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Almost all aircraft are equipped with the Inertial Navigation Systems.
The autonomous Inertial Systems are capable of calculating the naviga-
tional parameters of aircraft: position, velocity, and attitude. without
external sources of information In the paper the equations and algo-
rithms of strapdown navigation system are derived and analysed. The
research is focused on the calculation methods of the aircraft attitude.
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Notations

inertial frame of reference

earth-fixed frame of reference

body-fixed frame of reference (the same as a measurement
unit frame of reference)

true frame of reference with local-level orientation; z-axis
coincidens with local north, y-axis to local east, and z-axis
local vertical

aircraft-fixed frame of reference

any other coordinate systems

column matrix expressed in the A-frame

angular velocity vector of the A-frame relative to the
B-frame expressed in the A-frame

guaternion of angular velocity vector of the A-frame relative
to the B-frame expressed in the A-frame

6 — Mocchanika Teorctyczna
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Qﬁ_'B —  skew-symmetric matrix formed by the components of the
angular velocity vector w45

D3 — transformation matrix of any vector from the A-frame to
the B-frame

A — transformation quaternion of any vector from the A-frame
to the B-frame

g — pgravitational acceleration vector

g - gravity acceleration vector

a - specific-force (acceleration) vector

T4 — position vector expressed in the A-frame

Ry, Ry radius of the curvature of the earth in the east-west and
north-south directions. respectively (cf Kayton and Fried,
1976)

€ — first eccentricity of the reference ellipsoid, e? = (a? —b%)/a?

a,b —  the semi-major and semi-minor axes of the ellipsoid, respec-
tively (cf Wei and Schwarz, 1990)

© — latitude

A longitude

() — quaternion conjugate notation

o ~ quaternions multiplication.

1. Introduction

The first Inertial Navigation System (INS) was developed during World
War II by German scientists and V-2 ballistic missiles were equipped with
it Pitman (1962). Since then the INS has become a standard equipment in
ballistic missiles, almost all modern aircraft, and space ships. Strapdown In-
ertial Navigation Systems (SDINS) are sophisticated, autonomous. analytic
systems for calculating the position, velocity and attitude of the vehicle which
they are mounted on. In this system electromechanical gimbal platform is
eliminated, and all sensors (accelerometers and gyroscopes) are mounted di-
rectly (i.e., strapdown) to the aircraft’s fuselage and hence the quantities they
measure (angular velocity, specific force) are in a B-frame. This kind of
realisation requires knowledge of the specific force components in a naviga-
tion co-ordinate system (for example — a true local-level). The transformation
from the B-frame to the navigation frame requires good knowledge of the
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vehicle attitude. The attitude can be found by numeric integration of proper
differential equation, which describes the relation between one of the known
attitude variables and the measured angular velocity vector.

Testing and verification of SDINS algorithms is a very important phase of
the investigation and synthesis of SDINS.

2. Attitude variables

I-frame, E-frame, T-frame, and B-frame have been described in Polish
Standards [14] and are summarised in Ortyl (1996).

The attitude of the vehicle relative to the navigation frame can be described
by a few sets of variables; the most popular are: transformation matrix D%,
quaternion A?, Cayley-Klein parameters U?, and attitude (Euler) angles &,
&, &. Three first items (sets) are used to design the SDINS algorithms while
the attitude angles are used to the present the attitude — they have a direct
physical interpretation. This procedure requires knowledge of the relation
between sets of variables and especially to the attitude angles.

For example, on the base of elements of the transposition matrix
B = (D?)T we can calculate the aircraft attitude angles: pitch, roll, and
yaw (see [14]). Because of the ranges of the angles (yaw 0 < ¥ < 2m,
roll —m < @ < 7} it is profitable to use the following functions cot(z/2) and
tan(2/2), which are unique in these ranges. For the yaw angle ¥ we use the
following relations (Ortyl. 1996)

\/l—b%3—}—b11

v = 2a1‘ccotr~——b12— for by, £ 0
0 for b12:0 A b137£1
(2.1)
Uik)y=¥(k-1) for byz3 = —1I
where b;; (¢,7 = 1,2,3) are the elements of matrix B.
For the roll angle & we shall use the relations
¢ = 2arctan b;a
1 =035 4 b3z
(2.2)

¢=m for /1 =334 b33 =0
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The pitch angle ©, whose range is (—m/2,7/2), is determined {rom the
function sina (unique in this range)

© = 2arcsin(—by3) (2.3)

On other hand, knowing the attitude angles, we can derive transformation

matrix
cos @ cos ¥ cos Osin ¥ —sin @
sin@sin@cosW¥4+ sin@sin@sin¥+4 .
T ) sin ® cos @
Dy = —cosPsin ¥ 4+ cosPcos ¥ (2.4)
sin @sin ¥+ cos @ sin Osin ¥+
) , cos P cos @
| +cos®sin & cos ¥ —sin@cos ¥

The attitude matrix as a function of quaternion A is given in the following

form

A5+ A= A3— A3 2(M Ay — Aods) 2(A1 A3+ AoA2)

DIAZ) = | 200 A2+ doA3) A2 = A2+ 2222 92(Ah3 — Aohy)
2(AM A3 — AoA2) 200203+ AoAy) A=A = A4 A2
(2.5)
and the quaternion components are related to the attitude angles by

Ag = cos g oS Q cos g + sin g sin Q sin g
2 2 2 2 2 2
. v o 0 ¥
A1 = SIIL — COS — COS — — COS — Sin — sin —

2 2 2 2 2 2 .

(2.6)
Ay = €OS = sin — cos — + sin — cos — sin g{
2 2 2 2 2 2
A3 = cos 5 cos Y sin 3" sin 5 sin 5 cos By

Detailed derivations and other relations are presented by Ortyl (1996).

3. SDINS algorithms

The SDINS algorithms consist of the set of equations in which the navi-
gational parameters of the aircraft: position, velocity, and attitude are the



STRAPDOWN INERTIAL NAVIGATION SYSTEM... 85

variables. The equations with parameters of position and velocity are similar
to the well-known equations for the INS with gimbal platform. Therefore.
they will be only summarily presented. The attention will be focused on the
attitude equations.

3.1. Velocity and position equations

Each accelerometer measures the component of specific force a; in the
B-frame (cf Pinson, 1963), where a; is the second derivative of position vector
r; in the [-frame minus the gravitational acceleration ¢/ in the same frame

i =a; +d (3.1)

Attitude {0 @, ¥)}

Normal gravity

-4
_— —_— +| . SR PR
| Three | ap | g |97 1‘”.[ | P
|accelerometers | ; r I('i}"- L L
T | Coriolis |
- B BT L |correction[~ J

Three 71“’3 B N B B—ﬂ‘ I
| gyroscopes 177»( ’*A{DT—r D7 025
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B
r,,,t,._A S ‘L QE—’I =2
D’ wIE &
P ropr @b e
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Fig. 1. SDINS realisation in the 7'-frame using the transformation matrix calculus

The navigation computer uses signals from accelerometers (components of
a;) to determine the vector r;, which describes the aircraft’s position in the
I-frame.

Taking into account the following relation

97 = g7 - QFQF ey (3.2)

and the mathematical rules of differentiation with respect to time in the rota-
ting 7-frame, we can put the navigation equations of position, velocity, and
attitude, respectively in the form:
— in spherical (geographical) coordinates (cf Bar-Itzhack and Goshen-Meskin,
1988)

% = Ko (3.3)
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— in Cartesian coordinates

‘i‘T = vr — Q%_'ETT or i‘E = Dgf)’[’
(3.4)
. B E —1 T—
o7 = DPar — (2087 + Q1 F)or + g7
where 7§ = [p,A.h]T is the geographic (spherical) position vector,
rr = [z,y,2]}, g = [2,y,2]} are the Cartesian coordinate vectors in

T-frame and E-frame, respectively, vy = [UN,’I)E,vv]T is the velocity vector
in T-frame, while

vE . vp

/\ B IS R— = h = —7
(En + h)cosy ? Ry + h v
1—¢? 3
Ry = o ) xa[l«f—eQ(—sinQap—lﬂ (3.5)
/(1 —eZsin? )3 2
1
Ry = ¢ xa(l«}— 5825111259>

\/1—e?sin? ¢

K - coeflicient matrix

(Rpr + h)7t 0 0
K= 0 [(Ry + h)cosp]™t 0 (3.6)
0 0 -1
and
wi—E = [pn.pE pv]T = [Acosp, =, —Asin @] T (37)
-
wE=T = [0y, 25, 2" = [£2 cos ,0, —N2sin ]
where 2 = 7.292116-107°s7! is earth angular speed.
The ideal gravity vector in the T-frame is described as follows
gr =10,0,9,]" (3.8)

where ¢, can be calculated from one of the expressions given in Bar-Itzhack
(1997), Wei and Schwarz (1990) and [13], for example

R? 9
9o(h) = gop —— Ry = gop—————5—
v YR, + h)? ¢TI g5+ gycos 2 3.9)

Yo, = go + g1 €08 290 + g3 cos? 2
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or
9o(h) = goy + (g3 + g4 cos2¢)h go = 9.80616 m /s>
g1 = go - 0.0026373 g2 = go - 0.0000059
g3 = 3.085462 - 107572 gy = 2.57-107% 572

where R, is the nominal earth radius on the latitude .

3.2. Attitude equations

3.2.1.  Transformation matriz

Differential equation which describes the relation between transformation
matrix and measured angular velocity vector is as follows (cf Ortyl, 1996)

DF = DPQE~! (3.10)

We take into consideration another T'-frame rotating relative to the I-fra-
me at angular velocity wl—! = wZ—F { wE=!/  According to Eq (3.10) we

can write ) .
Q8- = DLD? of-! = plp? (3.11)

Transformation matrix which transforms vectors from the B-frame to the
T-frame is described as the product

DE = piD? (3.12)
The differentiation of Eq (3.12) yields
D¥ = D/D? + DLD? (3.13)
Transformation matrix should satisfy the orthogonal conditions
DID/ = DLDT =1
(3.14)
DPDL = DLDP = |
Substituting Eqgs (3.14) into Eq (3.13) we have
DZ = D/DPDLDP + DLDTDLD? = DE(DLDE) + (DLDTIDE  (3.15)
and using (3.11) we obtain

DZ = DEQE~! 4 (@1=)TDZ = DEQE~! —l—~/DZ (3.16)
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where the following relation is taken into account (QL=HT = —QI—1
Last equation can be rewritten to the following notation (only for ortho-
gonal mafrix)
Df = DZ(QF~" - af~') (3.17)

Using Eqgs (3.3), (3.4)2 and (3.17) we can obtain a flowchart of the SDINS
realisation in the T-frame with transformation matrix calculus (see Fig.1).
J.2.2. Quaternions

Differential equation which represents the relation between quaternions
and measured angular velocity vector as follows (cf Braniec and Shmiglevskii,

1973; Friedland, 1978; Ortyl, 1996)

. ] —

AB(1) = 5t\/l(_c.)g~1)A53(t) (3.18)
or using quaternions multiplication it is

. 1
AB(t) = §A[B(z)owg—f (3.19)

where A?(l) = [Ao» M1, Ao, A3]T = quaternion, which describes the relation
between the B-frame and the [-frame and norm which should satisfy the

condition |[A|| = 1; M(wg“'[) - skew-symmetric matrix with dimenslons
4 x 4 and
M(wB=1) = 0 ~(w§“§)T
wi=™t (™)
wB=!1 = [p,q,7]T - measured angular velocity vector; w8~ = [0,p,q.7]T -

quaternion formed by the components of the measured angular velocity vector;
Qg_[ - skew-symmetric matrix formed by the components of the measured
angular velocity vector and

0 —r q
Qg"l = T 0 —p
-¢ p 0

Eq (3.18) is linear in function of quaternion and angular velocity vector,
so we can then write (cf Friedland, 1978)

A(t) = SQUAJ() (3.20)
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where
A A Ay
B Ao —Az A g
Q(A) - /\3 /\0 _’\'l (‘521)
=AM Ao

We take into consideration the another T-frame, rotating relative to [-frame
with angular velocity

wr ™l = oy, wp,wv]T = whTE Wk (3.22)

where wi—F wE—I are given by Eqs (3.7), respectively.

According to relation (3.19) we can write
1 _ .
Ewg-’ = AP o AP (3.23)

and |
AT A,w%ﬁ’ = 5 wh !l = AT o AT (3.24)

Defining the two-side conjugate quaternion of (3.24) and taking in mind that
for normalised quaternion the inverse quaternion is equal to the conjugate one,
we have )
%5}“1 i T~1 = AT o AT = AL o AL (3.25)
The transformation quaternion between B-frame and T'-frame is as follows
(see Fig.2)

AR = AT o AP = AL o AP (3.26)

Fig. 2. The relations between frames I, T and B

Differentiation of (3.26) leads to

AZ = AL o AP + AL o AP (3.27)
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The norm of quaternion should satisfy the conditions
IAZIl = A o Af = Ap o AL = 1

(3.28)
APl = RP 0 AP = AP o AP =1

Substituting Eqs (3.28) into Eq (3.27) and utilising Eq (3.26) we obtain the
relation _ _ _ B .

AZ = (A7 o A7) o AR + A7 o (A7 0 AT) (3.29)
Replacing the terms in brackets by (3.23) and (3.25) we obtain

. 1 1
AF = SAZ o @Bl - Sl o Af (3.30)

To solve the above differential equation some its transformation should be
done to avoid the quaternion subtraction. It is realised by the replacement
of the quaternions by proper quaternion matrices. This way the quaternion
multiplication is replaced by the matrix multiplication

. 1 1— L=, B_ ", 9 21
AR = SM(WE™NAR - SM(wp—/IAf = E[M(wg )= M} N]AZ (3.31)
where

(L —=INT
y (wr™) } (3.32)

M T—1 —
(wr™") |:w%:_.[ QL1

A few methods for the solution of Eq (3.31) will be presented below. Now
we note that it can be realised directly by the relation (3.26). To do that one
should solve the differential equations (3.19) and (3.24) and next multiply the
quaternions according to relation (3.26). The possibility of calculation of the
T-frame attitude relative to the [I-frame is an additional advantage of the
above method. In the same way the measurement frame attitude relative to
any navigational rotating frame (for example — the [-frame) motion of which
is described by analytical relations can be calculated. The fundamentals of
quaternion algebra which are useful in the mentioned method are given by
Braniec and Shmiglevskii (1973), Ortyl (1996).

Using Eqs (3.3), (3.4)2. (3.19), (3.24), and (3.26) we can obtain the flow-
chart of SDINS realisation in the 7T-frame with quaternion calculus (Fig.3).

4. Integration of attitude differential equations

As it was earlier mentioned the main difference between Gimbal Inertial
Navigation System and Strapdown Inertial Navigation System is connected
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Fig. 3. SDINS realisation in the 7-frame with quaternion calculus

with the modelling of the navigation co-ordinate system (in our case — the
T-frame). [t is realised in the SDINS by numeric integration of a chosen
form of the attitude equation (3.17), (3.31) or (3.24), (3.19), and (3.26). The
difference equation is obtained in each of these two cases but the calculation
of the fundamental (transition) matrix or its equivalent is different in these
two cases.

Assuming the constant coefficients within the integration step the standard
solution of Eqs (3.17) is as follows (c¢f Ortyl, 1996)

D(1)=D(t—7)exp= (4.1)
where
D(t - 7) - transformation matrix in the time ¢ — 7
exp= —~ transition matrix; exp= = D, (¢ - 7;1)
= - skew-symmetric matrix of rotation angles which are

the integrals of the angular velocity vector elements
(coefficients in Eq (3.17)).

The transition matrix in the standard solution is expanded into a Taylor
series with n components

D, =1+ 5.2+ CoE? (4.2)

where S¢, C: — Taylor series coefficients, for example for n = 3, they are
respectively 1 —£23/6 and 1/2, where & is a resultant rotating angle during
interval of integration and &5 = /€2 4 €2 + £2.

The adequate standard solution of Eq (3.31) is as follows

A1) = JMIA = )N (2 = 730 (4.3)
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where
N.(t —7;t) - correction quaternion during the step of integration
(t — 7;1) corresponding to the transition matrix
1. 31T
Nn(t —T; t) = exp <§:k> = [Cﬁréﬂi‘sﬁﬂéy‘gﬁﬁéz‘sfl
M[A(t — 7)] — matrix of dimension 4 x 4 formed by the components
of quaternion A(t — 1)
Ao —A1 =y =3
I ST Y VA VS
M[A(L — 7)] = [ VR
Az Ay AL A
Ek(t — 7;t) — quaternion of the rotation angle,
Ek(t -7t = ff_Tw dv
Sk Ck —  coeflicients of the Taylor series, for example for n = 3

they are 0.5(1 ~£3/24) and 1 —~ £2/8, respectively.

For details the reader is referred to Ortyl (1996).

After a few integration steps of the differential equations the transforma-
tion matrix loses its orthogonality and the quaternion changes its norm. To
avoid these problems the periodical check and compensation of the errors sho-
uld be performed to restore the orthogonality or the norm. Substituting other
approximation, for example the Pade approximation of the transition matrix,
for the slowly convergent Taylor series is the another solution of the above
problem.

The simple algorithm of the transformation matrix orthogonalization has
the form (cf Bar-Ttzhack and Goshen-Meskin, 1988)

2 3. 1.1

D_D§I—§D D (4.4)
while the algorithm of the quaternion normalisation is as follows (c¢f Bar-
Itzhack, 1971)

V.Y FSTESTIpY

h) i=0,1,2,3 (4.5)

According to (4.5) the quaternion normalisation means scaling it to the
vector the arrow of which moves on the hypersphere with unit radius.
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In the diagonal Pade approximation the transition matrix exp Z is replaced
by the product of the matrix polynomials (cf Hyslop, 1987; Ortyl, 1996)

-1
Dy, = |agl + ... + a, =" [I—}—...ernE"] (4.6)

For n = 1, the coefficients of Pade approximation are «p = 1, a3 = 1/2.

by = —1/2, respectively. Thus, after the matrix inversion (4.6) has the form
S 1_.
Padel _ Pc = -=2 4=
DPadel — | 4 gf (H+2H) (4.7)

where SPo = (14 &2/4)7".

Type of algorithms:
Thc - Taylor n=2 cosine matrix
Py - Pade n=1 quaternion

Fig. 4. Orthogonality errors after 1hr: T' - Taylor series, C — transformation
matrix, P - Pade approximation, @ — quaternion, n - algorithm rank

The Pade approximation can be only applied to the unitary matrices and
can not be applied directly to the quaternion calculations. To omit that pro-
blem the Caley-Klein parameters are used instead of the quaternion para-
meters. The Caley-Klein parameters forms the unitary matrix with complex
elements and these elements are the combination of the quaternion parame-
ters. For n = 1 after many calculations we can find the proper quaternion of
the correction in the form

N’IZDadel = C'fka ka'ng S‘fkgy’ Sf/f? (4.8)
where )
. 16— ¢ ’ 8
Pk _ 0 GPk _ .
: 16 + &2 2 16 + &2
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Several algorithms of the attitude calculation can be generated using the
above presented procedure. These algorithms differs from each other in: ma-
thematical notation, degree of reduction, method of error correction, and cho-
sen integration time step. It is important to choose the best algorithm for
the designed navigation system. To make a choice several simulations with
different models and algorithms should be carried out.

The influence of a few algorithms on the orthogonality for different inte-
gration time steps after 1h operation is presented in Fig.4. Tt is seen that
algorithms with the Pade approximation reveal the smallest errors for all si-
mulated integration time steps and correction of the orthogonality error can
be omitted.

5. Conclusions

The SDINS equations for calculation of the navigation parameters of the
aircraft: velocity, position, and attitude have been presented in the paper. The
"standard” attitude equations of SDINS employing the transformation matrix
and the quaternions with the Taylor series expansion have been compared with
the algorithms employing the Pade approximation for both the mentioned
notations,

For the manoeuvrable aircraft the equations based on the Pade appro-
ximation should be used in design of navigation system, simulations of its
behaviour, derivation of navigation error equations and for further studies.

This work was done under Grant 9T12C 03010 of the State Committee for Scien-
tific Research (KBN).

References

1. Bar-ITzHACK 1Y ., 1971, Optimum Normalization of a Computed Quaternion
of Rotation, [EEE Transactions on Aerospace and Electronic Systems, T, 2.
401-402

2. Bar-Irzaack 1.Y., 1977, Navigation Computation in Terestrial Strapdown
Inertial Navigation Systems, [EEE Transactions on Aerospace and Flectronic
Systems, 13, 6, 679-689

3. Bar-ITzHacKk 1.Y., GOSHEN-MESKIN D., 1988, Identity Between INS Position
and Velocity Error Equations in the True Frame, Journal of Guidance, Control
and Dynamics, 11, 6, 590-592



[\ba}

10.
11.

12.

13.
14.

STRAPDOWN INERTIAL NAVIGATION SYSTEM... 95

Bar-ITtzHACK 1.Y., MEYER J., 1977, Practical Comparision of Iterative Ma-
trix Orthogonalization Algorithms, JEEFE Transactions on Aerospace and Elec-
tronic Systems, 13, 230-235

BrANIEC W. N., SHMIGLEVSKIT [.P.. 1973, Primenenie kvalernionov v zada-
chakh orentacii tverdovo tela, Wydawnictwo NAUIKA, Moskwa

. FriEDLAND B., 1978, Analysis Strapdown Navigation Using Quaternions,

TEEFE Transactions on Aerospace and Elecironic Systems, 14, 5, 764-768

. Hysrop G.L., 1987, A Norm and Orthogonality Preserving Algorithm, [ELE

Transaction on Aerospace and Electronic Systems, 23, 6, 731-737

KayTon M., FrRIED W.R., 1976, Elektroniczne uklady nawigacji loiniczey,
Wydawnictwo Komunikacji 1 Lacznosci, Warszawa

ORrTYL A., 1996, Synteza 1 badanie algorytmdw inercjalnego bezkardanowego
systemu orientacjl przestrzennej statku powietrznego, Rozprawa doktorska.
WAT, Warszawa

Pinson J.C., 1963, Inertial Guidance for Cruise Vehicles, Guidance and Con-
trol of Aerospace Vehicles by Leondes C.T., McGraw-Hill Book Company

Pirman G.R., 1962, Inertial Guidance, John Wiley & Sons, New York

WEel M., Scuwarz IK.P, 1990, A Strapdown Inertial Algorithm Using an
Earth-Fixed Cartesian [Frame, Navigation. Jouwrnal of the Institule of Naviga-
tion, 37, 2, 153-168

ISO 5878-1982. Reference atmospheres

Polska Norma PN-83/L-01010.01, Mechanika lotu samolotéw i §miglowcéw.
Terminologia

Inercjany bezkardanowy system nawigacji. Czes¢ 1 — Réwnania nawigacji

Streszczenie

Prawie kazdy statek powietrzny jest wyposazony w inercjalny system nawi-
gacji (INS). Autonomiczny inercjalny system nawigacji jest w stanie wyznaczy¢é pa-
rametry nawigacyjne: pozycje, predkosé 1 orientacje przestrzenna bez korzystania
z zewnetrznych zrddet informacji. W niniejszej pracy wyprowadzono i1 dokonano ana-
lizy algorytmdw Inercjalnego Bezkardanowego Systemu Nawigacji. Szczegdlna uwage
poswiecono metodom wyznaczenia orientacji przestrzennej SP.
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