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1. Introduction

The shape determination of structural components plays the essential role
in mechanical designing and the problem of shape sensitivity analysis and
optimal design is much more complicated than a typical conventional analysis.

For such problems the shape of structural components is treated as a design
variable and boundaries are changing during the design process. Finding the
best direction of shape change to minimize or maximize a measure of merit of
the structure becomes a very important problem in design.

Determination of the effect of shape change of a structural component
is the problem of sensitivity analysis. The value of shape design sensitivity
information is greater than those obtained from conventional analysis with no
trend information. To optimize or modify the shape of structural component,
the sensitivity analysis for each performance functional is needed aud therefore
it can be considered as an intermediate step in optimization problems.

In the shape optimal design one should determine the shape of the struc-
tural component in such a way that an objective functional ought to reach an
extremum and constraint have to be satisfied.

A broad class of inverse problems, especially the identification problems can
also be ranked among the discussed topic because such problems are usually
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formulated in such a way that a certain functional must be minimized and
therefore these problems can be considered on the basis of sensitivity analysis.

It appears that the Boundary Element Method (BEM) is an exceptionally
natural and convenient numerical technique in the shape sensitivity analysis,
optimal design and identification.

Current literature on the application of BEM to sensitivity analysis, opti-
mization and identification is expanding explosively. An extensive literature
has been developed in this area and its survey is made by Burczynski (1993b).

The main purpose of this paper is to give a concise unified exposition of
BEM to the sensitivity analysis, optimization and identification using adjo-
int variable approach with particular reference to the most recent author’s
numerical results.

2. Sensitivity analysis

Let a structural component, which is considered as an elastic body, occupy
a domain {2 with a boundary 1. On the boundary I" are prescribed a field
of displacements u(z) = u%(z), 2 € [ and a field of tractions p(z) = p%(z),
2elyand I'=IyUlyand 7N 15 = In the domain (2 there are body
forces b(z), z € (2.

Under specified boundary conditions and applied body forces the body
passes from the initial configuration to a deformed one. For small displacement
and strain theory, the governing boundary integral equations are described as
follows (Burczynski, 1995):

— for displacements

c(z)uia) = [[Ue.9)pty) - P o puty)] dlw) + [ U a.ybiy) dory)
r 7}
(2.1)
— for stresses

ofa) = [ [D*(z,00p(y) - S'(z.wputy)] Tty + [ D2 ibly) dty) (22)

r 2

where U™ and P* are the fundamental solutions of elastostatics, ¢(z) depends
on the local geometry of " at z, D™ and S are the third solution tensors
obtained after suitable differentiation of U* and P™ with respect to the source
point z and application of Hooke’s law.
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It 1s obvious that the state flelds as displacements u, strains € and stresses
o, and an arbitrary performance functional J

J = /Lﬁ(a,g,u)rlf2+/d>(u,p) dlr (2.3)
N r

where W(o,g,u)1s an arbitrary function of stresses o, strains € and displace-
ments u within the domain 2 and is an arbitrary function of displacements
u and tractions p on the boundary I, depend on the shape of I

The performance functional .J represents an objective or constraint, and
can express different mechanical characteristics and merits of the structure
as required as well as local stress, strains. displacements and tractions at an
arbitrary point zg, for example in some shape optimization or identification
context.

The objective of sensitivity analysis is to determine the dependency of the
state fields ¢ (¢ = u, €, o) and, in the general case, the functional .J on the
shape of I'.

Fig. 1. Primary system and shape transformation of 1ts boundary

Consider an infinitesimal variation of configuration of the body by prescri-
bing a continuous and differentiable vector field ég(z), so that (Fig.1)

¥ =z + dg(z) (2.4)

The transformation field ¢(z) = g(z,a) modifies the shape of the boundary
', where @ = (a,),r =1,2,..., R, is the set of shape design parameters which
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specify the actual shape of the structure. The co-ordinates of boundary nodes,
control points of Bezier functions or B-splines or some dimensions of the body
can be chosen as the shape parameters. The variable z is defined in the
untransformed domain {2 with the boundary I" and variable z* is defined in
the transformed domain 2* = 2(a) with the boundary I'* = I'(a).

The first variation of the transformation field g¢(z) is expressed as

bg = v"éa, (2.5)

where v" = dg/0a, can be considered as a transformation velocity field which
is associated with a shape design parameter a,.

The first derivative with respect to the shape parameters a = {a,) can be
expressed analytically (see Mrdz, 1986)

DJ : ,
_ / (@ — e 4 bu® + (¢ + pu) I | ] AT +
Da,
Du . .
+/ Dwﬂ,? — U?k'l)k> (lFl + (2())
+/ ()O Dp - p?m}é) dly + / o + pu®|lv), dL

where ||¢ + pu®|] = (¢ + pu®)* — (¢ + pu®)~ represents the discontinuity of
(¢ 4+ pu®) along the curve L, which separates two parts of the boundary I3
and [y, n = [ni] is the unit normal vector, A is the mean curvature of the
boundary.

The analytical expression for sensitivity ol the functional J depends on
the primary solution (PS): wu, €, o and the adjoint solution (AS): %, &
and % The adjoint system is an elastic body with the same configuration
and physical properties as the primary system but with the other boundary
conditions

u'l = _99tup) on Iy p*Y = 9o(u.p) on Iy (2.7)

op ou
and with the initial strains €%, stresses o fields and body forces b specified
within the domain {2

at L")W(G',&‘,’U,) ai 0!17(0,5,11)

ev — o — bal — 0!17(0-767/’“1‘)

Jo Be o (2.8)
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The boundary integral equations for the primary and adjoint systems, respec-
tively, have the form

cia)u(z) = [ [V (e.yip () - P(a,90u ()] al(y) + BV (o)
r (2.9)
w=(P5),(AY)

where B™ depends on the body forces in the case of the primary system and
on the initial strains €9, stresses o% and body forces b* in the case of the
adjoint system.

It is worth noting that the analytical expression for sensitivity of the func-
tional J depends on only one additional adjoint boundary solution inde-
pendent of the number of shape design parameters. The fact that the final
expression for sensitivity of the arbitrary function .J depends only on bo-
undary state variables of the primary and adjoint systems brings significant
advantages in numerical calculations by means of BEM. It is well known that
BEM is the most suitable for applications involving high accuracy of the bo-
undary stresses. Therefore, boundary elements are most naturally suited to
design sensitivity implementations.

The presented approach to shape sensitivity analysis using BEM has been
implemented numerically and its accuracy and efficiency have been examined
(cf Burczynski et al., 1995, 1997b).

If the body contains a defect (a void or a crack) especially with a singular
boundary Ip, and we are interested in the sensitivity of J with respect to
shape transformation of Ip, then it is convenient to consider a special kind of
shape transformation in the form:

— translation (T'), by prescribing variations 6bg, k = 1,2,3, where by are

translation parameters,

— rotation (R), by prescribing éw,, p = 1,2,3, where w, are rotation
parameters,

— scale change (exzpansion or contraction) (5), by prescribing 07, where n
is a scale change parameter.

The first variation of J is expressed by path independent integrals along
an arbitrary closed surface (for 3D) or contour (for 2D problems) I enclosing
the defect (Dems and Mréz, 1986)

DJ
Do = /ZZ(U,E,u,J“‘,ea,ua) drl, L=T,R,S ¢g=1,2,..,00 (2.10)
g
F‘

10 — Mechanika Teoretyczna
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where o, €, u are stress, strain and displacement fields for the primary
problem, respectively, and o%, €%, u* are the same fields for the adjoint
problem.

Integrands Z] depend on the state fields of primary and adjoint solutions:
— for translation (k =1,2,3)

Z = (Wéej + o3juf s + ofuik — guehibrin; (2.11)
— for rotation (p=1,2,3)
Z§+3 = ekp,(!pxlékj—aiqgqugékj+0ij-uﬁkrc'[+ag]-uﬁ+af]'»u;c+afju¢,km)nj (2.12)

~— for expansion or contraction
77 _ 2 a 2 a , a . 5, a [ R .
g = E‘Tz'jui + o - o u; + 20 Uik — TkOGj Uz‘,]'éj/c +apoug ing (2.13)

Eq (2.13) was derived for ¥ = 0 and for a homogeneous [unction
d(u,p) = é(u) of the order «a,3 = 1 for 3D and S = 0 for 2D, =n, is
a component of the unit normal vector to the contour I,.

It is seen from Eqs (2.10)+(2.13) that in order to calculate derivatives of an
arbitrary functional J with respect to translations, rotations and expansion
it is enough to calculate the path-independent integrals along an arbitrary
surface [, enclosing the crack or the void. In the particular case the sur-
face I, can be identified with the external boundary [ and the sensitivity
information is obtained using only the boundary integral equations.

In the case of several voids or cracks the path-independent integrals can
also be applied to sensitivity analysis with respect to translation, rotation and
scale change of each particular defect. In this case when each void or crack is
surrounded independently by a closed surface I not penetrating the other
voids and the path-independent integrals associated with the respective shape
transformation is calculated along this surface.

In the case when the body contains a crack in the form a traction-free
linear cut with zero thickness it is possible to use for 2D problems special
fundamental solutions which include the exact solution for such a crack. For
this approach the crack is not discretized by boundary elements but only the
external boundary.

For any arbitrary crack if we use the dual boundary element method it
is necessary to apply an additional hypersingular vector boundary integral
equation for tractions (Portela, 1993)

59"(a) = nls) [ D(,9)p" () ATy - n(z) [ $"(e,9)u"(y) dTly) (2.34)
r r
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Eq (2.14) is applied to source points on the one part of the crack boundary.

One can expect that calculations of sensitivity of J by means of path-
independent integrals along a fixed surface (contours for 2D}, far from singu-
larities caused by the crack or void, ensure a good accuracy of these derivati-
ves. This feature is very useful in the shape optimal design of voids, topology
optimization and defect identification. The path-independent and boundary
integrals for sensitivity of boundary displacements have been tested numeri-
cally for several 2D problems of elasticity with internal cracks and voids (cf
Burczynski et al.. 1996a,b, 1997a; Burczyiski and Polch, 1994).

The discrete versions of the boundary integral equations (2.9) are obta-
ined from approximation the boundary by series of boundary elements ['¢,
¢ = 1.2..., L. The boundary displacements and tractions are approximated
over each boundary element [ by means of nodal values and interpolation
functions. Finally, the discrete version of boundary integral equations takes
the form

HU"Y = GP" + Z* w=(F5),(AS) (2.15)

where U" and P" are column matrices of nodal displacements and tractions,
respectively, H and G are square matrices which depend on boundary integral
of fundamental solutions, interpolations functions and jacobians. Z% is a
column matrix dependent on the body forces b, in the case of the primary
system, or on body forces b”, initial strains €% and stresses ¢%, in the case
of the adjoint system. It is worth noting that H and G are the same for
the primary system as well as the adjoint system, and therefore are calculated

only once. Taking into account the boundary conditions Eq (2.15) can be
reordered in such a way that all unknown variables are written in the column
matrix X* and known variables in Y*. The final form can be written

AXY = BY¥ 4 Z¥ w = (PS),(AS) (2.16)

Salving Eq (2.16) one obtains the state fields of the primary and adjoint
systems, which are required to calculate sensitivities of the functional J.

The application of BEM to shape sensitivity analysis of dynamic transient
problems was considered by Burczynski and Fedelinski (1992). In this section
only the sensitivity analysis for free vibration of elastic bodies is present.
The sensitivity of natural frequency w can be expressed by Burczytfiski and
Fedelinski (1990a)

—,%ui = /[U(u)f(ﬂ:) - UJ2P’U,H,J TL}‘;vz dF (217)
' r
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It is interesting to notice that the sensitivity of natural frequency with respect
to the shape of the body is given by the boundary integral and depends on
the natural frequency and modes u(z) determined on the boundary.

The eigenvalue problem is solved using the dual reciprocity BEM approach.
The displacement amplitude u(z) within the domain is approximated by using
a set of unknown coefficients 8™ and a set of coordinate functions f(z)

u(z) = 8" f™(z) m=12,..,M (2.18)

The equation of free vibrations may be written in the boundary integral form

ctehute) = [ (e y)p(v) — P (2. y)uly)] dI1y) +
d (2.19)
+op{e(@)i™(e) - [ V(.05 (v) - Ple,v)a" ()] dr ()™ | =0
r

where U* and P* are fundamental solutions of elastostatics, u™ and p™ and
are pseudo-fields of displacements and tractions, respectively, resulting from
the pseudo-body force 1f™ (I - unit matrix).

After discretization Eq (2.19) takes the algebraic form

HU = w?MU (2.20)
where the mass matrix M is given by
M = —p[HU — GPF (2.21)

H and G are the same matrices as for static problems, while U and P contain
the nodal values of functions u and p, respectively, and the matrix F depends
on the nodal values of functions f™(z).

Several numerical tests have been performed using Eq (2.17) and dual
BEM (see Burczynski and Fedelifiski, 1990b; Fedelifiski, 1991).

3. Shape optimization

The problem of shape optimal design consists in finding the optimum shape
design parameters a,, according to a prescribed optimality criterion. The
functional J, Eq (2.3), can express various objective or constraint functionals
(cf Burczynski, 1993a; Burczynski et al., 1995).
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A well-posed optimal shape design problem stated as:

e minimize an objective functional .Jo(a@) with the behaviour constraints
Jo, @ = 1,2,..., A, imposed expressed in terms of stresses, strains, di-
splacements and with the upper bound of the cost of the structure J.,
that is

Jola) — main (3.1)

subject to the constraint
Jo = €0 a=1,2,... A (3.2)
where ¢, are given constants.

If the cost of the structure is treated as proportional to the material volume
or weight, one can write

J. = /C’ e (3.3)
7

where (' is the specific cost of a material.
An alternative formulation of the shape design problem requires minimi-
zation of the cost structure Jy = J. with the behaviour constraints imposed.
In order to solve the formulated shape optimization problem two approa-
ches can be employed:

— optimality condition methods,
— mathematical programming methods.

Application of the optimality condition methods involves two distinct
steps. The first step consists in derivation of the necessary optimality con-
ditions. The problem is replaced by the problem of finding the stationarity
point of the Lagrangean functional L

A
L=Jo+ Y AalJa —ca) (3.4)
a=1

where A, (o =1,2,..., A) are the Langrange multipliers (A, > 0).
Now the stationarity condition of L is expressed as follows

A
8L =6Jo+ Y Aably =0 Al Jo —€a) =0 (3.5)

a=1
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In the second step an efficient iterative procedure is constructed to achieve
these conditions. Using this approach the problem is reduced to evaluating
the state fields of the primary and adjoint systems and unknown optimal
shape parameters aq, = (a,), 7 = 1,2,.... R, and the Lagrange multipliers A,
(¢ =1.2,...,4).

In the typical mathematical programming application the search for the
optimum shape parameters a., is based on the construction of iterative pro-
cess of the type

a" T = o) 1 3R (3.6)

where A is the vector determining the direction of motion from the point
aly to al*t1 and B¢} is a numerical factor whose value determines the length
of the step in the divection of A"

There are several numerical optimization techniques which enable one to
construct the iterative process (3.6). There are effective methods in which
the vector A"} depends only on gradients of the objective and constraint
functionals. In this case the sensitivity information can be directly applied.

In most shape optimization problem of vibrating structures one should
maximize the fundamental circular frequency with geometrical and cost con-
straints. Thus, the problem is to find shape parameters a,, r = 1,2, ..., R,
that minimize

Jo = —w — min (3.7)
a

subject to the cost constraints.

The aim of the optimization can be also maximization of the minimum dif-
ference between forcing frequency wy and natural frequencies w; (Fedelinski,
1991)

Jy = m&ix(min lwy — w2'|> (3.8)

Recently, new capabilities of BEM in topology optimization have been
proposed, Burczynski et al. (1996a), Burczyiski and Kokot (1997).
BEM formulation offers the distinct advantages:

(i) in the iteratively optimal design process one uses only the values defined
on the modified boundary,

(1i) if it is necessary the boundary element mesh can easily be generated and
design changes do not require a complete remeshing.
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4. Identification

The boundary and path-independent integrals mentioned above can be
applied to identification problems where the location and size of a defect (a
crack or a void) are to be determined through the measurements of boundary
displacements. One assumes that a given body contains an interior defect with
the boundary [ whose shape and location are unknown.

One should determine the geometry of the defect basing on available mea-
surement data of displacements #™ at boundary points 2™, m = 1,2, ..., M.
In order to solve this problem a boundary displacement functional is construc-
ted. This functional represents a distance norm between the measured u™
and theoretical values of displacements u(z,,) calculated at discrete boundary

points z,,
M 12
7 =53 [uten) -] :/@MMF (4.1)
m=] F
where
: 1 M 12
@W)=§§:hmm%4ﬁ]&x—xﬂ (4.2)
'm=1

The size and position of the defect are described by a set of shape parameters
a=(a,),q=1,2,...,0, which describe translation, rotation and scale change,
respectively, of a given initial defect.

In order to solve this problem one should find the vector a which minimizes
the objective function J = J(a) given by Eq (4.1).

To have a physical meaning, the defect specified by vector @ must lie com-
pletely inside the body. This condition is satisfied in the minimization process
through imposing geometric constraints which can be expressed symbolically
in the form

Cila,) <0 j=1.2,.L  q=1,2,...0 (4.3)

The constraints (4.3) together with minimization of the objective function
J, Eq (4.1), lead to the nonlinear constrained optimization problem. For
transforming this problem into an unconstrained optimization problem. one
can propose the internal penalty function method. The augmented objective
function for this case has the form

Jla,r) = J(a) + P[C;(a,), 7] (4.4)

where P denotes the internal penalty function and depends upon the constra-
ints C'; as well as upon an arbitrary penalty parameter 7.
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The internal penalty function approaches minimum from the points lying
inside the feasible region and depicts a good performance. This function can
be expressed as follows

Q
> e

1g=1 J

Mw

PIC(a,). 7] = r (4.5)

J

The identification of the defect as an inverse problem is ill-posed and its so-
lution may not be stable since small errors in the experimentally measured
displacements may result in a significant difference in the computed defect ge-
ometry. Regularization methods can reduce the numerical fluctuations in the
solution by modifving the objective function. The augmented regularization
terms, up to the second order terms. can be expressed in the form

TR R

g=1 g=1
(4.6)
where +; are the regularization parameters, and n is the iteration number.
Now, the final augmented objective function can be expressed in the form

2

j(a,v‘): J(a)+ P[(';(aq), 7]+ R (4.7)

The size and position of the defect are calculated iteratively using Eq (3.6).
In order to solve the identification problem one should establish the method
of choosing the vector R which depends on gradient of the augmented
objective function J.
Taking into account Eqs (4.1), (4.2), (4.5), and (4.6}, the gradient of the
final augmented objective function is expressed by the sensitivity of J with
respect to the shape design parameters

DJ  DJ . 1 0C(2) 0z
Da Da+ 2[ Cziz)y Ow (‘?a+

1 C9C;,(x ) dy 1 8C";Z(2)8_Z} (1.8)
C3ly) Oy da ("']2:(_:) dz  Oa -
Q Q Q
+o Z @ n) + 7 Z{ n) _ (n=1) ] + 7o Z {(l ) 2(],((7”*1) + a((]n—'Z)]
g=1 g=1

where dx/da, 0y/da and 0z/0a are sensitivities of the 2, y and z coordi-
nates of the defect geometry (3D case), respectively. Derivatives DJ/Da are
calculated from Eq (2.10) when ¥ = 0in Eqs (2.11) and (2.12).
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The boundary conditions for the adjoint svsteny are given as follows

< FAPUR
ul = —&'ij} on [ (4.9)
dp
099('“-) M
a0 _ o~ m M ’
pr = ou mzﬂ[u(zm) u" |z —a™) on [y (4.10)

[t means that the adjoint system should be loaded by a system of concentrated
forces SM_ [u(z,) — w™]6(x — ™) acting at the boundary points 2.

The presented above method of identification has been used to identifica-
tion of voids and cracks in static elastic structures (c¢f Burczynski et al., 1996a,
1996b: Burczynski and Polch, 1994). It is possible to extend this approach
also onto identification in vibration problems (see Burczyniski et al., 1997c;
Burczynski and Nowakowski, 1997).

5. Numerical examples

To demonstrate the accuracy and efficiency of BEM, a series of sample

solutions is presented.

Example 1. Sensitivity analysis for 3D elastic body (see Burczyriski et
al., 1995)

—L=100———————————— &

L View 4 - 4
Actual location
of sample point

Fig. 2. 3D elastic body
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Sensitivity analysis for a transversly loaded cantilever 3D beam with a
rectangular cross section was performed. The geometry, boundary element
model, loading, and response sensitivity sample point locations associated with
this problem are depicted in Fig.2. As a design variable the height
chosen in this case. The boundary element model had 112 quadrilateral surface
elements and 338 nodes.

a4 was

Table 1 contains the computed results of sensitivity analysis of the global
(complementary energy, displacement functional) and sensitivities of vertical
(usg), horizontal (uq) displacements and a membrane components of the local
stress tensor at selected sample points. Note that the displacements functional
defined by Eq (5.3) used up = 936.1 and k& = 2.

Table 1. Numerical results of sensitivities of global and local functionals
for a 3D elastic body

pois | Foncpyalfiate [Senii T ke | o
complementary energy —1876.08 | —1917.50 | 2.16
displacement functional —6.40 —6.76 5.39

1 U o 34.52 34.00 1.53
2 Ug o 76.23 78.00 3.51
3 U o 132.73 140.00 5.19
4 Ug o 201.92 210.00 3.85
5 U g 281.56 290.00 2.91
6 U q 369.41 385.00 4.05
7 U2 q 463.31 480.00 3.48
8 Ug g 560.79 585.00 | 4.13
9 U2 656.10 673.81 2.63
9 U4 33.24 33.67 1.28
10 Ui g —32.60 —35.00 | 6.86
11 Uy 4 —41.70 —44.00 | 5.23
12 U 4 -49.30 —51.50 | 4.27
A O11,a —12.15 —12.37 1.82
B T11.a ~11.04 —10.81 | 2.13
¢ T11.4 -9.71 -9.26 3.78
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In Table 1, the results are compared with sensitivities obtained by the
finite difference procedure. Note good agreement of the sensitivity analysis
and finite difference approaches for this problem. The relative error 0% is
given by comparing sensitivity analysis and finite difference.

Example 2. Sensitivity analysis for voids (see Burczyriski et al., 1996b)

The sensitivity analysis was carried out for a rectangular plate with diffe-
rent shapes of internal void. Functional was defined as vertical displacements
uy at the boundary point zg where the load p was applied (Fig.3).In order to
obtain satisfactory numerical results of displacements sensitivities. a special
adaptive integration procedure was used in calculation of path-independent
integrals. Derivatives of vertical displacements with respect to translations,
rotation and expansion of the voids were calculated for many different internal
voids; namely, a circle, an ellipse, a triangle and a square (Table 2).These de-
rivatives were calculated for the same trapezoidal contour. Derivatives of the
vertical displacement with respect to translations, rotation and expansion of
the triangle void were also calculated for many different contours to verify nu-
merical path-independence of these integrals. Numerical calculations showed
a very good agreement for all types of contours.

Tp=1
v A b
3.5
\ Irpgih_l_—_—j;—___._tr_.__:_:. ________ 7,
\ I - - /." pall\l 2 path 3 | ‘IT
\ | 7 : : N I =
] / I \ \ ] P
\ | \ \ ] / | 3
AN '\ /' s/
\ | S . L . |
I \‘\'\-...:_._-_‘_: ----- P |
L - T _ 2 ¢
. b=10 N

Fig. 3. Different contours for a triangle void
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Table 2. Numerical results of sensitivities for different defects using tra-
pezoidal contour (P-Il — path-independent integrals; FDI - finite difference
information )

| Void shape | Method ‘ %ﬁ X 102 | %} x 102 I %-} x 102 ‘ %7‘ ‘
circle P-I —0.1723 —0.1613 -0.5395-107> 0.1040
r = 1; center=(0,0) FD —0.1759 0.1583 0.2526-107¢ 0.1040
ellipse P-11 —0.1025 —0.5452-10~ 1] 0.1516- 10~ [0.2289 10!
z-width=0.2 FD —0.1154 —0.5291-10"1| 0.1436-10~1 |0.2307-10""
y-width=1
triangle P-II | -0.5719. 1071 —0.3618 0.1374 0.1247 - 1071
corners= (—0.5,0): FD —0.6153. 107! —0.3753 0.1362 0.1258 107!
(0.5,0); (0, —1)
square P-11 —0.2583 —0.2889 —-0.1710 0.3050
center=(0,0) FD —0.2725 —0.2832 —0.1679 0.3043
corner=(1,1)

Example 3. Sensitivity analysis of natural frequencies (see Burczynski and

Fedeliniski, 1990b)

A steel rectangular rigid supported plate was examined to demonstrate the
sensitivity analysis of natural frequencies. The plate was divided into 50 linear
boundary elements (Fig.4a). The sensitivities of natural frequencies caused
by modification of the lower boundary were calculated. In order to check
the sensitivity accuracy, the variations of three lowest circular frequencies dw
caused by the normal interior modification equal to da = 0.1 m were compared
with the finite differences Aw. The variations were divided by the variations
of the plate area 6£2. Due to symmetry the results for one-half of the plate are
shown in Fig.4b. It can be seen that the comparison of the predicted variations
and differences yields good agreement. The modification of the boundary in
the neighbourhood of the support reduces natural frequencies.

Example 4. Shape optimization of a steel corner for minimum compliance
(see Burczynski, 1993a)

The problem of shape optimal design for minimum compliance which is
expressed by the complementary energy

Jo = %/08 dQ—/puO 47, (5.1)
o) s}

with the upper bound on the are for a steel corner was considered. The bo-
undary element model consist of 28 linear elements (Fig.5a). The iterative
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optimization process ended in 12 iterations. The area of the body was prac-
tically constant. The distribution of the Von Mises equivalent stresses on the
optimization boundary before and after optimization, respectively, are Is pre-
sented in Fig.5b. It is worth noting that the equivalent stresses are equalized
on the optimal boundary of the corner.

@) éj

initial shape

(b) 7 - _linal shape
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Fig. 5. Shape optimization of a steel corner

Example 5. Shape optimization of « steel fool for the displacement constraint
(see Burczyriski, 1993a)

The problem of shape optimization for the displacement constraint repre-

sented by
lu(z)] ~ug <0 (5.2)

was considered. One assumed that displacements of the loaded boundary of a
steel foot (Fig.6) should have not exceed the admissible value %o = 0.055mm.
The problein was replaced by minimization of the functional Jy

Jo = dr k=100 (5.3)
o= [T e ’
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with the constraint in the form of constant area of the body. The boundary
element model had 37 linear elements. The final optimal shape of the boundary
was obtained in 8th iteration and the minimum of the functional ensured that
displacements of all loaded boundary nodes were smaller than or equal to wug.

initial shape

final shape

Fig. 6 Shape oplimization of a steel foot

Example 6. Shape optimization of a steel rectangular plate for the frequency
criterion (see Burcryiiski and Fedeliisky, 19906)

The problem of shape optimal design of the lower boundary of the steel
plate mentioned in the example 3 was considered. The objective function was
to maximize the first natural frequency subject to the cost constraint and some
geometrical constraints. Three initial shapes, shown in Fig.7 were assumed.
As the result of optimization the first natural frequency increased from 3116
to 3620rad/s. Practically identical final shapes were obtained. It is seen that
the material tends to expand near the support.
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Iteration No.

Fig. 7. Shape optimal design of a steel rectangular plate
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Metoda elementéw brzegowych w analizie wrazliwosci, optymilizacji
1 identyfikacji

Streszczenie
W pracy przedstawiono zastosowanie metody elementdw brzegowych w zagadne-
niach analizy wrazliwosci, optymilizacji 1 1dentyfikacji. Gléwnym celem artykutu

jest przedstawienie w sposob ujednolicony powyzszych zagadnien ze szczegdlnym
uwzglednieniem uzyskanych w ostatnim okresie wynikdw obliczen numerycznych.
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