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The aim of the paper is twofold. First, the available results of finding the
effective macroscopic elastic moduli of a compact bone by using homo-
genization are surveyed. Secondly, it is shown that the proper framework
for studying such organic materials with hierarchical microstructure is
that of reiterated homogenization. I'-convergence theory is applied to
obtain the general formulae for the effective elastic moduli of a material
with three structural levels.
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1. Introduction

Animal and human bones are porous materials of a complicated hierarchi-
cal structure. Bones occur in the two forms: as a dense solid (compact bone)
and as a porous network of interconnected rods and plates (cancellous or tra-
becular bone). The most obvious difference between these two types of bones
consists in their relative densities measured by volume fraction of solids, cf
Fig.1 and Fig.2.

A bone with a volume fraction of less than 70% is classified as the cancellous
one while that over 70% is compact (Gibson and Ashby, 1988).

Bone cells produce the two types of tissue, namely, highly organized lamel-
lar bone and poorly organized woven bone. When the lamellar bone occurs in
the midshaft of a long bone, it consists of concentrically arranged laminae as
illustrated in Fig.3.
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Fig. 1. Photograph of prox1ma1 part of the human femur
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Fig. 2. The basic structure of compact bone, after Fung (1981)
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Fig. 3. Typical bone structure in the diaphysis of the femur, after Cowin (1989a)

The thickness of the lamina is about 200 ym. Between each lamina and the
next there is a net-like system of blood vessels which is essentially a surface.
Occasional large radial vessels through a lamina connect the surface nets. Each
lamina is divided into the three zones shown in Fig.3. The first zone, which
extends from the surface of vascular network to about one third of the way
across the lamina is composed of highly organized dense bone. The second
zone, which extends the next one third of the distance, is composed of poorly
organized tissue. This zone is breaked in the middle by a line that, under an
ordinary microscope, appears to be bright. This bright line is the boundary
between the two blood supply networks bounding the lamina.

Cortical haversian bone is also ilustrated in Fig.3 and its structure is fur-
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ther detailed in Fig.4. It consists of quasi-cylindrically shaped elements called
osteons or haversian systems. The individual haversian systems are composed
of concentric lamellae about 3 + 7um thick. These thin lamellae, in turn,
are constructed from wrapped collagen fibers impregnated at regularly spaced
sites with hydroxyapatite and other mineral crystals about 20 + 40 mm long.

) - ] Z ,,{"f‘_p,al,"e, m‘irnreralmcr_yslgalsr
_Haversian canal /Concentric lamella (200_400A long)
(3-712m)

Fig. 4. The detailed structure of an osteon, after Cowin (1989a)

This structure is ilustrated in Fig.4. Osteons are typically about 200 ym
in diameter, the same thickness as the laminae in a laminar bone, and about
10 to 20 mm long. The thickness is the same because the blood supply for the
haversian system is a central lumen containing a blood vessel, and thus every
point in the haversian system is no more than 100 pgm away from the blood
supply, as in the case of laminar bone. Haversian bone is organized to accomo-
date small arteries, arterioles, capillaries and venules of the microcirculating
system. Haversian bone is never formed as a primary effect, but forms as the
result of the vascular invasion of bone. In young animals, woven bone is formed
initially, the endosteal capillaries invade the avascular bone forming haversian
systems.

The osteons of haversian bone and the laminae of laminar bone are ba-
sically just different geometric configurations of the same material. In both
geometric configurations no point in the tissue is more than 100 um away
from the blood supply. The interfaces between the laminae in both haversian
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and lamina bones contain an array of roughly ellipsoidal-shaped cavities called
the lacunae which contain bone cells, and from which extend numerous fine
canals called the canaliculi. The thin layer between adjacent osteons is called
the cement line and the three-dimensional region between osteons is filled with
irregular pieces of lamellar bone. The canaliculi do not cross the cement line
nor do they cross the bright lines between laminae in laminar bone.

Both haversian and laminar bones occur simultaneously in the long hu-
man bones and in many animal bones, including cattle. In very young, the
long bones are composed of woven bone with a few osteons, called primary
osteons. In the process of maturation the woven bone is being converted to
a laminar bone and, at maturity, there is a partial conversion to haversian
bone. According to Cowin (1989a), the conversion from laminar to haversian
bone is something of a biological enigma. Haversian bone is known to have
a less efficient local circulation system and to have less mechanical strength
compared to a laminar bone, yet the percentage of haversian bone generaly
increases with age.

The bone tissue is composed of roughly speaking, equal thirds by volume
of minerals, water, and the extracellular collagenous matrix. If one tries to be
more more precise about the bone composition, then one must specify species,
age, sex, specific bone in question, type of bone tissue (cancellous or cortical),
and whether the individual is experiencing a bone disease or not.

Smith (1960) proved the existence of several types of osteons composed of
concentric lamellae. Ascenzi and Bonucci (1967, 1968, 1972, 1976) and Ascenzi
et al. (1966, 1973) described the structure of bone consisting of three types of
osteons with lamellae and fibers within these lamellae. Frasca (1974) and Katz
(1976) described the fourth type of osteon, cf also Frasca and Harper (1977).
For further results of investigations into properties of osteons and lamellae
the reader is referred to Ascenzi et al. (1966, 1982, 1983, 1985a,b, 1986, 1987,
1990, 1994, 1997, 1998).

The properies of single osteonic lamellae were studied by Ascenzi et al.
(1982, 1983), Portigliatti Barbos et al. (1984) and Frasca and Harper (1977).

Both types can be found in most bones in the body, the dense compact
bone forming an outer shell surrounding a core of spongy cancellous bone,
see Gibson and Ashby (1988), Lowet et al. (1997). An idealization of compact
bone structure is shown in Fig.2 <+ Fig.4.

Bone may be viewed as a structurally hierarchical porous material. It is
then possible to use the reiterated homogenization (Bensousan et al., 1978)
to derive the formulae for the macroscopic elastic moduli, cf Aoubiza (1991),
Aoubiza et al. (1996), Crolet (1990), Crolet et al. (1993). Optimal design of
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structures often involves homogenization and relaxation methods (Bendsge,
1995; Bendsge and Kikuchi, 1988; Kohn and Strang, 1986; Lewiriski and Te-
lega, 1999; Lurie et al.,, 1982). Such an approach may be used to model bone
microstructure via adaptive elasticity. Payten et al. (1998) presented an opti-
misation process that has, as its basis, an algorithm originally developed for
predicting anatomical density distributions in natural human bone.

The microstructure of bone is such that at the macroscopic level its beha-
viour is anisotropic. To model bone anisotropy one can use Cowin'’s fabric ten-
sor, see Cowin (1989b), Jemiolo and Telega (1998); Lowet et al. (1997) and the
references cited therein. Jemioto and Telega (1998) showed that the compact
bone is close to transverse isotropy whilst trabecular bone is approximately
orthotropic, cf also Zysset et al. (1998). The approach employed by Jemiolo
and Telega (1998) exploits Cowin’s fabric tensor. In Zysset et al. (1998) the
authors claimed to use homogenization method for finding orthotropic elastic
constants of trabecular bone yet no precise formulation was given. In the pa-
pers by Tokarzewski et al. (1998, 1999), Galka et al. (1999) the problem of
finding effective elastic moduli of trabecular bone was investigated. In the last
three papers numerical solving of the local problem was avoided.

The aim of the present contribution is twofold. First, in Section 2 we de-
velop a general scheme of reiterated homogenization within the framework of
the theory of I'-convergence, see Dal Maso (1993). We observe that the re-
iterated homogenization developed by Bensoussan et al. (1978) is limited to
scalar problems and asymptotic developments. In the standard book on ho-
mogenization by Sanchez-Palencia (1980) the reiterated homogenization was
not discussed. Second, in Section 3 the available results of finding the macro-
scopic elastic moduli of compact bone are reviewed. We mean here the results
obtained by Aoubiza (1991), Aoubiza et al. (1996), Crolet (1990) and Crolet
et al. (1993). In fact, the macroscopic moduli are derived provided that the
microscopic organization of bone is specified by the elasticity tensor

zz m) ij, k0 =1,2,3 (1.1)

Ce.(z) = . (_ s 2
1_1kl( ) 17kl 5’62,63

where € > 0 is a small parameter. There are thus the three microscopic
levels specified by z/e, z/e?, z/e3. The determination of the macroscopic
moduli Cihjkl means passing to zero with ¢ and leads to the so-called reiterated
homaogenization.
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2. Reiterated homogenization via I’-convergence

In the next section the compact bone is modelled as a material with a
hierarchical structure. Only three structural levels are considered. It is thus
reasonable to assume that the elasticity tensor is given by

a:a:a:)

Ciia(@) = Ciju(z,
and Cyki(Z,¥1,92,¥3) I8 Y1 x Y2 X Y3-periodic in the second, third and fo-
urth variables. Here y; = z/e*, y; € Y;. Particularly, it may happen that
Y, = Y, = Yj, cf Allaire and Briane (1996). We make the following assump-
tions, cf Bensoussan et al. (1978), Allaire and Briane (1996)

(i) Cot € L(92)

(ii) 3 ¢1 > ¢p such that VE € Eg, coFEi;Ei; < Cijkl(z,yl,yQ,y:;)EijEH <
c1 EB;; E;; almost everywhere in 2 x Y| XYy x V3.
Here Ei denotes the space of symmetric 3 x 3 matrices.

Let 2 C IR® be a bounded, sufficiently regular domain representing the
linear elastic body in its undeformed configuration. For a fixed ¢ > 0 the
functional of the total potential energy is given by

Je(u) = Ge(u) - L(u) (2'2)

where )
Ge(w) = / C () es; (w)er (u) dz (2.3)
]

and L(u) stands for the functional of the external loading. For instance, if the
body is subjected to body forces f = (f;) only, then

L(u) = | fu; dz (2.4)
/

The strain tensor e(u) is linear, i.e., one has

1 6u,~ 6u1
e (1) = u(ij) = 5(@ 8zi) (2.5)
To perform homogenization when ¢ — 0 the precise form of L is not requ-
ired. It is sufficient to assume that L is a so called perturbation functional,
continuous in the weak topology of H!(£2)3 = [H(£2)]3.
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Applying the I’-convergence theory we conclude that the homogenized
functional Jj is given by

Tuw) = 5 [ Cliu(@)es @en(w) dz — L(w) (2.6
£

where the macroscopic elasticity tensor C" is defined by the inductive homo-
genization formula:

(a) C(G) = c(x7yl1y27y3)

(b) c® = c® (z,¥,,Y2) is obtained by using periodic homogenization of
c(3) (x’ylayEa 2/8)

(¢) ¢V = C(l)(m,yl) is obtained by using periodic homogenization of
C?(z,y,,2/e)

(d) ¢* = C9(z) is obtained by using periodic homogenization of
CV(z, z/c).

More precisely, to obtain the moduli C(z), €Y and €O we proceed as
follows:

(1)
c® wyy)z—é@1—=
mnpg\*r Y1, Y2 8qu8Emn (2 7)
- / Ciipa(@,91,92,9) (€5, (X™™) + Bimljn ) dy
Y3 I
Y3
where
. 1
Wa(z,y,,9,,E) = mf{@ /Cijkl(xaylay2ay) .
Y3
(2.8)

() + B) (ea(w) + Bis) dfo € L, (v3)° )

Eec Eg and fIéeT(Ys) = {fu € H'(Y3) v assumes equal values on the opposite

faces of Y3, (v)y, = o}.
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Here

6’(11' + %)

1
y. = —
€ (V) 2 (3yj Oy

1
) = 7 Y/ v dy (2.9)

The function %, the solution to the minization problem on the r.h.s. of Eq
(2.8) depends linearly on E, i.e., # = x\™E,,,. The functions x(™*) are
solutions to the following local problem

X € H;er( 3)°

(2.10)
/Cz‘jkl(z’ylay%y:;)(e?j (x(™m)) 4+ 5im5jn) ey, (w) dy; =0
Y3

for any w € H;PT( 3)3. Obviously, the functions x(™™)(y,) depend also on
z,y, and y,.
We observe that with C® one can associate the microstresses of the second
order
2 2
( ) = Cz(J]Zlekl(u)
Similarly, with C") the microstresses of the first order o(!) are associated.
Thus, it seems that the reiterated homogenization opens a new and rigorous
way to the study of microstresses, much discussed in solid mechanics.

(2) The moduli Ci(jl,zl(z,yl) are found similarly.

(3) Finally, the macroscopic elastic moduli Czhjkl(a:) = Ci(;-)lzl(z) are given by

O° Wy,
Cz_ykl( ) m -
(2.11)
(1) ¢(mn)
fo /C (z, y) ( )+ 517715]71) € (w) dy
where
Wh(za E) -
(2.12)

mf |Y I /Cz(JllZl (E) + Ez]) (Ckl(g) + Ekl) dy‘g € per(Yl)s}
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E € E3, and

8™ € 3 (M) [ Clilla,w) (el (@) + Gimbyn) ely(d) dy =0 (213)
"

for each ¢ € H}, (Y1)

Remark 2.1. More general scaling than that described by ¢, € and €2 is

possible. The elasticity tensor C° can be given by (cf Allaire and Briane,

1996)
3 = C,; rzz
Ciin(®) = Cijri (a:, e e 53) (2.14)
provided that
m2 =0 and  limZ2 =0 (2.15)
e—0 g9 e—0 €

This means that each scale can be distinguished from the others, i.e.,
they are not of the same order of magnitude. Obviously, in (2.1) we have

e = ¥ k=1,2,3 (2.16)

Remark 2.2. The reiterated homogenization procedure just outlined can be
extended as follows to cover perforated domains. For each k£ = 1,2,3
the basic cell Y} is divided into a material part Y} and a hole Tj.
The case, where T} is empty is not precluded. Now the integrals in Eqgs
(2.3) and (2.4) are over the domain 2., being the multiscale perforated
domain, cf Allaire and Briane (1996).

To derive the homogenized moduli we proceed similarly as previously,
except for replacing the integrals over Yj, k = 1,2,3, by the integrals
over Y}’ and the spaces I—NI;CT(Y;C) by the spaces ﬁ;er(Yk*). Moreover, if
L is given by

Lo(u) = / fous dz + Ly (u) (2.17)
2

then
Ln(u) = /Hfiui dz + Ly () (2.18)
£2¢

where 6 = 6,0,63 is the overall volume fraction of material, 6} = |Y}’|.
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Remark 2.3. Proceeding similarly, one can easily extend the reiterated ho-
mogenization to nonlinear problems, with nonquadratic stored energy
function. Fore instance, such a function can be given by

B T z x 3
Wg(z,E)—W(z,—,E—Q,...,E—n,E) EcF (2.19)
To find the homogenized potential Wj(z, E) it is sufficient to generalize

the procedure outlined above for the linear case. Obviously, one has to
impose appriopriate conditions on W(z,¥,,¥,,-..,¥; E).

3. Application of the reiterated homogenization to determination
of effective elastic moduli of compact bone

As we already know, compact bones are characterized by many structural
levels. Here we are going to consider three of them, most important from the
point of view of finding the macroscopic elastic moduli. We follow Aoubiza
(1991), Crolet et al. {1993), and Aoubiza et al. (1996).

At the lowest level, the lamellar structure is considered: collagen fibres
are embedded in hydroxyapatite crystals. In a single lamella, all the collagen
fibres have the same orientation, but the orientation of these fibres can differ
between two adjacent lamellae.

The second level corresponds to the structural definition of a single osteon
and a part of the interstitial system, an osteon being a set of concentric la-
mellae, which surround a haversian canal.

At the highest level, a representative volume of compact bone is examined.
This volume consists of a sufficiently large number of osteons embedded in the
interstitial system. The osteons are packed tightly together, mutually parallel
and oriented in the direction of the long axis of the bone.

3.1. Modelling of the lamellar structure

The simulation of the characteristics of a single lamella is performed in two
steps. First, a lamella is divided into a finite number of identical cylindrical
sectors, cf Fig.5.

Obviously, by knowing the elasticity tensor of one sector, the elasticity
tensor of any other sector can be calculated by performing a rotation. Secon-
dly, the cylindrical sector is geometrically approximated by a parallelepiped
sector and, through a change of axis, the directions of fibres is assumed to be

19 - Mechanika Teorelyczna
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Fig. 5. Decomposition of a lamella and approximation of a sector, after Crolet et al.
(1993)

parallel to one side of this cubic sector. In the case of cubic sector (fibrous
unidirectional composite), the basic cell Y3 = Y, is chosen to be a collagen
fiber and a hydroxyapatite matrix, see Fig.6.

Fig. 6. Basic cell for the homogenization in a sector, after Crolet et al. (1993)

In this case the homogenization is two-dimensional. It means that the
homogenized coefficients C(J,Zl are calculated from Eq (2.7) with Y3 replaced
by Yi2. To solve this two-dimensional homogenization problem one can use
the FEM. In this way the homogenized moduli of a lamella sector are obtained.
The direction of fibres was assumed to be parallel to the longitudinal axis of
the lamella. In a more general case, where the fibres do not coincide with the
longitudinal axis (see Fig.7) one can use the transformation formula.
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Fig. 7. Approximation of a lamella sector

Crolet et al. (1993) and Aoubiza et al. (1996) assumed that the collagen
and hydroapatite are homogeneous, isotropic and perfectly bonded.

3.2. Modelling of the osteonic structure

Each osteon is considered as cylindrical in shape, with all lamella having
the same thickness and two adjacent lamellae are perfectly bonded. The re-
sults from the previous level are used as the data for this second level. This
simulation was also used to obtain the moduli of the interstitial system. The
interstitial system is assumed to be a set of fragment of ”0ld” osteons. In this
case, the degree of mineralization is assumed to be more elevated.

As previously, the osteon is divided into cylindrical sectors, each sector
being approximated by a parallelepiped made of a superposition of plates or
lamellae, see Fig.8.

Now the basic cell Y; is one- dimensional and the homogenized moduli

S,Zl can be calculated explicitly.

3.3. Modelling of the macrostructure

At this level several schemes of analysis can be defined corresponding to
different types of osteons, see Section 1. The numerical simulation is based
on two points: the simulation of the haversian canal and the application of
the homogenization theory (calculation of C*). Crolet et al. (1993) used two
strategies to deal with the haversian canal (Volkmann’s canals were not simu-
lated). First, the fluid was replaced with a homogeneous, isotropic and linearly
elastic material characterized by the tensor Cp with an extremely low rigi-
dity. Secondly, instead of the tensor Cpy the tensor 7Cp is used, where 7 is
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a parameter which tends to zero.

In order to simulate different types of osteons (see Section 1), various basic
cells can be defined, cf Fig.9.

We observe, however, that whatever the situation, the components of the
period are monoclinic and the homogenization is two-dimensional i.e., the local
function %) in Eq (2.13) depends on two local variables. As in Section 3.1,

the homogenized moduli Cihjkl can be determined by using a specially deve-

loped finite element code, which takes into account periodic boundary condi-
tions.
Crolet et al. (1993) studied six architectures of compact bones:

e architecture No. 1: one type of osteons (type I)

e architecture No. 2: one type of osteons (type II)

e architecture No. 3: one type of osteons (type IV)

e architecture No. 4: two types of osteons (I and II) in the same proportion

e architecture No. 5: three types of osteons (I, II and III) in the following
proportions 25, 25 and 50%

e architecture No. 6: four types of osteons (I + IV) in the proportions: 25,
25, 25 and 25%.

Obviously one can also envisage other architectures.
We recall that the four types of osteons differ in the collagen fiber orien-
tations. More precisely, these four types are described as follows:

e type I: fiber orientation is transverse in all lamellae
e type II: fiber orientation is longitudinal in all lamellae

e type III: fiber orientation is either longitudinal or transverse in two con-
secutive lamellae

e type IV: fiber orientation is either 45° or —45° in two consecutive
lamellae.

Aoubiza (1991), Crolet et al. (1993) and Aoubiza et al. (1996) presented
specific results of calculations, including comparisons with other methods. One
of such results is presented in Fig.10, where C;; are components of the matrix
C" in Voigt’s notation.

The subscripts ¢, H in Fig.10 stand for the collagen and hydroxyapatite
(mineral part), respectively.
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Fig. 10. Effective moduli of compact bone as a function of the Poisson ratio of
collagen. Data: E. =1.2GPa, Ey =118 GPa, vy = 0.28; the osteon proportions:
25% for each of the four types; porosity 10%, mineral content in osteons 63%:;
interstitial matrix : volume fraction 25%; fraction of water 6%, after Aoubiza et al.
(1996)

4. Concluding remarks

The reiterated homogenization offers new possibilities of finding the effec-
tive macroscopic moduli. One can obviously envisage more than three levels.
However, one should be aware that the fundamental notions such as those of
stresses and strains must remain meaningful. Though we considered only the
elastic behaviour it seems to be possible to extend the reiterated homogeniza-
tion to cover inelastic materials.

The periodic reiterated homogenization can be extended to stochastic reite-
rated homogenization. Each level is then characterized by a probability space.
A combination of periodic-stochastic reiterated homogenization is also possi-
ble. The stochastic reiterated homogenization enables one to model real mate-
rials with a hierarchical microstructure, like biological ones, more realistically.

Living bone is a porous organic material with extremely complex hierar-
chical structure. Collagen reveals piezoelectric properties and streaming po-
tentials play an important role. Future research should be directed to better
modelling of the porous structure of compact bone.
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Trabecular bone with a plate-like structure is studied by Gatka et al. (1999)
whilst rod-like trabecular bone by Tokarzewski et al. (1998, 1999), cf also the
references cited therein.
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Zastosowanie homogenizacji reiterowanej do wyznaczania moduléw
efektywnych kosci zbitej

Streszczenie

Cel pracy jest dwojaki: po pierwsze, przedstawiono podsumowanie dotychczaso-
wych badad dotyczacych wyznaczania wspétczynnikéw sprezystosci kosci zbitej przy
zastosowaniu metod homogenizacji. Po drugie, wykazano, ze homogenizacja reite-
rowana stanowi odpowiednie narzedzie do badania takich materialéw organicznych
o hierarchicznej mikrostrukturze. Zastosowano teorie I'-zbieznosci do wyprowadzenia
ogdlnych zaleznodci opisujacych efektywne wspéteczynniki sprezyste materiatu o trzech
poziomach strukturalnych.
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