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APPLICATION OF THE BOUNDARY ELEMENT METHOD
TO NUMERICAL MODELLING OF SOLIDIFICATION.
PART Il - THE MICRO-MACRO APPROACH
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In the paper a numerical model of solidification and cooling processes
proceeding in the casting domain is discussed. The model is constructed
on the basis of the boundary element method. The problem considered is
treated as a boundary-initial one and it is formulated in a micro/macro
convention; i.e. the component describing a capacity of internal heat so-
urces in an adequate differential equation (the so-called source function)
results from the analysis of crystallization process on a microscopic level.
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1. Governing equations

The solidification process proceeding in the volume of pure metal or eu-
tectic alloy can be treated as a boundary initial problem described by the
partial differential equation (the Fourier equation) and adequate geometrical,
physical, boundary and initial conditions. The non-steady temperature field
in the considered domain D is represented by the following equation

reD : cp% = div[AgradT(z,t)] + qv(z,t) (1.1)
where
¢ — specific heat
p - mass density
A - thermal conductivity
qv — source [unction (capacity of internal heat sources)
T,z,t — denote the temperature, spatial co-ordinates and time, re-

spectively.
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Because the solidification process proceeds in a comparatively short tem-
perature interval constant mean values of the thermophysical parameters can
be accepted and then the Eq (1.1) takes the form

oT(@, 1) = adiv[gradT'(z,t)] + i, t)

te€D . —
‘e ot cp

(1.2)

where a is the diffusion coefficient.
The source function in Eqgs (1.1) and (1.2) (ef Mochnacki and Suchy., 1995;
Voller, 1991) can be written as follows

17, x,t 19} x.1
%%Li%:LV‘i%%fl::—LV*Q%%—l (1.3)
where
Ly —~ latent heat per unit of volume
fr.fs - liquid and solid state fractions in a neighbourhood of the

point considered 2z € D.

The courses of functions fr(x,7)and fs = 1— fr result {rom the assumed
model of the crystallization process. In this paper the model presented. e.g..
by Fras (1992), Avdonin (1980), Majchrzak and Longa (1996) is applied. So,
the number of nuclei appearing in the liquid sub-domain is proportional to the
second power of undercooling bhelow the solidification point 7.

N(e,t) = WAT? (2, 1) (1.4)

where ¥ is the nucleation coefficient, while AT =7, — T(«x,t).

It should be assumed that the nucleation stops at the maximum of under-
cooling, i.e., if AT (2,14 At) < AT(x,t) then N(z,t+ At) = N(z.1).

The theoretical considerations show, that the relation between derivative
dN/dAT and undercooling AT can be described by normal distribution and
the form of Eq (1.4) results from approximation of the initial fragment of
Gaussian function distribution, see Fig.l.

The solid state growth (equiaxial grains) is determined by the formula

dR(z,1)

i = AT (2. t) (1.5)
where
R - grain radius
i — growth coefficient.

In literature one can find the others formulas describing the growth (cf
Fras et al., 1996 — dendritic solidification).
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Fig. 1. Nucleation model

The relation between growth rate and solid state fraction is given by the
Mehl-Johnson-Avrami-Kolmogorov equation (cf Kapturkiewicz, 1988).
¢

4 3
fs(a,1) = 1 exp{ 37rN(x,t)[/ dR(z,1)| }=1-exp(~2) (1.6)
0
In reality the lower limit of integral (1.6) corresponds to the time t’ for which
the first portion of nuclei appears, because for t < t': dR = 0.
S0, the source function resulting from Eq (1.3) + (1.6) should be introduced
into the energy equation (1.1) or (1.2).
On the outer surface of the system the boundary condition in a general

form
zel : Q[T(x,t),n-gradT(z,t)] =0 (1.7)
is given. In this equation n-gradT denotes the normal derivative. For ¢t =0
t=0: T(2,t)="Ty(2) (1.8)

The presented above considerations can be extended on the case of alloys
solidification. The energy equation constitutes the natural generalization of
Eq (1.1), namely

aT(x,1)
cp—r""

zeD : Y

= divgradT(z,1)] + M (z,1)  (1.9)
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where the index m identifies the successive phases. For example, in the case
of cast iron solidification one can distinguish the austenite and eutectic phases
(cf Skoczylas, 1991). Taking into account Eq (1.3) one obtains

ATt , m O f5 (1)
teD : cpT:dlv[/\gradT(z‘L)]JrZL%/ ST

m

(1.10)

If one assumes that the number of m phase nuclei at the point considered
z € D is proportional, as previously, to the second power of undercooling then

Np(z,1) = U AT (2, 1) (1.11)
where
v, — nucleation coefficients for successive phases
AT,., — undercooling of phase m, namely
AT (2,t) =Ty — T(x,1) (1.12)

It should be pointed out that the temperature 77 is a function of local con-
centration of the alloy component, while the eutectic temperature 75 is a
constant value (cf Skoczylas, 1991).

The growth of each phase is determined by the formulas

TR pAT?(z,1) (1.13)

The relation between growth rate and solid fraction for successive phases
results from the system of Mehl-Johnson-Avrami-Kolmogorow equations (cf
Kapturkiewicz, 1988; Skoczylas, 1991)

¢
NNER) 1 —expl 2N, (e [ dR ’
1 —expl—taN, (2, (3 (1.14)
fL(m,t)+fém)(r,t) xp{ 37r (1 )[O/ )} }

while

frla )+ ) @1 =1 (1.15)

If one considers the case in which the successive phases are solidifying one
after another, then
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t

f};l)(:r,t) =1- exp{~§7rN1(:r,i)[/ (lRl(;z:,t)r} =1—exp(—{21)

0
(L.16)

1

[ 4 v N
I:W =1- exp{—gm\’-z(l.,lv) [0/ dR-z(.r,l)} } =1—exp(—92)

Since the solidification of the phases proceeds one after another, therefore fg)
in Eq (1.16), is only the function of 2.
In the general case, i.e. if one considers the simultaneous solidification,
Eqs (1.16) should be written in the form
(L.
M =] —eXp(—Q1)
L= ()

=1 —exp(—{2)

2. Numerical model of the source function evolution

In this section the model of pure metal solidification is discussed (cf Szopa,
1997).
Let us introduce the time grid defined as follows

0=" <t <t?< <t/ P <ctf < < tF At=t/ —t/77 (2.1)
while the domain of metal is divided into n parts (n control volumes V;,
t=1,2,...,n).

The exponent {2 resulting from Eq (1.6) corresponds to the volume of

solidified metal, in particular its local value associated with a control volume
V; can be expressed as a sum of successive portions of solidified material

=V evie 4 eviTh eV (2.2)
and then

frlzith) = eXP(“Q{) = exp[—(6V]' + 8V + .. + 5Vif)] =
(2.3)

= exp(—8V} ) exp(—6V2).exp(=6V ) = (1= 6V (1 = 6V2)...(1 - V)
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(there the approximation exp(—xz) = 1 — 2 has been used and taking into
account very small values of arguments the above simplification is fully accep-
table).

The local value of the source function resulting from Eq (1.3) can be ap-
proximated as follows

frla, th) = fp(z;,t/71)
At

qv(zit!) = ~Ly (2.4)

Because

frteoth) = frlaz /=4 =
= (L= oV )1 —oV3) . (L-sv/"hl(1-aviy—1 (2.5)

—(1= V(L= 8VE) (1= 8V v = — it 1><5Vf

3

therefore Eq (2.4) can be expressed as follows

§v/
At

The most general model of the local source function evolution requires
observation of the vicissitudes of successive grains generations.

Let us consider the control volume V; for which at the interval At tempe-
rature decreases below the solidification point and the crystallization process
starts. We find the number of the first portion of nuclei N! and the final
radius of grains R! = AR! (see Eq (1.5)). The first value of ¢V! is equal to

gz t!) = Ly frle, /7 —+ (2.6)

4
61/1'.1 = §7T1’\]7'1../_‘R11 (ZT)

In the second stage of crystallization process modelling we find the quantity
N; = WAT? and next we can estimate the size of the second generation, i.e.
N2 = N;— N}. We can also find a new increment of the grains radius ARZ.
[t should be pointed out that the current radiuses of first generation are equal
to AR! + AR?, while for the second generation: AR?. The increment of
solid state, i.e., §V;? is determined by the formula

6V = 3 [j\ﬂ(ARl + AR?)® + NMAR?) - 6V} (2.8)

z

The next steps of crystallization process modelling result from generaliza-
tion of the considerations presented above. It should be pointed out that after
the passing by the maximum undercooling the number of nuclei in the control
volume V; is constant and this fact must be taken into account in an adequate
numerical procedure. The model considered is shown in Fig.2.
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Fig. 2. Families ol grains

control volume V;

3. BEM using discretization in time

In order to simplify the numerical model of the process discussed the 1D
task is considered and the energy equation takes a form

oT(x,1) . O*T(,t) . qv(z.1)
_— =

ot da? cp
On the outer surface of the system the boundary condition (1.7),and for ¢ = 0
the initial condition (1.8) are given.

In the simplest version of the BEM using discretization in time Eq (3.1)
for the transition ¢/=!' — #/ is written in the form

T(x.t)y—T(r. 471 O (x. 4y gv(a.td)

vrep . et L 22l Vit ) 39
v E At ¢ Jx? + cp (3:2)

2 €D : (3.1)

or
O*T(z., 1) 1 . 1 qv(z,td)
T o S ety Ty
teb da? a;\t”l’ )+(1,At](1’t )+ A
The weighted residual method criterion (cf Brebbia et al., 1984) leads to the
following formula.

(3.3)

L
1 9?T(z, 1) 1 Y, 1 e vt
J (5o = et Tt ™)+ 5 ey do =0
0

(3.4)

where [ is plate thickness, while T*(£,2) is a fundamental solution to the
problem considered, and it is a function of the form

@exp<*’$—€l>

T"(&x) = 5 NrEY

(3.5)
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while £ € (0,1)is a point at which a concentrated heat source is applied.
The fundamental solution (3.5) fulfills the following equation

9*r* (€, ) 1

S - TN n) = —6(a - ©) (36)

where 6(z — £) is the Dirac function.
The heat flux resulting from the fundamental solution equals

OT*(é z) _ Asgn(e — ) |z — ¢
dx B 2 P (_ V aAt)
Integrating twice by parts the first component of Eq (3.4) and taking into

account the properties of fundamental solution (cf Brebbia et al., 1984) we
have

& 2) = - (3.7)

L

L ;
T(EV)+ [Tt )] = |GoraTad)] ere sie) (58)

A

where

p(€) = /T@rfuﬂl)
(3.9)

/I'—‘

L
/ (2, )T, ) da
0

For & — 0% and for £ — L~ one obtains the system of equations which
can be written in the matrix form

i1 Gz q(0,t7) _ | hn 7(0.t)) n p(0) n z(0)
gan 9 q(L.t)) hor  ho T(L,t)) p(L) z(L)

3.10)
where
VAL VAL L ‘
g1 = —gn = - oo 2= —gn = o= ex (—\/‘E) (3.11)
while
hit = hag = —% hiz = hay = %eXp<_\/F(f_A:t) (3.12)

Eq (3.10) allows one to determine the missing boundary values (temperatures
and heat fluxes for z = 0 and 2 = L), while at the second step of computa-
tions the temporary temperatures in the set of internal points £ € (0, L) can
be found using Eq (3.8).
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4, Sample numerical simulation
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Fig. 3. (a) - Cooling curves; (b) — Source function evolution

As the example for testing the algorithm proposed a problem of alumi-
nium plate (L = 0.02m) solidification is solved. On the outer surface of the
plate the boundary temperature T = 655°C, while for the axis of symmetry
g = 0 are assumed. The growth coefficient is equal to g = 3-107%m/(sK?),
at the same time the nucleation coefficient: 1 = 10 m=3K2. Pouring tem-
perature: Ty = 700°C, solidification point: T, = 660°C. In the domain of the
plate 20 control volumes are distinguished. In Fig.3a the cooling curves at the
points 10, 14 and 18 are presented, while in Fig.3b the evolutions of source
function at the same points are shown.
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Zastosowanie metody elementédw brzegowych do numerycznego

modelowania procesu krzepniecia. Cze$é II -~ Model mikro-makro

Streszczenie

W pracy przedstawiono opis procesdw cieplnych (krzepniecie i krystalizacja)
zachodzacych w ukladzie odlew-forma. Model numeryczny zbudowano wykorzystujac
kombinowany wariant metody elementow brzegowych. Zadanie potraktowano jako
problem brzegowo-poczatkowy sformutowany w konwencji mikro-makro, tzn. skladnik
opisujacy wydajnosé zrodel wewnetrznych w réwnaniu energit wynika z analizy pro-
cesu krystalizacji na poziomie mikroskopowym.
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