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The solidification process involving small periodical perturbations due
to the system of mold delaminations is considered. Imperfections at the
mold wall are modelled by non-ideal thermal contact conditions. It leads
to the small perturbation in the solid-liquid interface and in the tempe-
rature distribution in the solid phase. With the help of approximate
technique, known as the heat-balance integral method, the problem is
reduced to the sequence of ordinary differential equations in amplitudes
of the Fourier series of the solidification front. The shape of solid-liquid
mterfaces is shown.
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1. Introduction

The heat transfer problem involving the phase change, known as the Stefan
problem is met in the modelling of the solidification and melting processes.
This class of problems stimulated considerable practical interest because the
applications (ice formation, metallurgical progresses, geophysical, astrophy-
sical, chemical problems etc.) are of greatest engineering importance. The
wide bibliography on solidification and thawing problems may be found in the
monograph by Lunardini (1991).

In this paper we consider the two-dimensional non-stationary heat trans-
fer problem in the half-space with a change of phases involving delaminations
between the solid phase and mold. These imperfections are distributed perio-
dically and yield small periodical perturbations in the temperature field and
in the solid-liquid moving interface.

With the help of approximate technique, known as the heat-balance inte-
gral method, the problem is reduced to the sequence of ordinary differential
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equations in the macro-thickness of solidified layer and amplitudes of pertur-
bations in the solid-liquid interface. The analytical solutions are obtained
neglecting squares of small quantities.

The perturbations in the phase change problem produced by the inhomo-
geneities of mold boundary conditions were previously studied by Mullins and
Sekerka (1964), Nai-Yi Li and Barber (1989), Howarth (1990, 1993).

2. Formulation of the problem

Liquid phase

Mold wall

Fig. 1.

Consider a solidification process at the plane wall y = 0. Let us assume
that the half-space y > 0 is initially filled with a liquid of the melting tem-
perature T;,. The mold temperature is constant and equal to Tg. Since
To < Ty, the solidification process strarts at the mold. For instants ¢ > 0
the solid phases occupies the region 0 < y < Y(z,t) where the solidification
front Y (z,t)is unknown and moves in the y-direction. It is assumed that the
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thermal contact between the solid and mold wall is non-ideal because a system
of delaminations appears on the line y = 0. These boundary imperfections
are situated periodicaly with the period [. The problem will be idealized on
the assumption that the temperature of the liquid phase is always equal to
T, and that all material properties of the solid remain unchanged.

The problem fomulated above is reduced to solving of the heat conduction
equation in the temperature T(x,y,t) of the solid phase

19T 9T  O°T

kot~ 022 " 9y? (2.1)
with the boundary conditions
— l‘]’ T 1
T(2,0,t) =Ty = 7‘(x,t)w
dy
X0 =t (2.2)

OT(x,Y.1)  pLdY

on K Ot

where k, K, p are the themal diffusivity, conductivity and mass density of the
solid, respectively and n is the normal to the solidification line. The following
[-periodical function of thermal resistance 7(z,t) can be assumed

{
rg = const z| <
e ) =4 =<3 (2.3)

0 oo <4

where [y is the length of isolated delamination.
We shall consider small imperfections in the thermal contact between the
solid and mold wall. Introducing the small parameter

maxo<z<i |1;(l" Ovt> - TO' &
To

=

1 (2.4)

we can write r(z,t), ro € O(9).
The formulation of the problem should be completed by the initial condi-
tions
T(z,y,0)="T, Y(z2,0)=0 (2.5)

which describe the situation before the solidification process.
Let us assume that small periodical imperfections in the thermal contact
at the line y = 0 yield small periodical perturbations in the temperature field
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and solid-liquid front. We shall present the unknown functions T(z,y,t),
Y(z,t) as follows

T(z.y,1) = Toly,t) + T(z,y,t) Y(z,1) = Yo(t) + Y(z,1)  (2.6)

where the terms Ty(y,?) and Yp(t) can be treated as the field of macrotem-
perature in the solid and the macrolocation of solidification line, respectively;
the functions T(a;,y,'t) and Y (z,t) represent small periodical oscilations of
the above functions. i.e.

T(z,y,t) < To(y,t) Y(z,t) < Yo(t)

After expanding the functions T(2,y,t), Y(z,t) into the Fourier cosine
series, Eqs (2.6) can be transformed

T(z,y,t) = Toly,1) + ZT]-(y,t') cos(rw; )
= (2.7)
Y(z,t) =Yo(t) + ZY]-(T,) cos(zw; )
j=1

where T3,Y; € O(0) are unknown small amplitudes of perturbations in the
temperature field and solidification line, respectively, and w; = 27/l are the
frequencies of these oscilations. Here and farther on the index j runs over
1,2,3, ...

3. Method of solution

For the solution to the problem formulated above the heat-balance integral
method proposed by Goodman (1958) is to be used. The first main idea of this
approximate technique consists in solving the heat conduction equation (2.1)
in the averaged form. This form is called the heat-balance integral equation.
It is obtained by integration of the heat conduction equation (2.1) across the
solidified layer. In result we obtain

109 o N T(z,Y,t) 0T(z,0,1)
kot 0z dy dy

where the new fuction

P(z,t) =0(a,t) - T,,Y(2,1) (3.2)
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is introduced and
Y (z.t)

O(z,1) = / T(x,y,1) dy (3.3)
0
Is the mean temperature in the solid layer.

The second hypothesis of the heat-balance integral method postulates the
distribution of temperature across the solidified layer. Let us assume that the
unknown functions Tp(y,t) and Tj(y,t) can be presented by the following
second-order polinomials of ¥y

Toly.1) = ap(1) + bo(1)]y — Yo(1)] + co(t)]y — Yo(1)]?
(3.4)

Ti(y.t) = a;j(1)+ 0;(1)[y — Yo(t)] + ¢;()[y — Yo(1)]?

where the time-dependent coefficients g, by, co and a;, b;, ¢; can be found
from boundary conditions (2.2).

Substituting into the boundary condition (2.2); Eq (2.7); and the Fourier
cosine expansion of the function (2.3) and separating in the obtained formula
the uniform and periodic terms we obtain the sequence of equations

Ty(0.1) = To T,(0,1) = ‘C)T%(W
y

Here, r;(t) are the amplitudes of Fourier series of the thermal resistance
function r(z,t). The conditions (3.5) are obtained neglecting values of an
order O(8?).

The boundary condition (2.2); is formulated on the slightly folded soli-
dification front Y¥'(z,t). Expanding the temperature 7T(x,y,t) on the line
Y (z,t) into a Taylor series in the vicinity of the surface Yp(?) and neglecting
the terms O(é2) we obtain

75(1) (3.5)

T(z,Y,t)=To(Y,1)+ i T;(Y,t)cos(zw;) =

J=1

(3.6)

= To(Yo,t) + w Z Y;(t) cos(zw;) + Z T;(Yp, t) cos(zw;)

vooa j=1

Satisfying the boundary conditions (2.2); with the help of Eq (3.6) and
equating the terms of equal frequencies w; we arrive at the equations

8T0(5,0~ t)

TO(YO: t_) = Tm TJ(Y07 t) + }f](t) [‘)y

=0 (3.7)
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Before using the heat-balance integral method the boundary condition
(2.2)3 must be transformed to the form (see Goodman, 1959)

£
an
Applying to this condition the procedure similar to that used above we obtain
the sequence of conditions on the line y = Yy(1)

2
} = —kAV2T  for  y=Y(x.,1) (3.8)

[5T0(Y0,'t)]2 _ _k_Aa'zTo(YOJ)
i dy?
Y y (3.9)
SOTo(Yo,t) 0T (Yo, 1) | ., 02To(Yo, )7 _
0T (Yo, t) ...  93To(Yo,1 o
- -kA[—é(y?u + }j(t)—g(yao—) - waj(lo,tJ]

Satisfying the boundary conditions (3.5), (3.7), (3.9) with the help of Egs
(3.4) we arrive at the system of algebraic equations in functions ap(), bo(?),
co(t) and a;(t), b;(1), ¢;(t) which has the solution

kAx
ao(f_) = Tm bo(f-) = _Yo(:,b)
, kA(2K + 1) _ kAKY (L)
Co[z) iy S — [LJ( ) = —-—
2Y§(t ol
o (1) olt) (3.10)
L kA ¢, . 1 50,
b;(t) = H—_lm{(f; +p)r(t) + KY;(1) [QH - 14— 5(.05}’02(1,)”
¢ kA 1.
c(1) = - i ] %{(;; + p)ri(1) + }J(t)[n + - §w]3yo?(t)]}

where the denotations

_—
k=1—-1+p u:?ik%g

are introduced.

The solwing procedure includes the following steps:

(i) calculation of the temperature 7'(x,y,t)in the solid phase using the for-
mulae (2.7)1, (3.4);

(i1) determination of the mean temperature ©(z,1) using Eq (3.3);
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(ii1) calculation of the function ¥(x,t) defined by Eq (3.2);

(iv) substitution the functions ¥(z,1) and T(z,y,t) into the heat-balance
integral (3.1) and separation periodic and uniform terms in the obtained
equation.

In result of the described procedure we arrive at the sequence of differential

equations
Yo (1)Yo(t) = kHg Y/(t) + P;()Y;(1) = R;(1) (3.11)
where
Ho =gl ti- Vit
p+S+p+1
Pit) = ke 5wiYeH(1) + [Ho + 26 = plwlYF (1) = 6(p + 1) (3.12)
Y1) SWIYE(1) + 262 — 95 — K + 6
Ro(1) = k4 p (126 -6 — Ho) — (2K — 3)w}Y02(t)]krj(t) — (25 = 3)r3(1)
o Y&(t) SWIVE(t) + 267 — 9K — Kk + 6

These equations must be solved together with the initial conditions
Yo(t) =0 Y;(1) =0 (3.13)

which are obtained Eqs (2.5)3, (2.7),.
The macrothickness of the solid layer Yp(t) which satisfies Eqs (3.11);,
(3.13); can be presented by the formula

Yol(t) = 2k Hot (3.14)

The solutions to the problems (3.11)y, (3.13) can be obtained in the fol-
lowing form

! ¢
v = [ Byicyexp [ Bi(s) ds] dc (3.15)
0 t
Introducing the dimensionless functions
. 2n
ho(T) = wYs(t) hi(T) = wY;(t) W= (3.16)
the obtained solutions can be rewritten as
hO(T) = \/ 2HOT
(3.17)

T ¢
hy(r) = / R;(g)exP[/ P;(s) ds] de
0 T
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where 7 = kw?t is the dimensionless time coordinate and

Pr = — .
5 (7) h3(T) %']‘2/1(2)(‘7’) + 262 -9k — Kk + 6
. K+

R(7) = .
0=

[126 = 6 + (26 — 4)Ho — (25 — 3)72h3(7)]r3(7) — (25 = 3)7*h3(7)

552hE(7) + 2k — 9K — K + 6

Taking into account Eq (2.3) the dimensionless amplitudes of Fourier series
of the thermal resistance +7(7) = wr;(¢) can be represented in the following

j
form 5
i) = wTjO sin{mjA)

L)

where X = lp/l is a parameter of the problem.

7
0.2
£ A
Q o
\‘5 O'H
\
3 = =
05 © w03\ - oa 0 o1
= = - (]
\ /
\ 1]
M 4
A\ a '01 O /A
0.24

Fig. 2.

v S

<O

=0

7=0.1
7=0.5
7=1.0
7=2.0

(3.18)
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4. Results

ik
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The attention in the numerical analysis will be concentrated on the shape
of solid-liquid interface. Let us introduce the dimensionless function

h(C,T) = %f’(z,t) (= (4.1)

T
l

which describes oscilations in the solidification line. In accordance with Eq
(2.7)2 this function was calculated as the sum

Z hop(T) cos(2mn() (4.2)

where the amplitudes h,(7), n = 1,..., N are determinated from Eqs (3.17);
and the number N is chosen depending on the values of input parameters.
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Fig.2 presents the shape of moving interface R(C,7) whithin the limits
of one period [(| < 1/2. These results were obtained for fixed values of the
parameters A, p and for some values of the dimensionless time 7. It is clear
that perturbations of the solidification boundary increase with time.

The effect of the delamination length [y, i.e. parameter A, on the shape
of the solidification line is shown in Fig.3 for the fixed values of time and co-
efficient . The considerable changes in the perturbation shape are observed.
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Zaburzenia przestrzenne procesow krzepniecia wywolane delaminacjami
na $ciance formy

Streszczenie

W pracy rozpatruje sie zagadnienie dwuwymiarowego niestacjonarnego przeplywu
ciepla w polprzestrzeni ze zmianami fazowymi. Uwzgledniono zaburzenia przestrzenne
wywotane delaminacjami pomiedzy faza stala a scianka formy. Imperfekcje maja
rozklad periodyczny 1 powoduja male periodyczne zaburzenia zaréwno w polu tem-
peratury jak i w ruchomej powierzchni rozgraniczajacej [azy stala i ciekla.

W oparciu o przyblizona metode znana jakometode calek bilansu ciepla, zagadnie-
nie sprowadza sie do ciagu rownan 107mc¢l\0\\ych zwycza)nych dla makro-grubosci
krzepnace] warstwy oraz amplitud zaburzei frontu krzepniecia. Ro7w1a7an1a anali-
tyczne otrzymano pominawszy kwadraty pewnych malych wielkosci. Na wykresach
plzedstaw1ono zmiany zaburzen w czasie dla réznych wartosei wyjsciowych parame-
trow.
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