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To avoid the loss of well-posedness in the post-localization range, some
continuum damage theories for elastic materials introduce higher order
gradients of the damage variable into the constitutive model. Although
such theories allow for mathematically correct modelling of the strain
localization phenomena, they are usually considered to be very complex
to handle from the numerical point of view. The present work deals with
the numerical implementation of a gradient-enhanced damage theory
for elastic materials. A simple numerical technique, based on the finite
element method, is proposed to approximate the solution to the resulting
nonlinear mathematical problems. The coupling between damage and
strain variables is circumvented by means of a splitting technique.
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1. Introduction

In the last few years, many different continuum damage theories have been
proposed. Since the damage propagation generally leads to a local softening
behaviour, the models based on a local approach (Kachanov, 1996; Lemaitre
and Chaboche, 1990) may lead to a physically unrealistic description of strain
localization phenomena when the hypothese of quasi-static and isothermal pro-
cesses are considered. In general, due to the loss of ellipticity of the governing
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equations in the post-localization range, the resulting mathematical problems
may present an infinite number of solutions with discontinuous fields of displa-
cement gradients what leads to numerical difficulties of mesh-dependence (cf
Knowles and Stenberg, 1978; Pietruszczak and Mréz, 1981; Needleman, 1987,
Bazant and Pijandier Cabot, 1988; de Vree et al., Gils, 1995).

Recently, some alternative approaches to the local damage theories have
been proposed (cf Saouridis and Mazars, 1988; Bazant and Cedolin, 1991; Co-
sta Mattos et al., 1992; Frémond and Nedjar, 1996). The present paper deals
with an alternative theory in which the continuum is supposed to possess a
microstructure. Since damage results from microscopic movements, it is pro-
posed a reformulation of kinematics and some basic governing principles of the
classical continuum mechanics in order to account for such ”micromovements”.
The constitutive equations are devired within the thermodynamic framework,
the free energy is supposed to depend not only on the strain and the damage
variable but on the damage gradient as well. Besides, to include microscopic
effects, the power of the internal forces depends not only on the velocity and
its gradient, but also on the damage velocity and its gradient.

The present contribution is focused on presentation of a numerical tech-
nique for approximating the resulting nonlinear mathematical problems. The
coupling between damage and strain is circumvented by means of a splitting
technique which allows one to study the nonlinear problem in terms of a sequ-
ence of simpler linear problems. This technique requires that at each time step
the following two problems be solved: one similar to an equilibrium problem
in linear elasticity and the other similar to a heat transfer problem in a rigid
body. In order to assess main features of the numerical method, a number of
examples is presented demonstrating a good performance of the algorithm and
showing that the numerical computations are not mesh-dependent.

2. Modelling

A body is defined as a set of material points B which occupies, at a refe-
rence configuration, a region {2 of the Euclidean space. In the present theory,
besides the classical variables that represent kinematics of a continuous me-
dium (displacements and velocities of material points), an additional scalar
variable § € [0,1] is introduced. This variable is related to the links between
material points and can be interpreted as a measure of the local cohesion state
of the material. If 4 =1 all the links and the initial material properties are
preserved. If £ = 0 a local rupture is considered since all the links between
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material points have been broken. The variable ( is associated with the da-
mage variable D by the following relation: § =1 — D. Since the degradation
is an irreversible phenomenon, the rate B must be negative or equal to zero.
A detailed presentation of the basic principles that govern the behaviour of
the of continuum of this type can be found in Costa Mattos and Sampaio
(1995) and Domingues (1996). A summary of the basic principles is presented
in this section. For the sake of simplicity the hypothesis of quasi-static and
isothermal processes is adopted throughout this work. Besides, that the hypo-
thesis of small deformation it is also assumed and, consequently, the principle
of conservation of mass holds automatically.

2.1. Virtual power principle

Let a body B that occupies a region 2 C IR® with a sufficiently regular
boundary I' be subjected at each instant ¢ to the external forces g(¢) :
Dy ¢ I' - IR and b(t) : 2 = IR, to the external microscopic forces
p(t) : 2 > IR, gq(t): Iy C I' - IR and to the preset displacements
u(t)=0¢€ I C I', where I''N Iy =0 and I1 U Iy = I'. By accepting the
hypothesis of slow deformations, the inertial effects can be neglected and the
virtual power principle can be expressed as

Tint + ezt = 0 (2.1)

for any admissible variations of the fields u and [ that characterize the
kinematics of the medium. The power m;y,; of the internal generalized forces
o (the stress tensor), F and H (thermodynamical forces related to the
degradation process) can be written as

wint:—/a-VﬁdQ—/(Fﬁ+H-V§)dQ (2.2)
2 2

Here, % : 2 — IR® is an element of the set V, of the virtual velocities such
that 4 |r4+1=0 and B : £2 = IR is an element of the set Vj of the virtual
variations of (. The corresponding power ., of the external generalized
forces b, g, p and ¢ assumes the representation

wezt:/b-ﬁd(2+/g-ﬁdA+/p3dQ+/quA (2.3)
n Iy 2 r

where p: (2 — IR is defined as a microscopic distance force while ¢: I' = IR
is a microscopic contact force, both in duality with §. The microscopic forces
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are associated with non-mechanical actions (chemical and electromagnetic, for
instance) that can cause the damage propagation. Under the above assump-
tions the principle of virtual power can be expressed as

/(a-Vﬁ—b-ﬁ)dQ—/g-ﬁdA+
f2 D)
(2.0
+/(H-VB+FB—pB)dQ-/quA:o VieV, VBeVs
£ r

2.2. Constitutive equations

According to the hypothesis of small deformations and isothermal proces-
ses, the free energy is a function of the deformation £, temperature &, damage
variable [ and its gradient V3. For the sake of clarity, clear the thermody-
namic framework used to derive the constitutive equations is not presented
in this paper, for the details see Costa Mattos and Sampaio (1995). The final
relations read

E v _
6 = 1ﬂ+y[1_2y tr(e)l+eJ:ﬁ[)\tr(eJI+2ue) (2.5)
E v .
F = 2(1+y)[1_2ytr(e)2+e-e]—w+/\ﬂ+Cﬂ+>\5:
(2.6)
= %Atr(5)2+ﬂ5'5—w+Ag+Oﬁ+A6
H = kvg (2.7)

where F is the Young modulus, v is the Poisson ratio and A and g are the
Lamé constants. The therms Ag and A4 are Lagrange multipliers associated
with the constraints # > 0 and ﬁ < 0, respectively, ensuring that the following
complementary conditions are satisfied: g < 0, BAg = 0 and ﬁAB = 0.
The material parameters w, C and k are also introduced, which represent
the minimum energy required to start the damage process and viscosity and
difusion constants related with the damage distribution, respectively.

3. Mechanical problem

Introducing the constitutive equations (2.5), (2.6) in (2.4), neglecting the
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external microscopic forces (which are related to chemical or electromagnetic
actions) and assuming the initial conditions: f(z,t = 0) =1 Vz € (2, the
following mathematical problem defined over the time interval I = [0,7] is
obtained:

Find (u(z,t),8(z,t)), the displacement field u: 2 x I — IR* such that
u |, = %(t) and the field g: 2 x I — IR such that

B[\ divau div e@d2— [b-ad2— [g-5dA=0
/ (Adivudivi + 2ue(u) - e(a) b/ u /g U

(3.1)
/kVﬁ VA dn - ./ A(diva)” + pe - —w|f de2 - ./Cﬂﬁdﬂ_m

Vi € V, and V3 € V3.
Subjected to the following constraints

>0 and F<0

and with the following initial condition

4. Numerical approximation

The nonlinear mathematic damage propagation problem resulting from
the model, including the coupling between damage and displacement fields,
can be solved through a staggered algorithm, in which the coupled system is
divided, often according to different coupled fields, and each division can be
treated by a different step-by-step time algorithm. The approach proposed in
this work is based on the concept that divisio of the coupled system defines
only an operator split of the propagation problem. In this context, a staggered
scheme is interpreted as a product formula algorithm determined by a specific
operator split, exactly as in the classical method of fractional steps (Yanenko,
1980). This point of view wass also adopted by Simo and Miehe (1992), where
standard staggered algorithms for coupled thermomechanical problems, con-
sisting of an isothermal phase followed by a heat conduction phase at a fixed
configuration, were cast into the format of fractional step method.
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4.1. Semi-discrete problem: the finite element method

The solution to the damage propagation problem is based on a spatial di-
scretization using the Finite Element Method (FEM) leading to a semi-discrete
approach in terms of a nonlinear system of Ordinary Differential Equations
(EDOQ). This system is derived using of a splitting scheme, which yields a se-
quence of simpler evolution problems, which are in turn solved by standard
techniques; like, backward and forward Euler and trapezoidal rules.

Let N; € V! the basic function provided by the FEM (Hughes, 1987),
where Vvh is a finite sub-space of the space V,, and, ¢; € Vé‘ where Vél is &
finite sub-space of V3. Those functions allow for construction of the following
approximations

up(z,t) = %ui(t)Ni(m) i=1,...,mh
= (4.1)

Br(z,t) = Zﬁi(t)goi(m) i=1,...,mh
=1

where my, is the number of nodal points and A is the mesh parameter (as-
sociated with the mesh refinement). The semi-discrete problem is obtained by
replacing the continuous fields # and S in Eqgs (3.1) by their finite element ap-
proximations defined in Eqs (4.1). The semi-discrete problem is representation
by the follows nonlinear system of ordinary differencial equations:

K(Br)u =R
(4.2)

CA+AB+ F(u)=0
with the following initial condition
Br(z,0) =1 and up(z,0) =
and the following constraints imposed

0< Brlz,t) <1 and Bz, t) <0

where u and B are the vectors of the nodal values defined in Eqs (4.1). The
other vectors and matrices appearing in the above problem have the following
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components
K(Bn)lis = / 6,[BDB;; 402 0 =1, 3ma
R]; = /[b}kN 0 - /[g [+N; dA k :int(%)
Cli; = /c%% e Bi=1,.mp (43)
[Ali; = /kv% -Vp; df? 4hJ=1,...,my

i
1
(F(u)]; :/5[(BTDBu)-u—w]<p,~ 42 =1, ..m,
2

and B denotes the standard discretized differential operator and D is the
maftrix of the elastic constitutive coeflicients.

4.2. Operator split technique applied to the semi-discrete problem

The operator split technique is used to approximate the nonlinear semi-
discrete problem in terms of a sequence of simpler linear problems. The two
ways of operator division were considered, one related to wuj (”equilibrium
problem”) and the other to B ("damage propagation problem”). The pro-
posed scheme can result in two different algorithms depending on the order
of the sequence of the operators. These algorithms will be named ALG1 and
ALG2, respectively. The ALG1 algorithm first solves the ”damage propaga-
tion problem”, one the displacement field unchanged. At the first stage, the
associated ordinary differential equation is solved using the time integration
method

Cl0B™" + (1 — 6)B"] + At[9AS™! + (1 — 6)AB™] + )

+AFT L (1 - 9)F" =0

where the scalar 6 determines the time integration method: ie., 8 = 0 -
forward Euler; § = 1 - backward Euler and 6 = 1/2 - trapezoidal rule,
respectively. The subscript h was omitted and the superscript n means that
the function is approximated at the instant . Besides, Fn+ does not
represent the function F evaluated at tn4y, since Up+1 18 not known a priori.
At the first phase (4 = 0) F™ s calculated using uy.
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The second phase of ALG1 consists in solving the ”equilibrium problem”

K(Bnt1)Un+1 = Rnpa (4.5)
where
Rosili = [(@ensN a2~ [(glohnss i da (45)
n r

The stages of ALG2 algorithm are realised in the inverse order. In nu-
merical implementation of the two algorithms is straigh forward, since both
algorithms can be built from a standard finite element code. It can be obse-
rved that the ”damage propagation problem” is similar to a heat conduction
problem, while the ”equilibrium problem”, is similar to a classical elasticity
problem.

5. Analysis of numerical examples

u(i)

PR SN
N

200 mm \ j:/ \ >

NP —>

200mm - J

Fig. 1. Plate with a central circular hole

In order to assess the modelling features in a multiaxial stress state, the
problem of square plate with a central circular hole is analyzed. The square
plate (200 mm x 200 mm % 1 mm) with a central circular hole, which radius
is 50 mm, is supported at the left side and subject to a preset displacement
u(t) at the opposite side, see Fig.1. Due to symmetry of the problem the ana-
lysis is performed for the upper right quarter of the plate only. In the present
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study a plate made of concrete, which has the following mechanical charac-
teristics: E = 27.0GPa, w = 5.0 x 107°MPa, C = 1.0 x 1072 MPas and
k = 0.2 Mpamm? (Frémond and Nedjar, 1996) is considered the preset displa-
cement and the assumed time step are u(L,t) = ot (a = 5.0 x 1073 mm/s)
and At = 1.0 x 10~%s, respectively. The usual bi-linear quadrilateral finite
element and the ALG1 algorithm, in which § =1/2 is adopted, are used.

5.1. Damage propagation

(a) (b)
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Fig. 2. Damage levels; (a) — ¢t = 2.5s, (b) - ¢ = 2.8s, (c) -t = 3.0s, (d) - t = 3.35s

The course of the damage variable D = 1 — § on the plate is show in
Fig.2. These figures demonstrate that the damage arises at a region near the
hole (see Fig.2a,b), what is expected for the body under consideration and
subjected to a tensile force. Then the damage propagates towards the free end
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of the plate, perpendicularly to the load direction, until the plate is completely
broken.

5.2. Mesh dependence

140,30

D+l).0

Fig. 4. (a) — Damage levels at ¢t = 3.0s, (b) — mesh-2: 594 nodes and 544 elements

To show that the problem solution is not mesh-dependent two different
meshes (see Fig.3 and Fig.4) were employed, with different degrees of discre-
tization in the region of the highest of damage level. Besides, the levels of
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damage at the instant ¢ = 3.0s obtained using these meshes are presented. It
can be seen from the figures that the damage distribution are similar.
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Fig. 5. Damage along the lines A and B for different meshes

Fig.5 allows one to observe the damage propagation along the horizontal
lines A (y = 53.0mm) and B (y = 60.0 mm). The shapes of the curves and
the damage levels at different points along those lines are almost the same.
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Fig. 6. Force versus displacement curves for different meshes

The curves of the applied force versus displacement obtained using the
two meshes are presented in Fig.6 to verify the mesh-dependence. The results
represent the behaviour of the global structure. Again, it can be seen, that
the shape of the solution is not affected by the spatial discretization. Fig.6



858 S.M.PIrRES-DOMINGUES ET AL.

also allows one to observe the softening behaviour. The similar result was
also found in several examples (c¢f Pires-Domingues, 1996). So, although no
theoretical result is presented, the presented formulation is believed not to
suffer of any numerical pathology due to mesh-dependence.

5.3. Accuracy of the proposed algorithm

The performance of the proposed algorithm is examined solving the pro-
blem of rectangular clamped plate (see Fig.7), with a preset displacement
ug{x = L,y) = at and wuy(z = L,y) = 0. The plane strain state and the
following boundary conditions: 8 = 33/0xz = 0in = = 0 and z = L are
assumed.

vA
u(r)

—

7

L, =
¥

S L

Fig. 7. Rectangular plate with the preset displacement

The following values were taken: o = 5.0 x 1073 mm/s, L = 20.0 mm,
E = 50.0CGPa, w = 0.025MPa, C = 1MPas and k = 0.1 Mpamm?. A
mesh of 289 nodal points and 256 elements was used to solve the problem (see
Fig.8). The dashed line shows the longitudinal line at the central region of the
plane, where the analyzed nodal points (137 up to 153) are localized.

——— - -
137 139 151 153

Fig. 8. Finite element mesh

In order to assess the accuracy of the proposed numerical method, the
results obtained using the ALG1 (with thrre values taken for 6) and with a
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coupled solution scheme are compared. The coupled damage problem defined
by the Eqs (4.2) is nonlinlear and thus was solved with the aid of a Newton
technique associated to the backward Euler integration method. Fig.9 presents
the results obtained using different numerical methods at the instant ¢t = 5.5s.

0.68
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0642 v @J
Eo I( —— back. Euler
i /| -@— forw. Euler
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- / —————
0.56F :
f‘;}
0.52F
2 ® 1z el [
1y '

0.48E. 0, =TS FORTRTITL. - < VPOV IO
136 140 144 148 152 156
Position [node nun.|

Fig. 9. Different numerical methods, ¢ = 5.5s

It can be observed that the results are quite similar using different algori-
thms.The same kind of behavior was obtained for the displacements. Compa-
risons were also made using the ALG2, arriving at similar conclusions. There-
fore, the results presented in this section prove that the operator split method
was able to give the results at the same precision level that other methods
capable of solving the coupled problem. It has to be emphasized that the

mentioned above is expensive.

6. Final remarks

A simple numerical method was used to approximate the solution to the
nonlinear damage propagation problem without the necessity for radical mo-
dification of an ordinary finite element code. This simple numerical method is
constructed combining the FEM and an operator split technique that trans-
forms the global nonlinear problem into a sequence of linear problems. The
proposed numerical method has succeeded, as it was documented by the pre-
sented examples.
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Nieliniowe sprezyste kruche zniszczenie — rozwigzanie numeryczne przy
uzyciu metod operatorowych

Streszczenie

Celem poprawno$ci sformulowania problemu w pewnych teoriach zniszczenia do
modelu konstytutywnego materialéw sprezystych wprowadza sie wyzsze gradienty
zmiennych opisujgcych zniszczenie. Chociaz teorie takie umozliwiajg matematycznie
poprawne modelowanie zjawisk lokalizacji odksztalcen, to z punktu widzenia nume-
ryki stosowanie ich uwaza sie zwykle za bardzo skomplikowane. W niniejszej pracy
przedstawiono zastosowanie numeryczne teorii zniszczenia z wyzszymi gradientami do
materialéw sprezystych. Do przyblizonego rozwisgzania otrzymanych nieliniowych za-
dah matematycznych zaproponowano prosta metode numeryczng oparta na metodzie
elementéw skodczonych. Uzycie metody operatorowej pozwolilo uniknaé sprezenia
miedzy zmiennymi opisujacymi zniszczenie i odksztalcanie.
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