduja powstanie 1 ewolucje anizotropii materialtu
oraz prowadzg do obluzowania protezy. Parametry materialowe charakteryzujace pro-
ces zmeczenia oraz obcigzenia przyjeto jako zmienne losowe. W analizie niezawodnoéci
przyjeto liniowg aproksymacje warunku granicznego okreélajacego przydatnos$é pro-
tezy 1 zaproponowano pewne modyfikacje pozwalajace efektywnie szacowaé rozklad
prawdopodobienistwa czasu zycia protezy.
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