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Numerical models of heat transfer processes proceeding in a biological
tissue subjected to a strong external thermal interaction are discussed.
In this case one can consider diametrically different phenomena; such
as burns resulting from thermal contact of the skin with an external
heat source, or the freezing process of biological tissue used in cryosur-
gery. From the mathematical point of view these processes belong to the
group of boundary-initial problems described by the diffusion equation
and adequate boundary-initial conditions. At the stage of numerical
realization the boundary element method can be applied and such an
approach is discussed 1n this paper.
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1. Introduction

Non-steady temperature field in a domain of biological tissue is decsribed
by the following equation (c¢f Comini and Del Guidice, 1976)

e c(T)% = div[MT)gradT(z,t)] + Qp + Qm (1.1)
where
c - specific heat per unit of volume
A - thermal conductivity
@ - perfusion heat source
Qm - metabolic heat source

T,z,t - temperature, spatial co-ordinates and time, respectively.
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The perfusion heat source is given by the formula

Qp = Gya[T), — T(z.1)] (1.2)
where
Gy - tissue perfusion [m?blood/s/m? tissue]
¢, — specific heat of blood per unit of volume
T arterial blood temperature.

The value of metabolic heat source lies within the range of 245 24500 W /m?

(cf Brinck and Werner, 1994).
The boundary conditions given on the outer surface of the system can be

written in a general form
zel @ P[T(z,t),n- gradT(z,1)] =0 (1.3)

where n - gradT denotes the normal derivative at a boundary point a. For
t = 0 the initial temperature field is known, namely

t=0: T(x.0)="Ts(x) (1.4)

2. Analysis of freezing and thawing processes — governing
equations

The cryosurgery has a variety of applications to medical treatment; e.g..
to causing a local necrosis of a tissue, the detaching a pathological tissue,
destructing the cancer cells, etc. These methods are widely used in dermato-
logy, gynecology, proctology, oncology and also laryngology. The cryoprobe
being in thermal contact with a biological tissue causes that the freezing pro-
cess proceeds in the domain considered. The problem belongs to the group of
moving boundary ones because the shape and dimensions of frozen region are
time-dependent. The energy equation (1.1) must be supplemented by the term
connected with the latent heat evolution, while the metabolic and perfusion
sources can be neglected (c¢f Budman et al., 1995). So, the following equation
is taken into account

0T (x,t)
ot

05(x,1)

e oT) = div[\MT)gradT(2.t)] + L 5 (2.1)

where
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L - latent heat [J/m3]
S - solid state fraction at the point considered =z.

Let us assume that the solid state fraction is a known function of tempe-
rature S = 5(T) from the interval [T5,T)] (the beginning and end of the
freezing process, respectively) and then

9S(2.t) _ dS(T) 9T (x,1)

= .2)
4 ot dT ot (22,
Eq (2.1) can be written in the form
T € {2 : C(T)()Tg;’t) = div[A(T)gradT(z,1)] (2.3)
where o5
(T = o(1) — 1 220 (2.4)

at

is called the substitute thermal capacity of intermediate region. The energy
equation in the form (2.3) can be extended on the whole domain considered,
because for T > Ty : S(T) = 0, while for T < T, : S(T) = 1 and
C(T) — oT).
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Fig. 1. (a) - Function C(T'), (b) - thermal conductivity A(T)

This property of Eq (2.3) constitutes a base of the so-called fixed domain
approach (cf Idelsohn et al., 1994; Voller, 1991). Summing up, the equation
discussed describes the heat transfer processes in the whole conventionally ho-
mogenous domain. The problem is strongly non-linear — both the parameters
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C(T)and AT) are temperature dependent, the courses of these functions (cf
Budman et al., 1995) are shown in Fig.1.

In order to use the boundary element method, linearization of the task
discussed must be taken into account. One of the possibilities is application
of the alternating phase truncation method — APTM (cf Rogers et al., 1979;
Kapusta and Mochnacki, 1988) (at the stage of numerical computations). The
method requires the adapting of the governing equations to the enthalpy co-
nvention. The physical enthalpy related to a unit of volume is defined as

follows

T
H(T) = [ Clw) dy (2.5)
7,
where 7T, is an arbitrary assumed reference level (e.g. T, = —60°C). Ad-

ditionally, both C(T) and A(T) should be approximated by the stair-case
functions and constant values of above functions are assumed for successive
sub-domains, i.e. the frozen region, intermediate zone and unfrozen phase.
The course of enthalpy function for the material considered is shown in Fig.2.
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Fig. 2. Course of the enthalpy function

The equation (2.3) written using the enthalpy convention is of the form

dH(z,t)

= diviae(H )gradH (x,1)] (2.6)

z € 2 :

where a(H) = A(H)/C(H) is the thermal diffusion coefficient.

!
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The boundary conditions given on the outer surface are the following
zel . P[H(z.t),n gradH(z,1)] =0 (2.7)

The initial condition H(z,0)= Ho(z) is also given.

3. Analysis of freezing and thawing processes — numerical model

! cryoprobe

‘l skin surface
T d ——
/ A t r
% froun lissue /~

domam considered .

)
1
|
|

Fig. 3. Domain considered

Taking into account the cryoprobe geometry (see Fig.3) the energy equ-
ation (2.6) should be rewritten in the form corresponding to the cylindrical
co-ordinate system

OH(r, z,t)

8H(T,z,t) 1 (? {
T 0z

(?H(?,/,,t) 0
at ]Jr

ra(H) Or 0z

la(H) (3.1)
Assuming a constant value of a(H) (it results from the philosophy of the

APTM) we have

JH(r,z,1) _ a[azH(r,z,t) 4 O*H(r,z,1)

ot or? 022 J +Q (32)

where
adH(r, 2,1

v or (3:3)



442 E.MaJCHRZAK

The form of Eq (3.2) results from the concept of application of typical BEM
algorithm for objects oriented in the Cartesian system in order to find a nu-
merical solution of the problem discussed. The term ) can be treated as
an artificial source function and its value can be determined using a simple
iterative procedure.

On the contact surface between cryoprobe and skin the 1st type of the
boundary condition is assumed, namely

(roz)el, : H(r,z.t)= H(T; —wt) (3.4)
where
w - cooling rate [°C/s]
T, ~ initial temperature of the skin surface.

In numerical computations it is assumed that w = 1/6 and Ty = 37°C.
For the remaining parts of the boundary (skin surface and conventionally
assumed limits of the domain considered) the adiabatic condition can be ac-
cepted
(r,z)elp © qlr,z,t)= —an-gradH(r,z,t) =0 {3.5)

The condition
t=0: H(r,z,0)= H(37.0) {3.6)

determines the initial enthalpy of the domain considered.

One of the possibilities of freezing model linearization is the algorithm
called the alternating phase truncation method. The method was presented by
Rogerset al. (1979), while its generalization by Mochnacki and Kapusta (1988)
and next by Mochnacki et al. (1991). In the paper a situation corresponding
to the course of enthalpy presented in I'ig.2 is discussed.

The APTM consists in an approximate solution of the freezing problem
by conventional reduction of the domain considered to the homogenous one
thermophysical parameters of which are constant values. For every step Af
resulting from the time mesh assumed, three boundary-initial problems are
solved. The first concerns the unfrozen region, the second the intermediate
phase whereas in the last one the frozen tissue is taken into account. The
successive solutions are in a certain way modified. The APTM is especially
effective as a supplement to the BEM algorithm because computations are
realized for homogenous domains and generally the problem is reduced to the
linear one.

Let us consider the multiphase domain (2, being the union of sub-domains
27U 25U £25. The limits of enthalpy corresponding to isotherms Ty and T,
are denoted as Ay and A (see Fig.2). Additionally, it is assumed that
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the enthalpy field for time ¢t/ is known. while the enthalpy field for time
1/+1 = ¢f + At is searched.

The first stage of computations deals with the hottest phase (unfrozen
tissue). The given enthalpy distribution in the domain 2 at time 1/ is
transformed in this way

Vilr, =, t)) = max[A}, H{r,z,t))] (3.7)

This new pseudo-initial condition corresponds to a structural reduction of
the whole area (2 to the unfrozen domain. Next, oun the basis of BEM the
transition ¢/ — #/*1 is calculated assuming that the diffusion coefficient
a{H) = ay = const. The solution for time (/+1 : V(v 2, t/+!) is corrected
according to the formula

Vilr, 2t/ = Vi o 0T+ H (e, 2t = Vi, 2,1 (3.8)

If we consider the second stage corresponding to the intermediate phase
then the results of previous computations Vi(r,z,¢/*1) are known and they
are transformed to the new pseudo-initial condition, namely

Va(r, 2,10y = min{ 4y, max[Ay, Vi(r, z,tf+1)]} (3.9)

The transition t/ — t/*! for the domain thermal diffussivity of which is
equal to «y is calculated, and the result obtained V3 (r,z,t/+1) is corrected
in following way

Vo(r, 2, /) = Vi, 2, 0 F ) 1 Vi, 2,174 — V(o 2, 1)) (3.10)
At the last stage (frozen tissue) the pseudo-initial condition in the form
Va(r,z.t/) = min[Ag, Vo(7, 2,0/")] (3.11)

is assumed and for a( H) = a3 the solution for the time t/+! : V3 (r z,t/41)
is found.
The enthalpy field for the time /1! results from the formula

H(r,z, ) = Ve, 2,0 £ V(e 2, 0T = Vi (0, 2,89 (3.12)

The transition ¢/ — #/*' requires the solution of three linear diffusion pro-
blems in structurally homogenous domains, but in this way the well known
difficulties associated with a strongly non-linear mathematical model can be
eliminated. It should be pointed out that each step of time in the APTM is
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done three times, i.e. it is necessary to join the boundary conditions adequa-
tely because they should act only during one interval At. In this connection
for two of the stages the boundary I' should be insulated.

Now, the BEM algorithm for linear Fourier’s equation is shortly discussed.
The integral equation corresponding to the boundary-initial problem conside-
red is the following (cf Brebbia et al., 1984; Majchrzak. 1991).

4 Es
BE, mYH (&, n,tT 1) + //q HH* dldt = //H t)g" dldt +
(3.13)
i ¢S4
+/H(r,.:,tf 40+ //“)H Dy doar
7!
where
B(&,n) — coefficient from the interval [0, 1]
H(r,z,1),q(r,z,t) - given boundary conditions for I. and [}y
H(r, z,19) —  pseudo-initial condition
H* —  fundamental solution and
. 1 p?
i = Xp |- 3.14
dra(t/+1 — 1) e\(p[ da(t/+1 — 1‘)} ( )

In this formula p is the distance from the point considered {7, z) to the point
(€,7n) where the concentrated heat source is applied, this means

pz\ﬂ'r—é)'zﬂz—n)? (3.15)
Heat flux resulting from the fundamental solution is equal to
OH~ d p?
= = Xp |- ——— 3.16
¢ ¢ on Sma(t/+1 — 1)2 e\p[ da(tf+1 — t)} (3.16)
At the same time
n = [cos «, cos §] d=(r—¢&)cosa+(z—n)cosp (3.17)

Assuming constant values of H and ¢ during the time interval [t/,#/%1], sub-
stituting the boundary I’ by a sum of boundary elements 13,7 = 1.2,..,N
and the interlor {2 by a sum of internal cells (2,1 =1,2,...., L we obtain the
following form of Eq (3.13)
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2k

N,
B(&, ) H(&mi /) + Z/ qr.z, /%) / H* didl; =
tf+1
—Z/H (rozt4) [ g aur, +Z/H DH* A2+ (3.18)
7= 11’* [f = IQ[
tf
f+1
+Z/adH = / H* did,
=1
Time integration is possible in an analytic way. So
/1 2 i+ 5
3 d p
H* dt = —FEi ¢ dt = - 3.
/ 47ra (4adt) / v 2mp? exp( 4az_\t> (3.19)
tf
where Ei(() is the exponential integral function, Ei(() = [~ —exp ) dC.

In numerical realization the function Ei(() is approumated by mte;polatmg
polynomials (cf Cody and Thacher, 1968).

Putting Eqs (3.19) into (3.18) one obtains the following system of algebraic
equations (¢ =1,2,...,N)

L
ZGz]q T]’”]vt +l ZM /}I T3, % J’tf-H +ZP1}I Tl7z[7 +Z 2l
7=1 =1 =1
(3.20)
where
1 ./ pt 1 p?
= P N dr: = -
G” 47ra/El<4aAt) £ Fu 47raAt/eXp< 4aAt) ol
I 2
1 2 o
2 ex ——‘DZ— dr; )
Wij — 2?1{ P( da t) J #] (‘3_21)
—-B(&;, ;) i=j
1 adH(r, 2, /1) p?
Ly = — Ei
l 47ra0 ar <4 Ai> da2
14

The integrals (3.21) are calculated using standard Gaussian quadratures.
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From Eqs (3.20) unknown values of the enthalpy H(7j,z;,t/T1) at boun-
dary nodes (7,z;) € I'y and unknown values of the heat flux ¢(r;,z;. t/+1)
at nodes (r;,z;) € I. are determined using the Gauss elimination method.

After determinig the boundary values one can find the enthalpy field at
the internal nodes using the following formula (: = N + 1N +2. ... N+ L)

N N
H(Emit! ) = WiH vy, 2,0 ) = Y Glyglrg, 2, 07 +

(3.22)
L L
+ Z PyH(ry, 2, t0) + Z Zs

=1 =1

The last component in Eqs (3.20) and (3.22) results from integration of the
artificial source term. So, on the basis of solution obtained for time ¢/*!
one can estimate the derivative 9H/0v and using a simple iterative process
correct the local values of this expression. The test computations show that
the number of iterations assuring a sufficient accuracy is small. It should be
pointed out that because of singularity appearing in this term for = = 0
a cylinder is replaced by the pipe with very small hole around the singular
point r = 0.

4. Analysis of freezing and thawing processes — example of
computations

Cryoprobe of diameter 15 mm being in ideal thermal contact with the skin
generates on the adequate part of the skin surface the Dirichlet condition (3.4).
On the remaining parts of the boundary the Neumann condition in the form
(3.5) is assumed. Additionally, for time ¢ = 0 the initial condition (3.6) is
given. The numerical solution of the boundary-initial problem considered is
shown in Fig.4.

5. Prediction of skin temperatures under the flash fire conditions
— governing equations

From the mathematical point of view thermal processes proceeding in the
multi-layer domain, i.e. epidermis-dermis-subcutaneous-region are described
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Fig. 4. Temperature field and position of the frozen region after 2, 4, 6 and 8
minutes, respectively

by a system of diffusion equations, at the same time the internal heat sources
must be taken into account (dermis and sub-cutaneous region). The equations
are supplemented by adequate boundary and initial conditions. The thermal
action is simulated by the Neumann boundary condition and the so-called
exposure time t., (cf Torvi and Dale, 1994). Taking into account small
thicknesses of successive skin layers, the 1D model in a sufficiently accurate
way describes the thermal processes proceeding in the domain considered.



448 E.MAJCHRZAK

temporary
"~ temperature

heat
flux

w“r

sub-cutaneous region

,/epidemis ndemis

Fig. 5. Skin domain

In the skin domain the following sub-domains are taken into account
(Fig.5):

e Epidermis of the thickness L;[m] and thermophysical parameters
A [W/(m°C)] (thermal conductivity) and ¢y [J/{m3°C)] (specific heat)

e Dermis of the thickness L, and thermophysical parameters Ag, ¢o

e Sub-cutaneous region of the thickness L3 and thermophysical parame-
ters Az, Ca.

The non-steady temperature field in the heterogeneous area 0 < z <
Ly + Lo+ Ly = L is represented by the system of equations (cf Eq (1.1))
— for the epidermis sub-domain, 0= Lo < ¢ < Ly

8T1($,f) 82T1(I7t) r
T P 51
— for the dermis sub-domain, L; <z < L1+ Ls
8T2(Q?,t) 82T2(:v,t) . P
CQT = /\QT‘*-GQCb[Tb—Tz(I,t)] (52)
— for the sub-cutaneous region, I, + L, <@ < L
OTs( 2,1 0*Ts(z,1 _
3z ) = /\3¢)+G'3Cb[Tb—T3(af,t)] (5.3)

€3 ot dz?
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The system of equations is supplemented by the following boundary-initial
conditions:

o The Neumann and next the Robin condition on the skin surface

_ . (Il(iz:st):(]b t < gy 5
r=0 { q(2.1) = a[Ty(z,0) - T%] 1> 10, (5-4)

where ¢ is the given heat flux (flash fire), while « is the heat transfer
coefficient and 7'°° is the ambient temperature

e Continuity condition on the contact surface between the epidermis and
dermis
‘h(%i):‘h(zal):(hZ(l'»l) 4
r=1=L : 5
! { Tu(z1) = To(z, 1) = Thalz, 1) (5:5)

e Continuity condition on the contact surface between the dermis and sub-
cutaneous region

o . @(2,t) = g3(2,t) = qua(z,1) .
e=L+ Ly : { Tol2,1) = Ta(z,1) = Tosl,1) (5.6)

e The Dirichlet condition on the conventionally assumed right-hand limit
of the system

r=L: Taz,t)=T (5.7)

e The initial condition, ¢t =0

Tl((L',O) = Tlo(:li) TQ(”E,O) = TQ()(I) Tg(I,O) = Tgo(iﬁ) (58)
6. Prediction of skin temperatures under the flash fire conditions
— numerical model

The BEM approach in the case of 1D problem (c¢f Mochnacki and Su-
chy, 1995) leads to the following equations (for successive layers of the skin
e = 1,2,3)

15 — Mechanika Tcoretyczna
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AL r=Le
T(6,17%1) + ci/ T7 (&2, ) ge(2, ) dt =
tf w=L._,
S =L
|t / g (& 2, /T O T, 1) dt +
“ o=,

L,
+ / Tr(& a0 Te(z, 1)) da +
L.

1
Le 1S+
+Z—bG@ /[Tb—Te(z,tf)] / T*(€, 2,0t t) dida
€
Le—l tf

where T are the fundamental solutions for L.y < z, £ < L. given by the
formulas

T:(& z, t/th ) = ! exp[ ﬂ] (6.2)

2\ /ra (ti 1 — 1) da (/1 - 1)

while ¢ is the point at which the concentrated heat source is applied. One
can notice that for e = 1: Gy = 0.

The heat fluxes resulting from the fundamental solutions are the following

i f+1
ffé‘(f,w,tf“,t):-AedT‘(é’ﬁr’f‘ 1)
Ox
/\6(3;_6)

= e
4\/7r[ae(tf+1 -3

Assuming that for ¢t € [t/,t/T] : T.(a,1) = Te(z,t/T1) and
ge(z,1) = g.(x,t/11) one obtains the following form of Eqs (6.1)

(x =€) }

|- f o

r=L,

¢S+
(2, 111 , ;
T+ | B [ e a0 a -
Ce

i e=L,_,
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e s r=L.
Te(x,t
= C(lc ) / (& 1) di +
: t/ 4:Le L
(6.4)
Le
-+ / Tg({,a:.ff+l,t)Tf(.v,tf) dr 4
Leon
141
C"(, / [Ty — T.(2.1))] /T*§ 2, 1) didax
¢
The integration with respect to time can be done in an analytical way
[EER! ‘
L sgn(r —§) v = ¢ -.
he(€ony=— [ Tr &, t/t 1) dt = it 6.5
(0= [ g el (jo—)  (65)
t
and
gf+1
1
gel€,a)= = [ Tr(& x,t/ T t)dt =
Ce .
‘ tf .
(6.6)

VAL (a6 |z—£| |z - ¢
“W‘”‘P{_ 4a.eAt] y, o <2«/ae >

where b. = /Acc. and erfe(-) = 1 — erf(+), while erf(-) is the error function.
The Eqs (6.4) can be written in the form

I;(f7lf+1)‘+'ge(£al%JQeLLeatf+l) _'ge(éaLe~l)Qe(Le—1vtI+l) =
(6.7)
= he(&,L)Te(Le, /Ty = A€, Leot)Te( Lo, V1) 4 pel ) + 2(€)

at the same time
L.

pel) = [ To(6n )T, do =

Le—l

y?
zm / - jt |Te(et/) do
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and

L. e/
2 (f) = —G. [Tb—Te(z,tf)] / T*(f‘:c,tf“,t) ditdz =

Le—l i/
(6.9)

L.
= ¢pGe / [Tb - Te(l'atf)]ge(é.» r)dx

The integrals p.(¢) and z.(€) can be determined using Gaussian quadratures.
For € — LT, and & — L for each domain considered one obtains the

system of equations

951 952 || Ge(Lerst/F1) | _
951 9% ‘Ie(LeatHl)
(6.10)

_ %1 h(132 Te(Le—latf+1) + pe(Le—l) + Ze(Le—l)
- h%l h%2 Te(Le’tf+1) pe(Le) Ze(Le)

The final form of resolving system results from the continuity conditions {5.5),
(5.6) and conditions given for « = 0 and 2 = L, namely

[ =hly =hly gy O 0 017 T1(0,¢/+1) 1
~h}y —hy g3 0 0 0 Tra( Ly, t7F1)
0 —h¥ g3 -h%, ¢} O q12( Ly, 1741 ~
0 —h3 g5 -hi, J2 0 Tos(Ly + Ly, t4+1) | ©
0 0 0 —h} 911 93 qa3( Ly + Ly, t/11)
L0 0 0 —h} g3 g3 ] gs(L,t/F1)

(6.11)
9119 + p1(0)
—9ha + pi(Lh)
z2(L1) + pa(L1)
29( L1+ L2) + pa( L1 + Lo)
h3,Ty + pa(L1 + Lo) + z3( Ly + Lo)
h3y Ty + pa(L) + 23(L) i

This system of equations corresponds to t < ., (see Eq (5.4)). The
resolving system for t > t., is somewhat different. The solution of Eq (6.11)
determines the boundary temperatures and heat fluxes for time ¢/*! for
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x =0, Ly, L1 + Lz, L and next the internal temperature can be found
using the formula

To(6,74) = o€, Le1)qe( Loy 7T ) — ge(€, Le)qe( Loy t/ T +
(6.12)

Fhe(€, Le)To( LotV ) = ho(€y Lem ) Te( Leey , 77TY) + pe(€) + 2(€)

7. Prediction of skin temperatures under the flash fire conditions
— sample computations

(®)
1

Vi

EE) *
N RRR|V 4
NN o

32
0

i [ 7 T ®

52 | S 1

|

2 4 6 8 10 12 0 10 20 30 40 50 60
x [mm] t[s]

Fig. 6. (a) - Temperature field for times 0,5,10,...,55s (g5 = 4186 W/m?, t., = 30s);
(b) - heating (cooling) curves (¢ = Ly and £ = L1 + Lj)

On the basis of the algorithm discussed the computations for the following
input data have been done (cf Torvi and Dale, 1994): L; = 0.0001m,
Ly = 0.001,L5 = 0.02,\ = 0.23,¢; = 4.3-10% Xy = 0.45,¢, = 3.96-10°,
Az = 0.18, ¢35 = 2.6-108 ¢, = 4.0-105, G, = G5 = 0.00125, T, = 37°C.
For 2 = 0: ¢ = 4186W/m?, 1., = 30s. Attime ¢ = 0it is assumed that
the temperature changes in a parabolic way (on the skin surface T' = 32.5°C,
while for @ = L:' T = T, = 37°C).

In Fig.6a the temperature field for times 0,5,...,55s is shown, while in Fig.6b
the heating (cooling) curves for = L; and 2 = Ly + Ly are presented.
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The results obtained allow one to predict the degree of burns (cf Torvi and
Dale, 1994).
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Modelowanie numeryczne przeplywu bio-ciepla za pomoca metody
elementéw brzegowych

Streszczenie

W pracy przedstawiono opisy mwtematyczne 1 modele numeryczne proceséw
cieplnych zachodzacych w tkance biologicznej poddanej snlnym termicznym od-
dzmlywamom zewnetrznym. Mozna tu rozpatrywaé skrajnie rézne zjawiska, takie
jak oparzenia wynikajace z kontaktu skéry z zewnetrznym Zrédlem ciepla, lub tez
proces zamrazania tkanki w czasie zablegu kriochirurgicznego. Z matematycznego
punktu widzenia procesy te naleza do grupy zadan brzegowo-poczatkowych opisanych
réwnaniami dyfuzji i odpoww(lnlml warunkami jednoznacznosci. Na etapie realiza-
cjt numeryczne) mozna wykorzysta¢ metode elementow brzegowych i takie wlasnie
podejscie jest prezentowane w niniejszej pracy.
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