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The volume of the intrafibrillar water space — i.e. the water contained in-
side the collagen fibers ~ is a key parameter that is relevant to concepts
of connective tissue structure and function. Because existing theories
of finite deformation of cartilaginous tissues do not distinguish between
intra- and extrafibrillar water, we derive a chemo-electro-mechanical for-
mulation of quasi-static finite deformation including such distinctions.
The model features a porous solid saturated with two fluid compart-
ments, in which an arbitrary number of solutes are dissolved. Fach fluid
compartment has its own fixed charge density. Incompressible deforma-
tion is assumed. Each fluid compartment is assumed to be locally electro-
neutral. Balance laws are derived for each constituent and for the mixture
as a whole. A Lagrangian form of the second law of thermodynamics for
incompressible porous media is used to derive the constitutive restric-
tions of the medium. The material properties are shown to be contained
in one strain energy function and a matrix of friction tensors. The for-
mulation is consistent with the experimental finding (Maroudas et al.,
1991) that the intrafibrillar water content is regulated by the osmotic
pressure gradient between the extra- and intrafibrillar compartments.

Key words: mixture theory, porous media, cartilage, intervertebral disc

Notation
b - body force of constituent « in phase ¢ per constituent unit
volume
b - body force of the mixture per mixture unit volume

B?Y - frictional tensor between the constituents B and 7y
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concentration of constituent « in phase % per current mixture
unit volume

Green strain tensor of the solid

Faraday constant

deformation gradient tensor of the solid

ratio of current mixture volume to initial mixture volume
ratio of current volume of constituent « in phase % to current
mixture volume

ratio of current volume of constituent « in phase 1 to initial
mixture volume

pressure

heat flux of constituent « in phase ¢

an energy flux of the mixture

heat supply of constituent « in phase ¢ per constituent unit
volume

heat supply of the mixture per mixture unit volume

velocity of constituent ¢ in phase ¢

Lagrangian velocity of constituent [ relative to the solid
Lagrangian form of energy flux ¢

molar volume of constituent «

Helmholtz free energy per initial mixture unit volume

valence of constituent a

internal energy of constituent « in phase ¢ per constituent
unit volume

internal energy of the mixture per unit volume

entropy of constituent ¢ in phase Z per constituent unit volume
entropy of the mixture per unit volume

entropy of the mixture per initial mixture unit volume
electrochemical potential of constituent ( in phase ¢ per con-
stituent unit volume

momentum interaction of constituent « in phase 1
Helmholtz free energy of constituent « in phase 7 per consti-
tuent unit volume

Helmholtz free energy of constituent « in phase ¢ per mixture
unit volume

partial Cauchy stress of constituent « in phase i@
temperature of constituent ¢« in phase ¢

temperature of the mixture

gradient tensor in initial configuration
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1. Introduction

Chondrocytes occupy only a small fraction of the total volume of cartilagi-
nous tissues. Therefore, the extracellular matrix determines the instantaneous
electro-chemomechanical properties of the tissue. Although the tissue has a
solid appearance, the extracellular matrix consists mainly of water (60 to 85%
wet weight). The non-aquous components of the extracellular matrix are: col-
lagen fiber network (30-60% dry weight), molecular network of proteoglycans
(10-60% dry weight), small ions (3% dry weight) and some larger solutes.
The entanglement of the collagen and proteoglycan network force them to be-
have as a single porous solid within which water and ions are free to move
(Maroudas and Schneiderman, 1987). Experiments on solute transport have
shown that larger solutes including the proteoglycan macromolecules cannot
penetrate into the water present within the collagen fibrils (Wells, 1973). The
strong water binding capacity of the tissue is caused by ionisation of the pro-
teoglycans (Urban et al., 1979). The ensuing negative charge fixed to the solid
is counteracted by the corresponding small positive counterions in the fluid.
These charges — mainly Na™ - do not bind to the proteoglycans and result in
a variety of features including swelling, electro-osmosis, streaming potentials
and streaming currents. Conversely, the osmotic activity inside the fibrillar
collagen must be very low. The collagen molecules have many ionisable gro-
ups, but most of them are self compensated via electrostatic linkages (Li and
Katz, 1976). It is, therefore, obvious that the fluid volume contained in the
extracellular matrix is composed of two functionally distinct compartments,
the intrafibrillar water inside the collagen fibrils and the extrafibrillar water
outside the collagen network. Maroudas et al. (1991) showed by means of X-
ray diffraction measurements that the intrafibrillar water content is a function
of the osmotic pressure difference between the extrafibrillar and intrafibrillar
spaces and ranges between 0.8 and 1.3 g/ g dry collagen. Since the proteogly-
cans are restricted to the extrafibrillar compartment, it is not their overall
concentration in the matrix which is relevant, but their actual concentrations
in the extrafibrillar space. This effective concentration depends on the propor-
tions of water in the extra- and intrafibrillar space compartments. In particular
for compressed cartilage — a condition particularly relevant for its mechanical
integrity — the calculations based on total water content can suffer from a
seriously error (Maroudas et al., 1991).

To the best of our knowledge, all models dealing with cartilage electro-
chemomechanics (Lai et al., 1991; Simon et al., 1996; Huyghe and Janssen,
1997) base their calculations on the total water content. For this reason the
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present study aims at developing a blueprint of a mixture model including
a distinction between the two fluid compartments. Earlier work in the field
of geomechanics has been dealing with fluid-solid mixtures in which the fluid
was subdivided into two or more compartments. Aifantis (1977) introduced
the concept of multiporosity for deforming media that are characterised by se-
veral distinct families of diffusion or flow paths. A special case of this concept,
in which only two degrees of diffusivity were included, was applied to fissured
rock formations, in which most of the fluid volume is located in low perme-
ability pores of the rock and most of the permeability is associated with the
fissures (Wilson and Aifantis, 1982). Huyghe and van Campen (1995a) and la-
ter Vankan et al. (1996) derived a multiporosity model for blood perfused soft
tissue. This model features a spectrum of porosities intercommunicating with
one another through anisotropic interfaces and has been applied successfully to
several biological situations (Vankan et al., 1997, 1998). Murad and Cushman
(1997) developed a dual porosity model for clays in which the vicinal water
between clay platelets is treated separately from the bulk water. They include
swelling through adsorption forces between solid and fluid. They do not in-
clude electrostatic forces associated with the ionisation of the clay platelets,
although they acknowledge the need for it. The present paper develops a dual
porosity model of a saturated deforming porous medium including ionisation
of the solid in both porosities. Although the primary field of application that
we have in mind in this paper is the separation of the extracellular space of
cartilaginous tissues in a intrafibrillar compartment with low ionisation and an
extrafibrillar space with high ionisation, the theory may also find application
in other fields. These include modelling of clays and shales or the modelling
of biological tissues including a separation between the intracellular space and
the extracellular space.

2. Theory

We consider a porous solid (s) saturated by two fluid compartments,
one intrafibrillar (1) the other extrafibrillar (2). We assume that the solid
and all constituents o« constituting the fluid compartments are intrinsically
incompressible, i.e., if one adds a mass m of constituent « to the mixture,
the added volume of the mixture is always proportional to the mass m,
irrespective of its value m, of the initial composition of the mixture or of the
state of deformation. The proportionality constants are the intrinsic densities
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psi and p?i

P Py .
ot = Epgi = o =L (2.1)
In Eq (2.1) the superscript s means solid, the subscript j specifies the com-
partment j = 1 intrafibrillar and j = 2 extrafibrillar, while the superscript
a specifies the constituent. p7 represents the apparent density of the ath
constituent in the jth phase. nj is the volume fraction of the ath consti-
tuent in the jth phase. We use the word incompressible after Bowen (1980);
i.e., neither deformation of the constituents nor changes in mixing ratios re-
sult in changes of intrinsic densities. Although it is more common to express
solute quantities in molar or mass values than in volume values, we will use
volume fractions throughout this paper, to reduce the number of symbols to
introduce. Due to incompressibility, the ratio between mass and volume is con-
stant, and the two quantities are interchangable in the equations. Excluding
chemical reactions between constituents, but including mass transfer between
the same constituents in different phases, the mass balance of each phase is

then written as
on¥

ot
in which v is the velocity of constituent « of phase iz, c¢{ the volume of
constituent « added into phase 1 from the other phase per unit time and
per unit current mixture volume. Conservation of mass of each constituent
requires

+ V- (niv]) = ¢f i=1,2 (2.2)

Z ¢ =0 for all constituents « (2.3)
i=1,2

while for the solid we find
¢t =0 (2.4)
As we assume saturation, we find

n® + Z an‘ =1 (2.5)

i=1,2 o

The summation over « is taken over all constituents of the ith phase. Diffe-
rentiation of Eq (2.5) with respect to t and substitution of the mass balance
equations (2.2) yields the mass balance of the mixture

Vo + S SVl f vt =0 (2.6)

i=12 8

We refer current descriptors of the mixture to an initial state of the porous
solid. The deformation gradient tensor F transforms an infinitesimal material
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line segment in the initial state of the solid into the corresponding line segment
in the current state. The relative volume change from the initial state to the
current one is the determinant of the deformation gradient tensor J = detF.
If we introduce the volume fractions

NZ = Jn& (2.7)

per initial unit volume, we can rewrite the mass balance equation (2.2) as
follows

D°N{ a s ra
Di +JV - [ni (v —v°)] = J¢§ (2.8)
using the identity S
D3 s
Dt =JV-v (2.9)

In Egs (2.8) and (2.9), g; = at + v* - V is the time derivative for an ob-
server moving with the solid. The electrostatic interactions between ions and
the charged solid are accounted for by means of two electroneutrality condi-
tions, one for the intrafibrillar space and one for the extrafibrillar one. The
electroneutrality conditions require that

clt+Y 2ce=0  i=1,2 (2.10)
a

" in which ¢ are the valences, C’if ¢ the fixed charge density per initial mixture
unit volume and C;* the current molar concentration of mobile ions in the
1th phase per initial mixture unit volume

N&
CY = V—’a (2.11)
V' are the partial molar volumes of the solvents and solutes. Eq (2.10) is
rewritten in a more convenient differentiated form, using the fixity of the fixed

charges (D°C{°/Dt =0, i =1,2) and Eq (2.11) (Huyghe and Janssen, 1997)

g V“{V (& — %)) — } =0 (2.12)
Neglecting inertia, the momentum balance takes the form
V. (0°)C +7° =n°b’ V- (6%)C + 7& = nbf (2.13)

which after summation over all constituents, yields

V-oC= 3 3 ool = V-(@*)C+ 3 3OV (08)C - picfup| = b (2.14)

i=1,2 o i=1,2 o
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if use is made of the balance condition

4+ Y S (4 i) =0 (2.15)

=12 «

where ¢° is the partial Cauchy stress of the solid, o is the partial Cauchy
stress tensor of constituent o of the isth phase, #’ and m{ represent the
momentum interaction with other constituents, b the body force of consti-
tuent o of the ith phase per unit volume and b =5+ 3, 5 3, ndb{" the
body force of the mixture per unit volume. The term appearing in Egs (2.14)
and (2.15) involving the volume interaction ¢ is non-zero in both equations,
but negligibly small compared to other terms in the equations in the case of
a permeation and diffusion as slow as in cartilaginous tissues. Therefore, we
replace Eq (2.14) by

V-oC=V-0)+ > YV (00 =b (2.16)

i=1,2 «

and Eq (2.15) by

™+ Y ) r=0 (2.17)

i=1,2 a

Balance of moment of momentum requires that the stress tensor o be sym-
metric. If no moment of momentum interaction between components occurs,
the partial stresses o also are symimetric. In this paper we assume all partial
stresses to be symmetric. The balance of energy for the ath constituent of
the ith phase reads

o D€
™ "Dy

in which € is the partial internal energy of the ath constituent of the
ith phase per unit volume, ¢ the heat flux of constituent « of the ith
phase, r{ the partial heat supply per constituent unit volume and € the
energy interaction with other constituents per unit volume. Df/Dt is the
time derivative for an observer fixed to the ath constituent of the 7th phase.

A similar energy balance holds for the solid

=08 : Vi -V ¢ +nird + € (2.18)

stes T 8 _ 7.4 8.5 4 78
"5 =0": V' -V . ¢ +n'r" +¢€ (2.19)
Total energy balance requires
vt DD @4 ad ) =0 (2.20)

i=1,2 «
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Substitution of Eq (2.18) into Eq (2.20) yields an equivalent form of the total
energy balance

Dée 3 s s 3 | a8 g
Di =0 V' -V -¢—v - " —eV- o' +r+
(2.21)
P33 o8 Vop — V[ 4 i (0f - v°)] — v - w - el
=12 «
in which

e=¢€+ Z Zn?e? (2.22)

i=1,2 «@
is the internal energy of the mixture per unit volume and

r=r+ Z an‘rf‘ (2.23)

=12 «

is the total heat supply of the mixture per unit volume. Under incompressible
conditions, the entropy inequality for a unit volume of mixture reads (Bowen,
1980)

%: "V”+12;22a:{ [ +nnz(-—v)] %}20 (2.24)

in which %{ is the entropy of constituent o« per constituent unit volume,
N=2i=122.a T 7 1 the entropy of the mixture per mixture unit volume and
0% the temperature of the constituent « in the ith phase. If the temperature
field is assumed the same for all phases, we find

20w V- {5 Y Slad + ngnioes — o)} -

1120

>0 (2.25)

] 3

in which # 1is the temperature of the mixture. Substitution of the energy
balance (2.21) into the entropy inequality eliminates the heat supply = from
the inequality

D9 1 ze
- D—f“q vo+ Y (- ? +0f: Vo —mv¥) >0 (2.26)
=12 «

in which
Ur = e — Ot (2.27)
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is the Helmholtz free energy of constituent « per its unit volume and

g= ) > laF +nfnfo(v] —v*) (2.28)

1=1,2 «

is an energy flux vector of the mixture. We introduce the strain energy function

W=J> > nadwr=J> >y (2.29)

=12 o =12 o

as the Helmholtz free energy of a mixture volume which in the initial state
of the solid equals unity. { is the Helmholz free energy of constituent o
in phase ¢ per mixture unit volume. Rewriting Eq (2.26) for the entropy
production per initial mixture volume — i.e. we multiply inequality (2.26) by
the relative volume change J — we find

DS
_n 2l Ty e
Dt 0
i=1,2 ﬂ
(2.30)
+J Z Z[V(vf—v“’) :af— (vf—vs)-vrf] >0
i=1,2 3

The entropy inequality should hold for an arbitrary state of the mixture, com-
plying with the balance laws, incompressibility, saturation and electroneutra-
lity. The balance laws and incompressibility conditions (2.1) are accounted for
by means of substitution. The differentiated forms of the saturation condition
(2.6) and of the electroneutrality conditions (2.12) are accounted for by me-
ans of Lagrange multipliers. The inequality (2.30) shows that the apparent
densities pf, the body forces b and the heat supplies r{* are already elimi-
nated from the inequality. Therefore the conditions of incompressibility (2.1)
are fulfilled by choosing p® = p*n® and p¢ = pPin iy &, the momentum balances
(2.13) are fulfilled by choosing b° and b accordlngly and the energy balance
is fulfilled by choosing the heat supply r accordingly. Therefore, restrictions
still to be fulfilled are the mass balances, saturation and the electroneutrali-
ties. The differentiated form of the saturation condition (2.6) is substituted in
(2.30) by means of the Lagrange multiplier p

D J D*W

_ — 9.0 - —— Jeffzvs

770Dt 0” 0 Dt + Jo v+

J s by v(f — v 2.31

+ ZZ[O‘I"‘(])TLZ 1/)1)] (’Uz ’U)+ ( )
i=12 B

+J Z Z Vl/)ﬂ+anﬂ—7r-ﬂ

i=1,2
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in which the effective stress o¢ff is defined as
ol = o +pl (2.32)

the heat flux % through an area equal to unity in the initial state of the

solid as
“=F'l.gq (2.33)

and the entropy per initial unit volume as
mo = Jn (2.34)

Introducing the restrictions (2.12) into inequality (2.31) by means of Lagrange
multipliers A;, ¢ = 1,2 and eliminating cg by means of Eq (2.3), yields

8
—’r]()lzl))“;tt9 —%v‘”-voﬁ—%+ﬂr z_i;f(/\l — ) +
/\
+7 3 el +[(p+2 3 =l =1} vl -t + (2.35)
=12 g

+ 3 D0 =0t [Vl + (p+ z;;,\i)an’—arf] >0

=12 8

in which Vg = F® .V is the gradient operator with respect to the initial
configuration. We choose as independent variables the Green strain E, the
temperature @, the Lagrangian form of the volume fractions of the fluid and
the ions Niﬂ , of the volume interaction terms J c? and of the relative velocities
v‘i@’ =F-L. (vzﬂ —v°) and v?°. The dependent variables are the Helmholtz free
energy per initial mixture unit volume W, the entropy per initial mixture unit
volume 7y, the effective stress ¢ff of the mixture, the Helmholtz free energy
¢;7 of constituent -y, the effective partial stresses a‘;’ + (p+ z”’/\j/v'y)n;rl the
effective momentum interactions 1r;-’ — (p+27X;/V")Vn? and the tempera-
ture gradient V8. We apply the principle of equipresence, i.e. all dependent
variables depend on all independent variables, unless the entropy inequality
requires otherwise
W = W(E, 0, N 5 F %) o = mo(E, 8, NP v, F v%9)

? 1 1
'lp] = ’lp](E: 9: Niﬂ,vgs,c,?’qu) V09 :gO(E 9 N 7,0?3’65’”!18)

o/l =F.S9I(E, 0, NP vP° P vee) . FC (2.36)
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o) +<p+V—>‘) N =F.SJ(E,0,Nf v, o v2) . FC

z’z’

T (p+ VA )Vn? =F - p](E,6, N, 0%, f ,v%)

We apply the chain rule to time differentiation of W, which implies

~(mo + 3@‘;‘?/)1739 ;vqs.v00+(Jaeff—F %v: FC):Vv3+
OW Dy oW DvP oW D°&
" Dt 2Algs Dy o i YA ) ¢
(2.37)
+7 Y olod + (uinf =y V(] - v*) +
i=1,2 3
+I 3 08 0 (-9l + pBvnl ~ )} > 0
=12 g

in which ,u? are the electrochemical potentials of constituents other than the
porous solid

uo = 5 tp+ —Vﬂ. (2.38)

Comparison of the above equation to the classical equations of electrochemi-
stry indicates that the Lagrange multiplier p can be interpreted as a pressure,
A1 as the intrafibrillar electrical potential multiplied by the Faraday constant
and M\g as the extrafibrillar electrical potential multiplied by the Faraday
constant. In Eq (2.37) should be true for any value of the state variables. In
view of the set of independent variables, the first term of (2.37) is linear in
the time derivative of the temperature D*®6/Dt, the third term is linear in
the solid velocity gradient Vv°, the fourth term linear in D°®»%/Dt, the fifth
term linear in D*»P%)Dt, the sixth term linear in g—:cf and the eighth term

linear in the relative velocity gradients V(v? — v*). Therefore, by a standard
argument (Coleman and Noll, 1963), we find

oW oW
__9wW eff _ Lp OV rcC
o 90 d JF 5 F
w oW
i 0 Ew i 0 (2.39)

36? z (1/)1 My z)
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leaving as inequality

—EJ'v‘” V00+JZ[cﬂ(u2—l£1)+ Z (v 3)-(—V¢ﬂ+uz Vnﬂ—wﬁ)]
i=1,2
(2.40)

Eq (2.39) indicates that the effective stress of the mixture can be derived from
a strain energy function W which represents the free energy of the mixture.
Eqs (2.39)34 and (2.39)s show that the strain energy function cannot depend
on the heat flux, the relative velocities or the mass interactions between phases.
Thus, the effective stress of a charged porous medium can be derived from a
regular strain energy function, which physically has the same meaning as in
single phase or biphasic media, but which can depend on both strain and
solute concentrations in the phases of the medium. According to Eq (2.39)¢
the partial stresses of the fluid and the solutes are scalars. Transforming the
relative velocities to their Lagrangian equivalents, we can rewrite (2.40)

1
—qus-voﬁ—kZ[Cf(ué’ — P+ > o5 (=VopP + pPven? —FC wf’)] >0
8 i=1,2
(2.41)
Assuming that the system is not too far from equilibrium, we express the
dissipation (2.41) associated with relative flow of fluid, solutes and heat as a
quadratic function of the relative velocities and volume interactions

~Voy? +pfVoni — FC. —Z(Z B - 0]° + 7] ) + B v
7j=1,2
ug—uf :Z< Z béh-'vw bﬂ7c )+bﬂq v (2.42)
v Jj=L2

_-;—V()H: Z Z(Z B}Q.vvs_*_bvch) + B9 . 98

=12 7 j=1,2

in which
By b/ B

bé” bﬂ7 el (2.43)
B;n p? B

is a positive definite frictional matrix. Substituting Eqs (2.13) and (2.39)¢ into
Eq (2.42), yields
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—niﬂvoﬂz FC ., Z(Z Bﬂv v +bﬂ7 7) +Bﬂq v
Y o o3=1,2
s — ~Z( PR AR A B LR (2.44)
Yo o3=1,2
_VTOQ :Z< ST Bl 0™ 4 b1 7) 1 B . 42
¥ j=1,2

The dynamic boundary conditions are given by a no-jump condition of the
temperature, the intra- and extrafibrillar electrochemical potential of the ions
and the fluid across the boundary and the momentum balance of the boundary.
The corresonding kinematic boundary conditions are the heat balance of the
boundary, the intra- and extrafibrillar ion and fluid flux balance across the
boudary and the no-jump condition for the solid displacement.

3. Discussion

The present derivation demonstrates that the constitutive properties of a
dual porosity charged porous medium subject to large deformations is entirely
contained in the strain energy function W and the frictional matrix (2.43).
The definition of the function W as the Helmholtz free energy of a mixture
volume equal to unity in the initial state of the solid is consistent with the
classical definition of a strain energy function of a single phase material or of a
saturated porous medium by Biot (1972). The swelling properties of the porous
medium originate from the follows three distinct micromechanical phenomena:

1. Adsorption of fluid along the fluid-solid interface
2. Adsorption of fluid by solutes or osmosis

3. Direct solute-solute ineraction.

The first phenomenon has been formulated for saturated porous me-
dia by Biot (1972), later derived from mixture theory by Bowen (1980) and
introduced into a dual porosity model by Murad and Cushman (1997). It is
believed to play a primary role in low porosity media such as shales subject to
high overburden pressures (Heidug and Wong, 1996) and human skin subject
to high evaporation forces (van Kemenade, 1998). Adsorption is incorpora-
ted into porous media theories through the inclusion of a matric potential
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into the formula for the fluid chemical potential. Typically, the potential used
in Darcy’s equation is the sum of the pressure p and the matric potential
ow/ 8Nif which depends upon the fluid volume content. The relationship be-
tween the fluid content NS and the matric potential is experimentally quan-
tified by means of sorption experiments, involving the measurement of fluid
content of samples equilibrated with a gaseous environment with known rela-
tive humidity. In terms of the strain energy function W the adsorption forces
contribute as non-linear terms to the water content NY.

The second phenomenon is significant for charged porous media, as
the electrical charge of the solid attracts counterions in the fluid which in
turn attracts water through osmosis. This swelling phenomenon, known as
Donnan osmosis, plays an important role in the extrafibrillar compartment
of cartilaginous tissues (Maroudas and Bannon, 1981) and explains almost
all swelling in acrylic acid-acrylamid copolymer hydrogels (Oomens, 1994). In
terms of the strain energy function W, the osmosis forces appear as mixed
terms of the water content N7 and the solute content N, 8 # f. In the
case of Donnan osmosis fixed charge density is a key quantity, which is often
quantified by means of radiotracer techniques.

The third phenomenon has been hypothesised as a mayor component
of swelling in cartilaginous tissues by Lai et al. (1991) who coined the term
chemical expansion stress for it and attribute the effect to electrostatic inte-
ractions between the charges present within the tissue. In terms of the strain
energy function W, the chemical expansion forces appear as mixed terms of
strain E and charged solute content N® and yield according to Eq (2.39),
an effective stress dependent upon the local solute concentration. The corre-
sponding strain dependence of the electrochemical potential u? results from
Eq (2.38) and is negligible according to Lai et al. (1991).

Frijns et al. (1997) simulated one-dimensional transient swelling and com-
pression curves of canine annulus fibrosus samples by means of a finite element
model including only the Donnan osmosis as a swelling mechanism and found
no evidence that a chemical expansion stress was needed to fit the experi-
mental data. Maroudas and Bannon (1981) found that 85% of the swelling
pressure was explained by the Donnan osmosis while the remainder 15% was
attributable to an entropic effect poorly dependent upon salt concentration
and therefore belonging to the first category outlined above. It is beyond the
scope of this paper to derive an expression for the strain energy function W
that is suitable for a cartilaginous tissue. However, to give some insight into
the suitability of the present approach in interpreting experimental data on
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intra- extrafibrillar water transport, we shall evaluate its potential to repro-
duce at least quantitatively the experimental facts of this transport. Estimates
of the intrafibrillar water content of different connective tissues published in
the literature range between 0.7 and 1.33 g water per g collagen at neutral
pH and physiological saline (Katz and Li, 1972; Maroudas and Bannon, 1981;
Urban and McMullin, 1985; Maroudas et al., 1991). All these authors deal
with a piece of tissue in equilibrium with an external solution and without si-
gnificant body forces b? acting on them. As equilibrium is reached, all relative
velocities and mass exchange terms in Eq (2.44)3 vanish

Vel
"

yielding a tissue sample where temperature and electrochemical potentials of
all constituents are the same everywhere. Putting § = f in Eq (3.1), yields
the balance of forces between on the one hand the proteoglycan network in the
extrafibrillar space drawing the water towards the extrafibrillar compartment
- mainly through the Donnan osmosis — and on the other hand the collagen
exerting some opposite force on the water. Because there is evidence that the
collagen fibrils are electroneutral (Li and Katz, 1976), this force cannot be a
Donnan osmotic force or a chemical expansion stress. Therefore we infer that
it should be primarily an adsorption force. This force should be sufficiently
large to counteract the Donnan osmosis of the dense proteoglycan network
and ensure that almost one third of the water content of the tissue remains
intrafibrillar as found experimentally (Maroudas et al., 1991). As such force is
generally only poorly dependent upon solute concentration, it is essentially a
function of intrafibrillar water content le and we name it f (le ). Therefore
the chemical potential of the intrafibrillar water is

—nf Voud =0 py—uf =0 0 (3.1)

foo W Ny
#1—P+6le—1’ f(N{) —m (3.2)

in which m; is the osmotic pressure of the intrafibrillar solutes. Minus signs
appear in front of the adsorption and osmotic terms in Eq (3.2) because they
are both suction forces. The chemical potential of the extrafibrillar compart-
ment consists of the pressure p, and an osmotic potential —my containing the
Donnan osmotic and the entropic contribution

pl=p-m (3.3)
Combining Eqs (3.2) and (3.3), yields
Ny =m —m (3.4)
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showing that intrafibrillar water content le is modulated by the difference
in osmotic pressure between the extrafibrillar and intrafibrillar compartments,
which is consistent with the experiment (Maroudas et al., 1991).
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Opis natadowanych i uwodnionych tkanek miekkich w postaci mieszaniny
uwzgledniajacej wode zawarta wewngtrz widkien kolagenu i poza nimi

Streszczenie

Objetos¢ wody zawartej wewnatrz wickien kolagenu jest kluczowym parametrem
zwigzanym z pojeciami struktury i funkeji tkanki lacznej. Ponlewaz w istniejacych
teoriach odksztalcen skoriczonych tkanek chrzastkowych nie przeprowadza sig rozréz-
nienia pomiedzy woda zawartg wewnatrz widkien kolagenu i poza nimi, przeto w ni-
niejszej pracy podajemy chemo-elektro-mechaniczne sformulowanie quasi-statycznych
odksztalcen skoficzonych uwzgledniajace takie rozréznienia. Opracowany model opi-
suje ofrodek porowaty z dwoma przedziatami cieczy, w ktérych rozpuszczona jest
dowolna liczba substancji. Kazdy przedzial cieczy posiada wlasng gestosé tadunkéw
ustalonych. Przyjeto, ze odksztalcenia sg niescidliwe. Zalozono, ze kazdy przedzial cie-
czy jest lokalnie elektrycznie obojetny. Wyprowadzono réwnania bilansu dla kazdego
skladnika i dla mieszaniny jako calodci. Wykorzystano postaé lagranzowsks drugiego
prawa termodynamiki dla niesci§liwych osrodkéw porowatych w celu wyprowadzenia
ograniczen konstytutywnych. Wykazano, ze wlasnodci materialowe sg zawarte w jed-
nej funkcji energii odksztalcenia i macierzy tensoréw tarcia. Przedstawione sformu-
lowanie jest zgodne z danymi do$wiadczalnymi (Maroudas i inni, 1991), w ktérych
stwierdzono, ze zawarto$¢ wody wewnatrz widkien kolagenu jest regulowana przez gra-
dient cignienia osmotycznego pomiedzy przedzialami wewnatrz tych wldkien i poza
nimi.
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