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We have constructed and investigated a model of thermoelastic contact
of solids with inertia forces taken into account, in conditions of frictional
heat and mechanical wear. It has been assumed that a layer is in a rela-
tive motion with respect to a wall. During the motion the gap between
the layer and the wall changes due to heat expansion of the layer. The
influence of material constants, velocity and parameters of the model
on the contact characteristics have been investigated. The solution to
the problem has been reduced to a system of the Volterra-Hammerstein
non-linear integral equations, which in turn has been solved by means of
the developed algorithm. The numerical solutions have been presented
in diagrams.
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1. Introduction

The inertia forces play an important role in the motion of solids with sli-
ding contact. As a result of sliding the friction forces appear, consequently the
moving solid deccelarates and we can speak of braking action. The friction
forces are accompanied by the frictional heat, which in the cases of two-sided
constraints lead to additional frictional contact forces, additional heat genera-
tion and increase of wear. On the other hand such additional friction reduces
the relative speed of solids and, in turn, the amount of generated frictional
heat. Then the temperature of the solids decreases and the relative speed can
increase again generating the increase in the emission of frictional heat. It
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is Important to know the variation of the thermo-elastic characteristics, i.e.
pressure, temperature, velocity of the relative motion, and wear. In the initial
stage of motion they can be monotonic, generally it is not the case.

The purpose of the paper is to construct a dynamical model of thermoela-
stic contact of solids in the conditions of frictional heat generation, wear, and
confinement of the solid volume due to the thermal expansion. The charac-
teristic features of such a model are discussed. A similar problem has been
already discussed by Pyryev (1994), however without wear taken into acco-
unt. So far, the problems either with uniform velocity without inertia forces
taken into account were considered (see for example Alexandrov et al., 1990;
Yevtushenko and Pyryev, 1997) or with constant pressure applied during the
whole process of braking (Chichinadze et al., 1979).

We shall assume that the contact region and the geometry of solids are
such that we are in position to approximate problem by a 1D model. The
application of 1D models let us discuss the problem analytically and draw
interesting conclusions (Alexandrov, 1990; Chichinadze, 1979; Lee and Barber,
1993; Olesiak et al., 1997; Pyryev et al., 1995). The theoretical investigation
of the braking processes is complicated even in 1D approximation and, as we
shall see, it leads to non-linear boundary value problems.

In this paper the boundary value problem of the quasistationary thermo-
elastic problem with non-linear boundary conditions has been reduced to Vol-
tera’s type equations.

2. Statement of the problem

Let an elastic, heat conducting layer of thickness L and heat conductivity
K be rigidly fixed along one (bottom) of its boundaries (Fig.1). The other
(uppon) boundary is deformed by a rigid, thermally isolated half-infinite wall
up to the value of u = uo¢,(t). The solid body has mass M and moves under
the action of force F' = Fy¢r(t) in the direction of z axis. The quantities L
and M are treated as the weight functions, i.e. they are taken with respect
to the unit of the contact surface. The initial velocity of the plate at ¢ = 0 is
equal to wg. The friction force Fy,. = fp arises in the contact region between
the layer and the moving solid and consequently a heat production and wear
take place leading to an increase in temperature. The heat exchange between
the layer and surrounding space, obeying Newton’s law, takes place through
the lower bounding plane.
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Fig. 1. Relative motion of solids with heat of friction and wear

Our task is to determine field of temperature 6(z,t), fields of displacements
u(z,t), w(z,t) along 2 and =z axes, respectively. The value of the layer wear
is u*(t) while the speed of the solid is equal to v(2).

From the mathematical standpoint the problem can be reduced to the
solution to the system of differential equations of quasistatic uncoupled theory
of elasticity
92

da?

0[8 1+v w(z.1) = 0

E %u(x,t) —al -

6(z,1)] = 0
(2.1)
0? 10
91" = R
and equations of the half-infinite plate motion
d
M Zo(t) = Fogr(t) = fp(t) (2.2)

We have the following mechanical boundary conditions

u(0,1) = w(0,1) = 0 ox:(L,t) = fp(1)

6(z,1) z€(0,L)

uw(L,t) = —updy(t) + u*(2)
the thermal boundary conditions

9 .0
](8_59(0,15) = a%6(0,1) Kk 8—330(11,” = fol(t)p(t) (2.4)
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and the initial conditions
6(2,0) = 0 w(0)=w z€(0,L) (2.5)

The use is made of a model of abrasive wear (Archard, 1959; Goryacheva et
al., 1988) for which
1
W) = Ky [ o(€)p(e) de (26)
0

We assume that the wear resistance coefficient A, is constant.

The considered problem has a meaningful solution for time t < t;.
Time t; is defined for the time of contact such that the contact pressure
p(t) = —044(0,1) = —0,,(L,t) and the solid velocity wv(t) are non-negative.
From physical conditions it is necessary to set limitations on stresses and tem-
perature under which the thermoelastic model of the layer makes sense (wear
of the layer cannot exceed the resource of wearing Alexandrov, 1990).

From the Duhamel-Neumann relations we find the normal component of
the stress tensor for the layer

E 11—-vou E ow
% = T o, T sae 7 T B (27)
where
E - Young modulus
v — Poisson ratio
k - coefficient of thermal diffusivity
@ —  coefficient of the linear thermal expansion
f - coefficient of friction
1/a® - thermal resistance.

The contact pressure p and displacement w are determined from Eq (2.1)
by use of Egs (2.7) and the boundary conditions (2.3)

L
p(t) = %[uoqsu(t) —w(t) + &/ 0(¢,1) dé]
0

w(z,t) = 2 fp(t)e

where
E(1-v) , 14v

Ez(l-{—u)(l—?u) 1—-v
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In order to reduce the system of equations to a dimensionless form we introduce
the following quantities

l":% T:% Ti:{g u’:% v’:%
‘ w
vé:%{l uw:l&—o 0’29: p’:p*
_ __Fak _ H(l-v) 5 _ - _ Lot
H=xi-n "%=a-= 927/ Bi=7%
= Eﬂ = *—QLQEU' P ER = &L
fO D a 114/{,‘2 ku E]\u f ﬁ
and the characteristic parameters
"[“LQ _k’ _EILO 0_11,0
Yk "= P«=7 *al

As a result, omitting the primes we arrive at the boundary value problem of
heat conduction equation with the following non-linear boundary conditions

o f(z,7) = 0 6 0,1 0,7 2.9
W(l’T)—a—T($’T) J?E(, ) TE(’Tl) ()
%H(O,T) = Bif(0, 1) —(,%0(1,T) = Qu(r)p(t) 7€ (0,7)(2.10)
8(z,0)=0 € (0,1) (2.11)

The pressure and the speed, respectively, can be written in the form

1

p(7) = ¢u(T) —u”(7) + /9(77,T) dn (2.12)
0
w(r) = ki [ pnye(n) dn (213)
0
(1) = v+ (L[SF(T) - Sf,(r)] (2.14)

where the pulling force impulse Sg(7) and the friction force impulse Sy¢(7)
for the time ¢ are defined by the formulae

Se(r) = fo | 9r(E) d Sp(r)=f [nO)de  (215)
0 0

The representation (2.13) has a physical meaning for v(7) > 0 while inequality
v(T) < 0 serves as the condition of the nonexistence of the frictional heat
source.
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Let us note that in the case when the speed of motion is constant the
problem becomes a linear one and can be solved by using one of the known
methods.

3. Solution to the problem

The solution of the boundary value problem (2.9) + (2.13) can be obtained
by the use of the Laplace integral transforms with respect to time 7, denoted
by a bar over the pertinent function

{8(2,5),5(s), B(s), @(5), B (5), B (s),q(5) } =

{8(z,7),0(7), p(7),w(7), $ul7), 6k(7), a(7) fexp(sT) dr

O\g

In the space of transforms the system of equations (2.9), (2.10) takes the
following form

d? _ —

d—aﬂ@(z,s) = s0(z,s) z e (0,1) (3.1)
d - Bif for z=0 )
%0 B { Qop(s) +q(s)]  for z=1 (3.2)

where

g(7) = [v(r) = v]p(7) (3.3)

Solution to Eq (3.1) is known to be
O(z,s) = A(s)sinh~/sz + B(s)cosh+/sz

Upon determining parameters A(s) and B(s) we find from the boundary
conditions (3.2)

B(x,s) = Q(s)sg(z,s) Bls) = ¢,(s) + Q(s)s*G(s) o)

5(s) = 22+ ol L (foBe(s) ~ [Bu(5)) - FQ(s)TLs)|
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where
w¥(s) = Q(s)sl(s) Ai(s) = Bicosh+/s + /ssinh /s
g(z,s) = AZ((Z’)S) Ag(s) = %Bi(cosh\/g -1)+ % sinh /s
G(s) 3?2((53)) As(z,s) = %Bi sinh v/sz + cosh /s
Tis) = %1((—5)) Dals) = s2(s) — E24(s)
and
Als) = si(s) = 25A4(s) Qls) = Qvdu(s) +q(s)]  (3.5)

In order to find the inverse transforms in the space of originals we make use
of the residue and convolution theorems Carslaw and Jaeger (1964). In the
result we obtain the solution to the boundary value problem (2.9) + (2.13)
with unknown parameters under the integral sign

6(z,7) = Yglz,7)+ f)q(r) * (—iég(x,r)

N J2
P(r) = by(r) + Dg(r)+ 1 5G(7) 56)

(1) = Po(T) — aff)q(r) * j—TG(T)
wH(7) = () + fg(r) + = I(7)
where
~ d
Yo(x,7) = 20¢,(7) * d—rg(z’r)
() = 6u(r) + Bu(r) xS G(7)
V(1) = v + a{[fogbp(r) — fou(T)] x H(T) - ffﬁqbu(r) * diTG(T)}

~ d
Y1) = RV, (T) * E[(T)
> A3(.$3Sm)

glz,7) =) Ao

m=1

exp(smT)
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— _L 1 - A4(5m) .
Gir) = fZT)T + e + mZ:1 S A(s.) exp( S, T)

. 1 - 5Al(5m) B X oo
I(r) = = m; o ey XPlenT) (3.7)

Allsy) = —;—{sm [(Bi+ 1)S0n + Con] = 52[C = Sun + Bi(Sm +2€%)] +
+2[Ar(sm) = D520(50)] + EQT((1+ BI)Sm + C] }

Ay(8m) = BiCp + 50 Sm Ag(8m) = Sy — BICY
Az(z,8,) = BISE + CF, Au(Sm) = 5mA2(Sm) — EA(S)
Sm = sinh /s, 57 = sinh(z./s,,)

Ch = cosh /sy, CO = (1-Cp)sy,!

C% = cosh(z/sm)

Here * denotes the convolution integral of two functions with respect to time
B+ a(r) = [ $()alr - €) de
0

H(r)y=0for 7 <0, H(r)=1for 7 > 0; ¥ is a special parameter, Pyryev
(1994), such that it enables us to improve the results of numerical analysis for
greater times and the increase of the step with respect to time; s,, denote the
roots of the characteristic equations A(s,,) =0, m = 1,2, .... Their behaviour
depends on the parameters of the model and dimensionless velocity v, and is
analysed in Appendix A. It turns out that the properties of the roots s; and
sy change when 7% is equal to g, U, (m = 1,2,3,...). Eqs (3.6)2,3 constitute
.a system of nonlinear Volterra-Hammerstein integral equations of the second
kind and convolution type with respect to p(7) and »(7) (cf Verlan’ and
Sizikov, 1986)

4. Characteristic properties of the solution

In the sequel we shall discuss the properties of thermo-elastic contact du-
ring accelerating and braking processes in the case of the constant value, in
time, of the walls temperature and a constant force applied to the layer, i.e.

¢u(T) = H(7) ¢r(T) = H(T)

Depending on the initial parameters we obtain different states of the system.
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4.1. Motion of the layer with constant velocity

In the case when the velocity v(7) = v is constant, function ¢(7) vanishes
and the problem becomes a linear one and the solution is much simpler.

Parameter ¢ = NN, (1 — v)/[fak(]l 4+ v)] characterises the wear and
thermal expansion.

In the case of wear absence £ = 0 the contact pressure and temperature
approach the steady-state regime when the speed is smaller than its critical
value of g

% 6x) = P, 5 (4.1)

vy — D Bi

Pec =

Then the heat production and emission are in equilibrium. For % approaching
its critical value g the time which is necessary to reach the steady-state regime
increases.

For speeds greater than the critical value 7 > % there will be an exponen-
tial increase of the temperature and contact pressure. The system has no time
to cool down. The frictional thermoelastic instability takes place, i.e even for
the smallest external disturbance of the system (in our case — compression of
the layer) the exponential increase of the temperature and contact pressure
occurs.

For 0 < &£ < 1, i.e. in the case when the rate of the thermal expansion
dominates over the rate of wear 7 < v, the contact time ¢ = oo, and the
contact characteristics tend, with time, to their steady-state values p. = 0,
6:(z) =0, u, = 1. For v close to vy the time necessary to reach the steady
state increases. In the case when wy < ¥ < wv3 the contact time is limited.
The minimum contact time arises for speeds ¥ &~ (v2 + v3)/2, 1.e. when Ims;
reaches its maximum value. If 7 tends to w3 the maximum value of the
contact charachteristics increases. In the case when % is greater than w3
the frictional thermoelastic instability occurs, i.e the contact characteristics
increase exponentially exp(s;7).

In the case £ > 1 i.e. when the wear rate is greater than the rate of
thermal expansion and v < v, the contact characteristics tend, with time, to
the steady-state solution to the problem (steady-state contact pressure p. = 0,
steady-state temperature 6.(z) = 0, steady-state wear rate u* = 1). In the
case ¥ > wvp the time of contact is limited but formally the steadyv-state
solution still exists. Increase of the sliding speed results in the decrease of the
contact time.

For ¢ > 1 the contact pressure tends always monotonously to zero in
contrast to the case 0 < £ < 1 when it has the maximum value.
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Thus for Bi € [0,00), & € [0,1),T € [v3,00) the frictional thermoelastic in-
stability occurs, i.e. contact characteristics behave exponentially as exp(s;7).
Such a kind of instability is observed in {rictional thermoelastic contact under
assumption of constant relative displacements of bodies Morov (1985), Pyryev
(1994), Pyryev et al. (1995), Yevtushenko and Pyryev (1997).

4.2. Behaviour of the contact characteristics at the initial moment of time

From analytical properties of solution (3.4) we obtain the {following asymp-
totics of the thermo-elastic contact characteristics for small values of time,
T —0

etl,mzvoﬁz\/;w(ﬁ) p(T) =14 021 - £)7 + O(7?)
w(1) = v 6T + O(7?) (4.2)
(1) =wvo+ a(fo— f)T — éftfvoﬁ(l -6 4 (’)(73)

5. Numerical solution and conclusions

A numerical solution to the system of non-linear Eqs (3.6) has been obta-
ined by using the method of finite differences of dimensionless time 7. The
corresponding numerical scheme is given in Appendix B.

The numerical analysis of the solution to the problem was carried out
for the case of steel layer (a = 14 -107%°C~', K = 21W/(m°C),
k= 59 - 10°m?/s, v = 0.3, E = 190 - 10°Pa) for L = 3-10"2m,
ug = 1-107%m. In Pyryev (1994) for the values vy = 2.54, f = 0.01,
o = 0.12, Bi = 28.6, @ = 1.1-10? and in conditions of absence of the wear
it was shown that characteristics of the contact look like damping oscillations
when they are entering its stationary regime (in particular the steady-state
value of pressure p. = 11.7, steady-state speed v. = 91.5, steady-state tem-
perature 6. = 20.8). This is shown by dashed curves in Fig.2a,b,c. In Fig.2 we
have shown the behaviour of the contact pressure, sliding speed of the plate,
contact temperature and the value of the wear during the acceleretion of the
plate for the same values but with wear taken into account. The wear leads
to the limitation of the interaction time p(7;) = 0. The speed increases to
the value v(7;) = vo + a[SF(7:) — Sy, (7:)]. In the case of very small values of
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Fig. 2. Time variation of: (a) the relative contact pressure, (b) the relative velocity
of the solid in motion, (¢) the temperature in the contact plane, (d) the

dimensionless wear; 1 - & =0.68-1072,2- ¢ =0.14-10"!, 3 - ¢ =0.68- 107!

the wear-resistance coefficient (curves 1) intensity of the wear, contact pres-
sure, temperature and the relative speed have oscillatory character. With the
growth of the wear-resistance coefficient such behaviour changes, and besides
the time 7; of interaction and the wear value u¥(r;) decrease.

The proposed model and the obtained solution let us study the behaviour
of the contact characteristics in the process of braking under conditions of
absence of the pulling force (F = 0). The numerical analysis was performed
for the values vy = 1m/s, Bi = 1.43, f = 0.1 and for different values of
coefficients a and ¢ which characterise the mass of the plate and relation
between the value of wear resistance and heat expansion, respectively. We have
assumed the following values of the dimensionless parameters: t, = 153s,
v. = 1.97-107*m/s, p. = 8.53-10°Pa, 6, = 1.28°C. In Fig.3 we have shown
the time evolution of the relative motion speed, contact pressure, contact
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Fig. 3. The dimensionless velocity (a), the contact pressure {b), the contact
temperature (c) and wear {d) during the process of braking; 1 - £ = 0.99,
2-£6=101,3-€6=1.03,4-¢ = 1.05, continues curves correspond to o = 109,
dashed ones to o = 10°

temperature and the wear rate. As a result of the braking process the moving
solid can come to the stop v(7;) = 0 (continuous curves 1,2). In this case an
increase in parameter ¢ leads to an increase in the braking time 7, (7 =
7 = 0.0045 for £ = 0.99, 7, = 7, = 0.0062 for £ = 1.01) and the wear value
(u¥(m) = 23.91, u¥(ry) = 24.39). Contact pressure decreases at the moment
of stopping (p(m1) = 1.24, p(m2) = 0.75) when the contact temperature reaches
its maximum value. An increase in the wear resistance coefficient or the mass
of the moving solid makes the contact between two solids disappear p(r;) = 0,
plate doesn’t stop and the speed reduces to the value v(r;) = vg — aS57(7)
(continuous curves 1,2 and dashed curves 1+-4 shown in Fig.3). In this case the
increase in parameter £ leads to the decrease in the stopping time, the value
of wear, (u*(m;) = 189.23, 60.44, 30.82, 20.23, for £ = 0.99, 1.01, 1.03, 1.05
and a = 10° and u®(7;) = 24.78, 19.35,for £ = 1.03, 1.05and a = 10%), the
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maximum value of the contact temperature and value of the speed reduction
vo — v(7;). A similar effect can be observed also when the value of parameter
a decreases.

Appendix A

In this Appendix the behaviour of the characteristic equation A(s) = 0
roots Sy, m = 1,2,3,...in the complex plane of the Laplace transform complex
parameter s is considered.

The characteristic function A(s) is given by Eq (3.5). The numerical
analysis of the characteristic equation has the following features: let us note
that Ims,, = 0, Res,, < 0 for m = 3,4,.... Roots s; and s, lie in the
right or in the left half of the complex plane s depending on the entering
parameters of the problem. For £ > 1 they always lie in the left half of the
complex plane, besides for 7 < vy or ¥ > v3 > 0 they are negative and for
vy < ¥ < v3 they are complex-conjugate. For 0 < ¢ < 1 the roots for 7 < v,
are negative and for v, < 7 < vy they are complex-conjugate with a negative
real part, for v; < ¥ < vy - they are complex-conjugate with a positive real
part and for vy < ¥ - then roots are positive.

In the case of wear absence (£ = 0) the roots of the characteristic equation
lie on the real axis (Ims,, = 0, m = 1,2,3,...) besides for ¥ < 75— Res,, < 0,
m=1,2,3,...and for v > 9 — Resy >0, Res,, <0, m =2,3,....

Thus, the properties of the roots change when the dimensionless speed v
is equal to vy,.

Let us write the approximate expressions for s; and s; by expanding the
characteristic function A(s) into series in the neighbourhood of the origin.

For small values of s roots s; and $2 can be written in explicite form

12 —EED (A1)
N b _ N Aa.c . 14 Bi/4

_ b alVIZhE p o e Biy= 0 1"
T % “ =l b? 4T 611 Bif2)
=L By b=w -3 ¢ = Qv

B11
~ B B

7 = 0 Ty = ok Bi, :

~ 1+ Bi/2
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Eqgs (3.7) let us to write the approximate expressions for v,,, m = 1,2,3, i.e.
Uy & U m = 1,2,3, where

L+ 2050 % T B[
2001 % 1 - Bia/iks) m =32 (A.2)

Um = 1+ 4/25Bi, Bi,
and ) )
¢ 1+ 5Bi/6+5Bi?/24
g = —— Bigp= — 4 " 7
3T 1 ¢ 12 (1+ Bi/2)?

The properties of the roots sy and sy permit us to predict the time behaviour
of functions g{z.,7), G(7), I(7) which are included in the solution (3.6). The
value of 7 /Ims; corresponds to semiperiod of oscillations of functions g(a.7),
G(r), I(r) and the time of contact 7; can be combined with it: if Ims,
increases then time of contact decreases. The value Res; > 0 describes the
character of increasing of contact characteristics according to the exponential
law exp(Res;) and their extremal quantities.

Appendix B

For the numerical analysis of integral equations (3.6) the quadrature me-
thod with taking into account the functions behaviour is applied (cf Verlan’ et
al., 1986). To numerical solution of the non-linear integral equations (3.6) we
apply the method proposed by Pyryev (1994) with the behaviour of functions
taken into account

g(1,r):2\[[1+§(1— 625 + O(r )] .

1
G(r) = 51 =&+ 0(r) I(r)= ¢+ 0(1%) T—0
Integrals on the right-hand sides of integral equations (3.6) have been calcu-
lated using the trapezium formula and in the case of Eq (3.6); by the formula

n i—1

d 14 d .
/ d g(l T — )dé'—(l_éil)‘ﬂ‘r q(Tn)—(l-,r_ig(]"T'l Tn)"‘

0 n=0

A
42\ S 12g(m) + alri)] (B2)

O0=m0<T <..<Ti1<T;, =T AT = Th — Ty
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Finally we obtain the following formulae

i—1
~ o d
v = wvi - (Lf.QAT mZO QmE;Gi—m
1 d?
= Yo + -QAT rrL G’z m
P T33(1 ~ €)Ar{vH(v;) - v]< ’ mzo & )
g = ps[viH(v;) — 1] (B.3)
~12 [Ar 2
0: = boi + 2|51/ (20 4 gima) + (1= fa)ar 3 G =i
| d
U; = wui + _ATE-Q(H + AT HQm—[i~m 1= 1527 '3>
2 = dr
where
v; = v(1AT) p; = p(1AT) 0, =0(1,iA7)  w; = u¥(1A7)
Yoi = Yo (BAT) Py = h,(1AT) g = Pe(1,ih) by = P (1 AT)
d d d d
—_—g; = — 7 —G; = —G0HA
a9 = gryhian) a0 = g aean)
d? > . d d .
FGL‘ = FG(ZAT) ‘(—;L = d—T](TAT)

6im =1 when 1 =m, ¢ =0 when ¢ # m.

Eq (B.3) exist when A7 # 2/[(1 — €)f2(v; — ©)]. The prime (-) means
that the first term in the sum Eqs (B.2), (B.3) is taken with the multiplier
1/2 while the double prime (-)” means that both the first and the last terms
in the sum Eqs (B.2), (B.3) are taken with the factor 1/2.
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Model dynamicznego kontaktowego zagadnienia termosprezystosci przy
uwzglednieniu ciepla tarcia i zuzycia materiatu

Streszczenie

Sformulowalismy 1 zbadaliSmy pewien model kontaktu cial sprezystych pray
uwzglednieniu sil bezwladnosci w warunkach wydzielania ciepla tarcia 1 mechanicz-
nego zuzycla materiatu. W rozpatrywanym zagadnieniu blok materiatu i sprezysta
warstwa znajduja sie w ruchu wzglednym. Odstep miedzy poruszajacymi si¢ cialami
zmienla sie w skutek rozszerzalnosci cieplnej warstwy. Zbadany zostal wplyw stalych
materialowych, predkosel wzglednej 1 parametréow modelu na charakterystyki kon-
taktu. Rozwiazanie ukladu réwnan rézniczkowych czastkowych, opisujacych rozpa-
trywane zagadnienie, zostalo zredukowane do ukladu nieliniowych réwnan calkowych
Volterry-Hammersteina. Rozwiazanie liczhowe otrzymalismy z pomoca zapropono-
wanego algorytmu. Zostaly one przedstawione w postaci wykresow.

Manuscript recerved November 26, 1997, accepled for print February 10, 1998





