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An analysis of the phenomenon of ”stick-slip” vibrations of arms of open
manipulators with flexible drives and dry friction in joints is carried out
in the paper. A method of physical and mathematical modelling of such
systems for the purposes of dynamic analysis is presented. An example
of dynamic analysis of a manipulator with revolute and prismatic jo-
ints has been carried out. Finally, some results of numerical simulation,
illustrating the phenomenon of ”stick-slip” motion, are presented.
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1. Introduction

Modern industrial robots impose demanding requirement on the design
process, especially in the view point of positioning accuracy of robot grippers.
Flexibility of drive systems and friction in joints (kinematic pairs) exert a
considerable influence on this accuracy. The clearances, occurring mainly in
transmissions of drive systems, also determine the positioning accuracy.

The flexibility of drives, resulting mainly from the flexibility of transmis-
sions used, is a main undesirable feature of mechanical devices. In the case of
robot drives, it is mostly harmonic gears that are found since these gears are
relatively light and small drive components revealing high transmission ratio
capability (cf Abdelraheim and Seireg, 1995a). An example of physical model-
ling of harmonic drives was presented by Abdelraheim and Seireg (1995b).

Industrial practise proves that in many cases suflicient lubrication can
not be ensured in joints of machines including robots, especially in prismatic
(translational) joints. In this case small fluid friction which normally occurs
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may develop into significantly larger boundary friction, and in extreme cases
there may even be dry friction. Large loads acting upon mating links and low
relative velocities in joints, for example in the phases of starting-up or breaking
of links, are conducive to the dry friction. This second effect is illustrated by
the Stribeck curve known in tribological literature which presents a course
of kinetic friction coefficient p versus relative sliding velocity v in the joint
considered (Fig.1).

Fig. 1. Stribeck curve with regimes of: (a) dry friction, (b) boundary friction,
(c) partial fluid friction, {(d) full fluid friction

The dry friction, combined with the drive system flexibility (which is diffi-
cult to eliminate in practise), leads to a cumulation of undesirable effects, and
finally the link vibrations called ”stick-slip” vibrations occur. During these
vibrations, very short phases of standstill (static friction phases) occur be-
tween the phases of relative motion of links (kinetic friction phases). It ap-
pears that so-called decreasing kinetic friction characteristics (Fig.2), usually
present within the range of very small sliding velocities, are associated with
the occurrence of this phenomenon (cf Harlecki and Wojciech, 1992).
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Fig. 2. Kinetic friction characteristic for pair of materials: steel-cast iron
(Harlecki, 1995)

The problem of "stick-slip” vibrations is known in industry and has been
dealt with by various authors. The phenomenon is particularly inconvenient in
the case of machine tools. An extensive bibliography of investigations into this
phenomenon in machine tool dynamics and attempts to eliminate it have been
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worked out. For example, the article by Soavi (1980), the often quoted paper
by Bell and Burdekin (1969-70), and also the series of works by Kato and
Matsubayashi (1970), Kato et al. (1970a,b) can be mentioned. Vibrations of
the ”stick-slip” type are met also in other devices. For example, Pfeifer (1992)
considered the occurrence of this phenomenon in turbine blade dampers. Ko-
lerus (1975) investigated the ”stick-slip” problem in the case of engine wheels
turning on rails. The ”stick-slip” motion in micromechanisms was analysed by
Suzuki and Itao (1995), and in telescopes by Hammerschlag (1986).

The problem of ”stick-slip” perturbations in motion also arises in robotics
where sticking behaviour is observed at final positioning. It is also difficult
to eliminate this phenomenon in this case. In the publications devoted to the
problem of "stick-slip” vibrations in robotics; e.g., Kubo et al.(1986), Acker-
mann and Miller (1990), the attempts to eliminate this problem by using
suitable, often complicated, control methods have been described. Therefore,
these articles concern the control problems.

However, the present paper concentrates on solving problems of dynamic
analysis (forward dynamics) of robots with flexible drives and dry friction in
joints. This is never a simple task in the case of mechanical devices such as
robot manipulators with many degrees of freedom. Hence, the literature about
this problem is rather scanty. The problems of forward dynamics in the case
of robots with regard to dry friction in joints were solved among others by
Gogoussis and Donath (1988,1990,1993), Wojciech (1995).

2. Characteristic of assumed physical models of manipulators

The method proposed can be used for dynamic analysis of any open spatial
kinematic chain (manipulator) with = rigid links which are connected by
revolute or prismatic joints (Fig.3).

In the case of rigid rotary or translational drive in a chosen joint ¢ (where
1 € i € n), the generalized coordinate ¢;, describing motion of a link ¢,
changes according to the assumed function of time t (Fig.4a and Fig.5a).
This function can be treated as a kinematic input.

In the case of a flexible drive at this joint (Fig.4b and Fig.5b), the displa-
cement ¢ of the end of a non-dimensional spring, which models the drive
flexibility, changes as an assumed function of time. On the other hand, the
generalized coordinate g¢;, as an unknown quantity, is calculated when the
equations of motion are solved.
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Fig. 3. Open spatial kinematic chain (manipulator)
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Fig. 4. Models of translational drives: (a) rigid, (b) flexible
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Fig. 5. Models of rotary drives: (a) rigid, (b) flexible

The models used allows us also to take into account a clearance occurring
often in real drive systems (in figures denoted as A;).

The driving force or moment of link ¢, connected with the previous ¢ —1
link by a prismatic or revolute joint ¢, respectively, can be defined using the
following formula

F{ = kidi(q] — g — 0i43) + hidi(d] — 6s) (2.1)
where
¢; - function g¢; differentiated with respect to time
A; - clearance in a drive 7
k; — stiffness coefficient of this drive
h; - damping coefficient of this drive
and

1 when |¢f — ;| > 4; .
0 = { 4~ | > 4 oi = sgn(q; — ¢i)

0 when [¢f — ¢ < 4;

3. Mathematical model

The equations of motion of the manipulator can be derived on the basis
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of the Lagrange formalism using the Denavit-Hartenberg notation (cf Craig,
1989) for transformation of the coordinate systems.

If the vector r; = [z, ¥i, 2, I]T, defining the position of chosen point in
the coordinate system z;y;2; connected with the link i, is known, then the
vector T;_1 = [zi_1,%i—1,%—1,1] ", defining the position of this point in the
Z;_1Yi—12i—1 coordinate system connected with the link 7 — 1, is defined as

L=Ar;,  i=1,..n (3.1)
where A;is the transformation matrix from z;y;2; to @;_1y;_12;— coordinate
system.

When the transformation matrices Ay, ..., A; are known, the position of this

point in the inertial coordinate system xgygzp can be expressed according to
the formula
Ty = Biri (32)

where B; = AjA,.. A, is the transformation matrix from the coordinate system
Z;Y;2; to the inertial coordinate system.

Potential and kinetic energies of chain as well as the equations of the motion
were formulated according to the procedure presented by Jurevi¢ (1984).

Having differentiated with respect to time the matrices B;, the kinetic
energy of the whole system can be calculated in the following way

SIS e@He)) (3.3)

i=1

t\)ln—l

where H; is inertial matrix of link i.
The potential energy can be written as follows

V = gab (3.4)
where
n
a=[0,1,0,0] b=> mBir

and

g — acceleration of gravity

m; - mass of the link 1

Te; — position vector of the centre of mass of the link 4 in the

system z;y;2;.
For further consideration the following is defined
8B, js OBl

B = B = 2% 7,8, =1, ... .
1 an 1 aqs 17.7) S’ bJ i’n (3 5)
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The above quantities can be given as

B] _ { A]...Aj__lD]'AjA]‘+l...Ai when ] <1
¢ 0 when 5 > 1
(3.6)
A A DA A, DA A; when j <s<i
BI* =< AL.A;_ DA A when j =5 <
0 when 7 >4 and s >4

where D]- — matrices with constant coefficients.

The relations presented allow a complicated matrix differentiation to be
replaced by simple multiplication. Thus

n
i=1
and so the kinetic energy (3.3) can be rewritten in the following way

1 n H ) o
T = 52 dotr (BinBiT)qJ‘fH (3.8)

i=1jl=1

The method presented does not require the formulation of the equations of
motion in generalized coordinates of joints with rigid drives, since these coor-
dinates are known functions of time. The equations of motion are formulated
therefore only in the coordinates of joints with flexible drives on condition
that the phases of relative motion (kinetic friction phases) are present in these
joints. If the phase of standstill (stiction phase) in a given joint occurs, the
suitable generalized coordinate will become a known function of time. The
equation referring to this coordinate is removed from the system of motion
equations. As a result, the number of equations defining the motion of mani-
pulator is variable.

The equation of motion for chosen joint s (where 1 < s < n) with flexible
drive, in which there is relative motion, takes the form

n n n
Y DyidGi+ Y. Y Dyjigigi + Dy = F, (3.9)
i=1

i=1i=j
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where
n .
D= S tr (B;H,B;T) D, = gab*
l=max{1,s}
n N n
-Dsji = 0j; Z tr (Bz“HlB?T) b = ZmiBfrci
I=max{%,7,3} 1=3

1 when 7 =1
5]'1' = . .
2 when j #1
Then, the current number of above equations is equal to the number of
joints with flexible drives and the phase of relative motion.

The generalized force Fj is calculated as
F,=F¢_Ff (3.10)

The driving force (moment) F¢ is defined by Eq (2.1).

The method of calculation of forces or moments of kinetic friction Ff,
which are functions of so-called joint forces f; and moments n,, will be
presented below for prismatic and revolute joints, respectively. Joint forces
and moments can be determined using the approach based on the recursive
Newton-Euler formulation (cf Craig, 1989; Luh et al., 1980) which consists
in realisation of two loops. The first one of them enables velocities and ac-
celerations and subsequently the inertial forces and torques to be calculated,
from the link 1 to the last link n. The second loop allows the joint forces and
moments to be determined, from the last joint 7 to the joint 1.

3.1. Prismatic joints

It is assumed that the slider is part of link s, and the slideway is part of
link s — 1 (Fig.6a). It is assumed, moreover, that the slider can contact with
slideway, as shown in Fig.6b, only at certain points, namely at the corners.

Knowing the components f; , f, of joint forces f; and the components
ny,, Ny, of joint moments nj, transformed to the centre of slider, it is relatively
easy to calculate normal reaction forces acting at the slider corners. The whole
normal load acting upon the slider is the sum of the components

N, = |nys + Nnz, + NrZ{z,| + |nys + Nnz, — Nr;{z,| + (3.11)
+|nys - an's + N'gl,| + |nys - ans - N'glg| + |Nfl's - Nnys +anlg‘ +
+|Nfzs - Nnys - NTZJ,:ZS| + |Nfz, + Nnys + N'Il),:z,| + |Nfzs + Nnys - Nrfz

.|
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Fig. 6. (a) Prismatic joint, (b) normal reaction forces

9 - Mechanika Teoretyczna
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where
1 1 1 ! 1ni’1»'s
Nz, = Zfzs Ngy, = ny, Npz, = ) s
1n, 1 ¢ 1 b
= _ Y L § Yy o= TS
Nny, - 9 as nzy an, bg + Cg ans - ans bg + 02
S

Now, kinetic friction forces can be defined using the Coulomb formula
Féf = psNssgngs (3.12)

where p, is the kinetic friction coefficient in the joint considered.
Other models of prismatic joints with dry friction were presented also by
Luh et al. (1980), Szwedowicz (1991), Sharan et al. (1993).

3.2. Revolute joints

It is assumed that the pin is part of link s, and the sleeve is part of
link s — 1. Knowing the components fz , fy,, of joint forces f, and the
components ng,, Ny, of joint moments n, acting at the pin (Fig.7), the
kinetic friction moment can be calculated as the following sum

F{=F] +F} +F] (3.13)

The components of kinetic friction moment are defined as follows

da, )
Fﬁ, = na,Ra, =" sgnds
dp, )
Fé, = 1B, ftp, =~ sgn s (3.14)

2 de, i
Fé, = §MCs|fzs|TSgnqs

The normal reaction forces take the form

1
Ra, = l—\/(lBgfzg - nyg)2 + (lBsfy, + nz,)2
’ (3.15)

1
RBS = \/(lA.vfl's + ny.v)2 + (lAsfys - 77,1;3)2

T
The method of solving the equations of motion requires, at every step of
integration, the application of a special iterative procedure based on the New-
mark algorithm. This procedure was presented in detail by Wojciech (1995).
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Fig. 7. Normal reaction forces acting at radial A, B and thrust C bearings of pin of
link s

The friction in the joints causes a violent decrease in velocity, even to zero.
The signal indicating possible occurrence of stiction phase in the given joint s
is the change of sign of relative velocity ¢s in this joint. However, the motion
stops only when the following condition is fulfilled at the same time

* '_'f
|Fy - F}| < F, (3.16)

Knowing the component f; of joint force f, in the prismatic joint s (Fig.6b)
and the component n,, of joint moment n, in the revolute joint s (Fig.7),
the force F; can be defined as

F} =

L

, . - . .
{ [z, for the prismatic joint (3.17)

Ng, for the revolute joint

The static friction force or moment F£ can be defined by using Eqs (3.12)
or (3.14) and (3.15), respectively, substituting for the values of kinetic friction
coefficients p; or pa,, pB,, pc, the values of static friction coefficients.

Transmission from the stiction phase to the kinetic friction phase in the
joint considered will follow when the following condition is fulfilled

|Fé—Fr| > F! (3.18)

Other models of revolute joints with dry friction were considered also by Wu et
al. (1986), Szwedowicz (1991), Sharan and Dhanaraj (1993), Fraczek (1993),
Klosowicz (1990).
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4. Results of calculations

The analysed model of four-links spatial manipulator is shown in Fig.8.
Motion of links is defined by angle ¢i, g2, ¢4 and translational ¢3 generalized
coordinates. The following types of drives are used in the model: in the revolute
joint 1 — flexible drive, in the revolute joint 2 - rigid drive, in the prismatic
joint 3 — flexible drive, in the revolute joint 4 — rigid drive.

X3

) " revolute T~ 0.5m
0.85m-— . ' joint 4 4 =

~ prismatic

link |

revolute Ijoinl 1
Fig. 8. Model of the analysed four-links manipulator

The main dimensions of the manipulator are shown in Fig.8. Some other
dimensions and physical data of the system are specified below:

— diameters of pins (sleeves) of revolute joint 1: d4, =dg, =d¢, =0.1m

— dimensions of slider in prismatic joint 3: a3 = 0.2m, b3 =c3=0.07m
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— distances of radial bearings A and B in joint 1: I} = 0.12m,
la, =1lp, =0.06m

stiffness coefficients of drives 1,3: k; = k3 = 105 Nm~!
— damping coefficients of drives 1,3: h; = h3 =0
— kinetic friction coefficients in radial bearings A, B of joint 1:
pa, = pp, = 0.2
— kinetic friction coefficient in thrust bearing C of joint 1: p¢, = 0.2

kinetic friction coefficient in prismatic joint 3: w3 = 0.2.

The values of static friction coeflicients were assumed to be equal to the
values of kinetic friction coefficients.

The worked out physical and mathematical models of the manipulator
considered allows one to carry out its dynamic analysis. The results of nume-
rical simulation of the manipulator motion enable definition of the expected
influence of different parameters, characterising the system properties, on its
dynamic behaviour. The data characterising the physical system were assumed
in general on the basis of literature and one should treat them as approximate
values. In order to study more distinctly the influence of some system para-
meters on stability of motion, the values of some data were assumed to be
rather improbable, for example zero values of damping coefficients in almost
all examples of calculations. The author realizes that accurate complex dyna-
mic analysis of real manipulators would require identification of their physical
parameters. Large rigidity characterising the drive systems of arms made it
necessary to emply a very small step of integration in calculation. The nume-
rical experiments showed that in some cases the assumption of an integration
step equal to at least 0.2-107°s ensures sufficient calculation accuracy. This
fact is illustrated by the plots of real velocity ¢3 of link 3 as a function of
time ¢ obtained for different integration steps (Fig.10). The plots of input
functions used, defining the required displacements ¢;, ¢3 of links 1 and 3
with flexible drives, are presented in Fig.9.

Analysing the curves shown in Fig.10, we can see that the velocity of
link 3 assumes the zero value on many occasions (particularly in the case a)
because of large friction, and so parasitic, transitory standstill phases appear.
Occurrence of these phases is signalled by the thick sections in the course of
the so-called coefficient of motion ¢,. Such motion can be treated as a typical
example of the ”stick-slip” vibrations. It appears that even a small change in
the value of an integration step leads to a quite different form of the ”stick-
slip” phenomenon. As the numerical calculations have proved, the assumption
of a step smaller than 0.2-107°s seems to be unnecessary because it does not
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Fig. 10. Influence of the values of integration step on accuracy of calculations:
(a) 0.5-107*s, (b) 0.2-107%s, (c) 0.2-1075s
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affect the accuracy of results. The computations were carried out by using a
personal computer, and so the times of numerical simulations were long (even
to several hours) due to small integration steps. For this reason, in general
times of manipulator motion no longer than 2s were considered.

Below, the results of some selected numerical calculations are presented.

Fig.11 illustrates an influence of different values of kinetic fricton coeffi-
cients in joint 3 on the positioning accuracy ¢ of the manipulator end £
defined as follows

e=/(zp — 25)? + (b — yp)? + (25 — 23)? (4.1)
where
TE,Yg,2E — coordinates of the point F in the case when all drives
of manipulator are considered to be rigid
Tp, Y, #Zp — coordinates of this point in the case when the drives of

links 1 and 3 are modelled as flexible.

£[10'm]}

3 A/\Mb

(

oo
—-

IR
0 ! 2 1)

Fig. 11. Influence of the kinetic friction coefficients on positioning accuracy:
(a) u3=0.1,(b) p3 =02

It can be seen that larger friction influences negatively the accuracy of
motion of of manipulator links.

Fig.12 presents the plots of difference e3, where €3 = g3 — g3, between
the required and real displacements of link 3 determined when both constant
(case a) and decreasing (case b) kinetic friction characteristics were taken into
account in joints 1 and 3 with flexible drives. The graphs illustrate the bad
effect of decreasing friction characteristics on stability of motion. This bad
effect is demonstrated by the increase of vibrations. The thick sections in the
course of the coefficient of motion c¢,,, numerous especially in the case of
decreasing characteristic, denote appearance of stiction phases.
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Next characteristic property of the drive system is the clearance resulting
mainly from backlash in drive gears. The influence of clearances A, Az in
the drive systems of link 1 and 3 on the accuracy of movement of link 1 is
presented in Fig.13. The two cases are illustrated: without and with clearances,
respectively, introduced into drives. In the second case, the difference ¢;, where
€1 = ¢} — q1, between the required and real displacements of link 1 is larger
and more or less constant in the time of numerical simulation.

The method described allows also for determination of the influence of
different dimensions, such as for example dimensions of joints, on the stability
of motion. For example, the Fig.14 illustrates the influence of length a3 of
slider in joint 3 on the positioning accuracy ¢ of the manipulator end F.

£[10'4m”}
3_

Fig. 14. Positioning accuracy for different lengths of slider in joint 3: (a) ag = 0.2m,
(b) a3 =04m

The possibility of damping occurrence in the drive systems of links 1
and 3 was taken into account in the last case. Using the suggestions put
foreward by Soavi (1980), the values of damping coefficients were assumed:
hy = 103 Ns/rad and hs = 103 Ns/m. The increase in the slider length aj
causes a decrease in values of the normal reaction forces and as a result of
smaller values of friction forces and larger positioning accuracy.

5. Conclusions

It can be seen from the above plots that the method elaborated allows for
determination of the influence of different parameters characterising properties
of manipulator drives and joints on the stability of system motion. Selected
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cases of possible large instability of the system in the form of ”stick-slip”
perturbations were presented. In general, it can be stated that the results of
this work are useful in defining expected positioning errors when investigating
manipulator behaviour for variable physical and constructional parameters of
system.
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Ruch typu ”stick-slip” otwartych manipulatoréw z podatnymi napedami
i suchym tarciem w parach kinematycznych

Streszczenie

Tematem artykutlu jest analiza zjawiska drgan typu ”stick-slip” ramion otwartych
manipulatoréw. Zaproponowano pewna metode opracowania fizycznych i matema-
tycznych modeli manipulatoréw w postaci otwartych laficuchéw kinematycznych dla
potrzeb analizy dynamicznej, uwzgledniajacej podatnoéé napeddw i tarcie suche w pa-
rach kinematycznych. Przeprowadzono przykiadows analize dynamiczng wybranego
manipulatora z postepows i obrotowymi parami kinematycznymi. W podsumowaniu
zaprezentowano wybrane wyniki obliczen numerycznych, ilustrujace wplyw suchego
tarcia w parach kinematycznych na zjawisko drgan typu ”stick-slip”, a w konsekwencji
stabilno$é ruchu czlonéw manipulatora.
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