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The paper aims at presentation of modeling of human joints within the
framework micropolar fluid theory. A mathematical model of two conver-
ging spheres represents the biobearings. In the model the boundaries of
the spheres are considered to be rigid and the lubricant (synovial fluid) is
represented by a micropolar fluid. Basing on the asymptotic solution ob-
tained for squeezing motion of converging spheres (Kucaba-Pietal, 1999),
the velocity vector in a gap is determined and asymptotic values of the
force are calculated. The effects of rheological constants variation on the
flow field in a gap are disscussed.
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1. Introduction

For the last thirty years examination of the lubrication mechanisms as-
sociated with human joints has received much attention. Synovial joints are
natural bearings that are subjected to wear in a similar way as their mecha-
nical counterparts. The main obstacle the research is confronted with is that
synovial joints are part of a living system and a detailed study of morpho-
logy is limited. Thus, many simplifications of such a complicated structure
are necessary for construction of the mathematical model. Several types of the
lubrication mechanism are belived to occur in the functioning of human joints,
e.g., hydrodynamic, boundary, weeping and mixed lubrications.

The two approaches are taken in theoretical studies. The first group of
papers deals with the boundary surfaces in synovial joint in a comparatively
realistic way. The Newtonian model of lubricant is assumed. These papers
concern lubrication which involves porosity (Nigam et al., 1982). The micro-
elastohydrodynamic model of synovial joint was also taken into account (Jin
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and Dowson, 1997). In the second group of papers the rheological properties of
synovial fluid are taken into account since detailed information about the joint
lubricant is not available. So far, a number of non-Newtonian models of syno-
vial fluid have been used, e.g., Sutterby’s model (Pytko et al., 1993), Rivlin-
Ericksen model (Wierzcholski and Pytko, 1995) and micropolar one (Prawal
Sinha et al., 1981), which include non-linear effect but differ in the consti-
tutive laws employed. This article belongs to the last group. The behaviour
of synovial fluid is considered to be governed by the micropolar fluid theory
proposed by Eringen (1966), within the frame of which the micro-rotational
effects due to rotation of fluid molecules can be described. This approach be-
comes of crucial importance when considering fluid flows in narrow channels
and when the fluid under investigation includes substructures. Squeezing of
the synovial fluid falls into these two categories very well.

In a micopolar fluid model rigid particles contained in a small volume ele-
ment can rotate about the centre of the volume element and this rotation is
represented by a micro-rotation vector. This local rotation of particles super-
imposed with the usual rigid body motion of the entire volume element. The
laws of classical continuum mechanics are augumented by the additional equ-
ations representing the conservation of microinertia moments and balance of
first stress moments that arise due to the microstructure in a material. The
field equations can be presented in terms of two independent kinematic vector
fields — the velocity and microrotation and involve material constants. The
stress tensor is not symmetric. Surveys of application of micropolar fluid the-
ory can by found in Prohorenko and Migoun (1988) and Y.ukaszewicz (1999).

The first approximation of the human joint lubrication theory that uses
the microcontinuum approach was presented by Prawal Sinha et al. (1981) and
only few papers have been devoted to this subject, e.a., Nigam et al. (1982),
Zaheeruddin (1980). The authors used the Reynolds equations in describing
the flow due to the squeezing motion of flat plates representing the synovial
joint.

The theoretical results obtained illustrate reasonably well that using this
approach it is possible to explain such observed phenomena as:

o effective viscosity growth near the solid boundary,
e filtering action due to the porous nature of the cartilage, which could

not have been explained on the basis of other models of synovial fluid.

Because the exact values of the rheological constants were not known, therefore
it was impossible to compare this approach with other ones.
Rapid progress in experimental techniques brings about new information
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on the microscopic structure of the biolubricant. Murakami et al. (1997) inve-
stigated the effect of size and concentration of the hyaluronic acid molecules
on the synovial joint behaviour in a standing position. Podsiadlo et al. (1997)
examined very carefully the populations of particles produced in the wear
processes, presenting dimensions and shapes of the particles. Currently the
comprehensive paper, which summarizes the available results on friction and
wear in natural and artifical joints, allowing for estimation of the rheological
coefficients that appear in the micropolar fluid theory prepared by Telega.
This provides also the motivation for the present work.

The paper aims at preliminary calculation of the flow parameters occu-
ring in human joints during the squeezing motion using estimated values of
the rheological coefficients. The Stokes equations for a micropolar fluid are
investigated. In the analysis it is assumed that the human joint can be appro-
ximated by a two-sphere bearing-system. The flow in a gap 1s depicted and a
force is calculated basing on the asymptotic solution obtained for two conver-
ging spheres (Kucaba-Pietal, 1999). The rheological coefficients of micropolar
fluid are estimated from the experimental data of the microstructure. In this
study the calculations were made using MATHCAD 7 on the assumption that
on the surfaces the microrotation vector vanishes.

The results obtained show that the effect of rheological coefficients on
the flow field in the gap can be observed. The analysis of hydrodynamics
parameters depending on various values of the microrotation vector on the
surfaces is also very important issue. Another paper will be devoted to this
problem.

It is worth mentioning that the exact values of the coefficients for synovial
fluid can be determined carrying out the experiment described in the book by
Prohorenko and Migoun (1988)

2. Model of the synovial joint

The synovial joint may be described as a system of two articulating bones
covered with a soft tissue called cartilage and the synovial fuid filling the
cavity made by these bones. Typical examples are:

o knee joint — can be represented by a cylinder arrangement that resembles
a close fitting journal bearing,

e hip joint — which can be approximated by an equivalent spherical be-
aring, see Iig.1.
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(b)

Fig. 1. Joints; (a) hip, (b) shoulder (Sobotta, 1982)

The joints contain the synovial fluid which is responsible for complex jo-
int lubrication phenomena. The synovial fluid can be briefly described as a
dialysate of blood plasma because it contains about one-third of the protein
concentration of the plasma. Moreover, it contains a very important polymer
known as hyaluronic acid (mucopolysaccharide) which gives the synovial fluid
its viscous and elastic properties. The molecular weight of the hyaluronic acid
is of the order of 10° and the length of the chain is of the order of 0.5+ 5um,
Dowson (1990). The salient feature of the biolubricant consists in an effective
viscosity growth in the neighbourhood of the solid boundary.

The viscosity of the synovial fluid ranges from 0.01 Pa-s at low shear rates
(0.1571) to 0.02Pa-s at much higher shear rates (1000s7!).

It was shown, that the viscosity of this fluid depends on both the content
and the molecular size of the hyaluronic acid. In the first paper studying this
phenomenon, Negami (1964), showed that the viscosity of the synovial fluid
varied almost linearly with the concentration of the hyaluronic acid (HA). Do-
wson (1990) put forward the concept and presented a formula describing the
effect of HA concentration at low shear rate on viscosity. The latest experimen-
tal results obtained by Murakami et al. (1997) shoved that the concentration
of HA primarily controled the viscous property of the lubricant. The viscous
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properties of saline solution of sodium hylauronate (HA, molecular weight
8.8-10%) were measured by a cone/plate viscometer for various concentrations
of HA which ranged from 0.1g/dl to 2.0g/dl. The viscosity of the fluid va-
ried from 1072 to 10%Pas. Moreover, the synovial Huid contained the wear
debris. In the paper by Podsiadlo et al. (1997) detailed results concerning the
particles which occured in synovial joints were presented. The mean values
of area and length of the particles in normal joints amounted 542.6um? and
37.6um, respectively. The chain length of the hylauronic acid molecules and
its concentration depend on the joint condition, i.e., whether it is degenerated,
say rheumathoid, or functions normally. Of great interest is also the case of
joints after arthroplasty. Then a great variety of wear debris is observed, since
PMMA and metal particles inevitably detach from prosthesis surfaces.

These results indicate clearly, that the synovial fluid may be regarded as
a micropolar fluid, in which the substructure is formed by the acid molecules
and wear debris. An increase in the concentration of hylauronic acid in the
synovial fluid implies apperance of the micromotions and the coupled stresses.

3. Theoretical formulation: assumptions, equations and method
for solution

3.1. Formulation of the problem

z A

a(l+e)

—
X

Fig. 2. Model of the hip joint

Geometrically, the synovial joint, especially the hip joint, may be represen-
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ted by a two-sphere system, see Fig.2. The surfaces of the spheres are assumed
to be rigid. A quasi-steady flow field of an incompressible micropolar fluid in a
gap between two spheres due to a squeezing motion is considered. The sphere
S, of radius a approaches at the velocity U the other sphere S, of radius b,
which is at rest. The minimum gap of the two spheres is ae with ¢ < 1. In
the polar coordinate system (r,6,z) the centre of the stationary sphere lies
at (0,0,b).

The centre of moving spheres lies at the point (0,0,a(1 + ¢)). The para-
meter (3 denotes the ratio 8 = b/a. The translational velocity of the sphere
Sy is (0,0, —U). The flow at low Reynolds numbers is examined.

The equations of motion describing the flow in the absence of body forces
are the quasi-steady Stokes equations for a micropolar fluid and have the
following form

(u+K)\VW+ KV xw—-Vp=0
(@™ +8M+4)VVw -4V XV xw+kV xv—2k0=0

The flow is incompressible, V -v = 0, where v denotes the fluid velocity.
Here w is the microrotation vector. The positive coefficients u, x, &™, ™, v
characterise isotropic properties of the micropolar fluid.

Because of the flow axisymmetry w = [0, w, 0] the stream function ¥(r, z)
can be used and the axial and radial velocity components are expressed as

follows

1 _
v,.zU—gLZ vz——-U—la—W (3.1)
T 0z

Substituting Egs (3.1) into the Stokes equations yields
—(u + KL + kL (rw) =0
—yLi(rw) + kL1¥ — 2k = 0

where L, is the generalised axisymmetric Stokes operator

0 10 0°

Li=— 29,9
YT a2 T6T+622

The above equations are linear fourth-order partial differential equations.
After elimination of the component w of the microrotation vector w from
Eqs (3.2) we arrive at
LA L = )P =0 (3.3)
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with the microrotation given by

1 Y(p + k) o
@ = 2—T(L1w + TL@) (3.4)
where
)\2 — K‘(2iu + KJ)
Y1 + K)

To solve Eq (3.3), which is equivalent to the Stokes equations for a mi-
cropolar fluid (3.2), the boundary conditions have to be specified. For the
velocities we assume the conditions of impermeability and adhesion on the
surface of the spheres. For the microrotation, in nearly all relevant literature

it is assumed that
w=20 (3.5)

on the surface which bounds the fluid. But recently, in a few papers particularly
devoted to journal bearing or flow in a narrow channel more general conditions
have been taken into account

w = a%(o (3.6)

where ¢« denotes a nonnegative constant, (o =V x v, {; = [7,(,¢]. Such
forms of boundary conditions follow from various liquid/wall materials utilized
in modern technologies, Migoun (1984). It is clear that Eq (3.6) simplifies to
the form of Eq (3.5) for a = 0.
According to the above considerations the boundary conditions for ¥ and

w on the moving sphere S, are

1 ov 1

W = —— 2 _— = = — .

5" P 0 w = =( (3.7)

and on the stationary sphere Sy

_ o _ 0 w = aglc (3.8)

Y= — =
0z 2

Moreover, at infinity
=0 (3.9)

where 0 € a3 <1 for ¢ =1,2.

The stream function ¥ that satisfies the fourth-order partial differential
equation (3.3) with the corresponding boundary conditions (3.7) + (3.9) and
microrotation vector (3.4) yields the flow field for the problem under conside-
ration.
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3.2. Solution
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The method for solving the micropolar squeezing flow problem in the gap
will be sketched here, for details the Reader is referred to the previous paper
(Kucaba-Pietal, 1999). The solution process proceeds as follows:

I. We introduce non-dimensional, cylindrical coordinates by the following re-

lations

1 1
R=— Z=—
aeT \/aez

The scaled stream function ¥ is decomposed into two parts

U =vl4y? (3.10)

each of them is expanded into the power series of € as follows

YR, Z) = a%[wg(R, Z) + €W} (R, Z) + WL (R, Z)] +O(eh)

(3.11)

U*(R, Z) = o’¢[(W3(R, Z) + W (R, Z) + ¥} (R, Z)] + O(¢")

We set ¥; = W2 + 0l

II. Substitution Egs (3.11) into the equations resulting from the Stokes equ-
ations and equating the terms at same powers of € two sets of differential
equations are obtained. These systems are effectively solved to the se-
cond order in ¢. The solutions are polynomials in Z, include some
unknown functions of R and are of the following form

7

7

ApZ® + ByZ® + CoZ + Dy

z° z*
141Z3 +B1Z2 + 01Z+D1 - ETA() — FTBO

VAL 1
Ay Z°% + By Z? Z4+Dy— (14 + —72
2 + bo +Cg + 1Ly 10 (7‘ 1+12’r Co)-i—

1 1 1 1
-7 (B, + >7*D 772 A+ — 757%B
6 (r LT °>+280 T Ao g4 T B0 (3.12)

EyZ + Fy
VA z?
ELZ+F1 - FTE() - 77'F0

VA A AL VA
BEoZ + Fy — — By N o
2 Fy 5 TE) 5 TF 907 Ey 24F0
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2
where: 7 = 5%7 — —}?3%

We have to determine the functions depending only on R Ag, By, ...,
F, which appear in the above general solutions (3.12).

II1. To find the functions of R the boundary conditions on the spheres are
used in the following way: first, the equations of surfaces of the spheres in
the neighbourhood of the gap are expanded into powers of €. In this way
we obtain approaching the spheres: H, = 14+ 5R*and H, = %RQ. That,
applying the Taylor expansion and series representation of @', ¥? to the
boundary conditions (3.7)+(3.9) the unknown functions are determined.
They are listed in Appendix. Having performed the calculation, from Eqgs
(3.1) the velocity field can be found and we are able to calculate the force.

IV. The components of the force acting on either of the spheres are (0,0, F,).
The asympotic formula for the force acting on the sphere S, up to
O(elne) has the form

_3? 1-1+p6%, _
;o= (1+£)[ - —s lnel+K(ﬂ)+
2u/le(1-B)2  5(1-P) (3.13)
_ — 2_ 3 !
_1-188 212(Siﬂ. ﬁ)isﬁ +6 elne™' + eL(B) + 0(52)]
4. Results

Two parameters are very important when studying the problems of micro-
polar fluid. One of them represents the characteristic material ”length” of the
microstructure. The second characterises the coupling between the viscosities
k and p (both these viscosities are characteristic for the coupled stresses) and,
for the synovial fluid, may be considered as a measure of the concentration
of suspended particles. In almost all papers devoted to application of the the-
ory to lubrication and biolubrication problems such parameters are introduced
and the force, wear and other quantities are calculated as a function of certain
parameters. The parameters are denoted as: L (the length parameter) and
N (coupling number) and defined by the formula

c Y
L:— = — A
z l 1/4ﬂ (4.1)

13 - Mechanika Teoretyczna
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where c¢ is the radial clearance of the gap, and

N =, /Qﬂi . (4.2)

In the limiting cases as N — 0 or L — 0 we recover the Newtonian case.

Prohorenko and Migoun (1988) proposed an experiment to determine the
values of parameters k and ¢ for flows in channels which enable one to
determine viscosity coefficients <y, 4 and k. Parameter k characterizes the
linear dimension of the microstructure. The parameter ¢ can be regarded as
the coupling number. They are given by

B2 — A2p2 — K(2p + k) 3,2 5= 2r(1 — o) (4.3)
(g + k) 2(p + k) — Ko
where h is the pipe diameter.

The material coefficients for the water were found by Kolpashchikov et
al. (1981) and for the fluid used in defectoscopy by Prohorenko and Migoun
(1997). It is worth mentioning that putting o« = 0 in Eq (4.3)s the parameters
(6, k) can be expressed by (L, N).

Let us discus the results obtained. For simplicity, at this initial stage it
is assumed that a3 = ay = 0, i.e. the microrotation vector vanishes on
the surfaces. Using the experimental results of Dowson (1990) the viscosity
coefficient of the synovial fluid is equal to: p = 1072 Pas while the biobearing
dimensions are: the width of the gap is ¢ = 150um, 300um, 8 = (1 +2¢). The
values of k and pu are estimated as

Fig. 3. Sketch of the velocity in the gap in stretched coordinates (R, Z)

In Fig.3 the velocity distribution in the gap is depicted for the parameters
at the ratio x/p = 0.5. This calculation requires additional rheological coeffi-
cient 7 the value of which was estimated as y = 2. The plot is presented in
the scaled variables (R, Z).
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The force acting on the sphere S, as a function of k, u is presented in
Fig.4.

2.0 T T T T
Fta)

_ |

1.0

0.5

0.0625 L ‘ ‘
0 5 10 15 200 ., 25

Fig. 4. Course of the asymptotic force f versus &/p

Summing up the following conclusions can be drawn:

e The micropolar approach to the study of lubrication offers new possibi-
lity modeling of human joints.

e Strong influence of rheological coefficients on hydrodynamic quantities
of the flow in human joints can be observed.

e It would be an intersting task to conduct experiments is view of the
present study to find the exact values of the constants characterizing
the synovial fluid.
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A. Appendix

Applying the procedure described in Section 3.2 III the functions A;, F;
which appear in the formula describing the stream functions, (3.12) can be
obtained and have the following form

d1d2(6A0H, + 2Bo) — doyd12(6A40Hy + 28y)
dyodyo H

Ey, =
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where

g1 =

g2 =

Ay =

Co =

Dy =

A1=

C, =

A.KucaBA-PIETAL

dlldgg(ﬁAoHa + 2B0)Hb — do1d (6AOHb + 2B0)Ha

o = diady H
E — _ga - gb
! H
+
F = Ja 5 L - E\(H, + Hy)
H = H, — Hy and functions g; (: = 1,2) denote
d
d“ T(—AgH? — BoH? + CoH, + Do) + 6A, H, + By| +
12
TE(Eng + FoHZ)
321 ( Apo B0H1,2+C()Hb+D0) +6A1Hb+B1]+
22

TE(Eng + FoH}Y)

R2
H3

1

3 2

1
—31%2Hahr,,m - Ey
1122(311 H)H - —F,

1 1
(3H2 + 4H, H, + 3H} ) 757 Ao + (Ha + Hp) 37 Bo +

(1+ﬂ 3) +T6E0

1 1
—(H, + Hy)(H? + 3H Hy + Hf)ger — (H: + AH H, + HY) 7B+

%RGH “[Hq+ 2Hy + f7(Hy + 2Ho)] + 5 Fo

1 1
HyHy(4H{ + THo Hy + 4H}) 757 Ao + HoHy(Hy + Hy) 3 7Bo +

3
SRSH™*[Hy(2H, + H,) + -3(2H, + H,)H,] — E;

1 1 3 _ _
—HbezT[(Ha + Hb)gAO + EBO] - gRSH ‘HyH,(Hy, — f°H,) - Fy



MODELING OF THE LUBRICATION MECHANISM... 605

1
Ay = _(5H3+SH;’H,,+93333+8Ha33+5H§)m72A0+

1
— (2H? +3HXH, +2H} + 3H,,2Ha)6672B0 +

1 1
T (8HZ + 4H,Hy + 3H}) [~ (4 - %EO) + IE7200] +
1 3

1 T 2 10 75 -6
+ g(Ha-i-Hb)[T(Bl—EFQ)-FZT D0]+§§R H5(1+ 7% +

1
+ JRUH|(HY - pOH)T Ao+ (H] — f7H})TBo| +

b SR+ 67 3A\(H, - 67H) - Bi(1 - 7)
where H, =1+ %R2 and Hy = ﬁ;R:! define the parabolas which approache
the spheres. Symbol ( denotes the ratio 3 = b/a.
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Modelowanie smarowania w stawach na bazie teorii plynéw
mikropolarnych

Streszczenie

Przedmiotem pracy jest opis smarowania w stawach na bazie teorii plynéw mi-
kropolarnych. Rozpatrywany jest ruch ci$nieniowy (squeezing). Staw (biodrowy) mo-
delowany jest za pomoca ukladu dwéch kul o twardych powierzchniach. Zaklada sie,
7e przeplyw opisany jest réwnaniami Stokesa. Na bazie rozwigzania asymptotycznego
obliczono rozktad predkosci w szczelinie stawowej oraz wartoéé dzialajacej asympto-
tycznie sily. State reologiczne mazi stawowej oszacowano na podstawie danych expe-
rymentalnych.
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