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The problem of energy reflection and transmission of an oblique incident
plane harmonic wave at the surface of an elastic porous solid halfspace
immersed in fluid is considered. The case of pure elastic behaviour of the
system with incompressible material of the skeleton is analysed. Conside-
rations are based on the two parametric theory of fluid-saturated porous
solid in which the isotropic pore structure is described by the volume
porosity and the parameter characterising tortuosity of pores. The infiu-
ence of mechanical properties of both the physical constituents and angle
of wave incidence on the energy reflection and transmission coefficients
is analysed. Two general cases of the wave interaction are investigated:
waves incident from the bulk fluid on the surface of porous halfspace,
and waves (fast, slow and shear) incident from a fluid-saturated porous
solid. Calculations have been made for the system composed of porous
fused glass bead solid filled with water in one case and with ethyl alcohol
in the other case and diagrams of the results have been shown.
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1. Introduction

Analysis of the interaction of small amplitude waves propagating in a fluid
with a surface of deformable porous solid halfspace immersed in that fluid is
of great importance in modelling of a wide class of practical problems. In spite
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dia, Institute of Fundamental Technological Research of Polish Academy of Sciences,
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of geometrical simplicity of the system and the linear description such pheno-
mena are very complicated. It is connected with complexity of the mechanical
behaviour of saturated porous materials mainly due to the strong dynamic co-
upling between the deformable skeleton and moving pore fluid motion where
the skeleton pore structure plays a very important role. Additional difficulties
appear when the viscous interactions between Huid and porous skeleton are
taken into account. In such a medium the three different kinds of waves may
propagate (Biot, 1956; Plona, 1980); two compressional waves (fast and slow)
and one shear wave, each of which falling on a discontinuity surface of porous
medium, in general, induces again all these three waves.

Most of papers devoted to the theoretical study of wave interaction with
surface of fluid-saturated deformable porous material, due to the complexity of
this problem, concern the special cases: normal incidence of wave at the contact
surface of two saturated porous media (Deresewicz and Rice, 1964; Geerstema
and Smit, 1961), wave interaction with the free surface of saturated porous
halfspace (Deresewicz, 1960; Deresewicz and Rice, 1962), or interaction of an
oblique incident wave from fluid on a surface of saturated porous material
(Albert, 1993; Santos et al., 1992). More detailed analysis of energy reflection
and transmission coefficients of elastic waves at the boundary surface between
bulk fluid and fluid-saturated porous solid is given by Wu et al. (1990) where
the influence of angle of incidence and surface boundary conditions on these
coefficients are studied.

The present paper aims at analysis of the problem of reflection and trans-
mission of an oblique incident plane harmonic wave at a surface of porous solid
halfspace immersed in fluid. The case of pure elastic behaviour of the isotropic
medium is considered. Special attention is paid for the energy reflection and
transmission coefficients to be obtained for the waves incident both from bulk
fluid and fluid-saturated porous solid on the surface of porous skeleton, as well
as to discussion of the dependence of these coeflicients on the angle of wave
incidence and on the dynamical properties of fluid.

Considerations are based on the assumption that the motion of barotro-
pic bulk fluid is described by the Euler equation, while the motion of fluid-
saturated porous solid is represented by the equations of poro-elasticity theory
of saturated deformable porous media (Cieszko and Kubik, 1993, 1996a,b; Ku-
bik, 1986, 1992). Within the framework of this theory the isotropic skeleton
pore structure is described by two macroparameters: volume porosity and a
parameter characterizing tortousity of pores. The additional assumption is
made that the skeleton material is incompressible, which reduces the num-
ber of material constants of the medium to the three quantities: velocities of
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compressional and shear waves propagating in the dry skeleton, and velocity
of the wave propagation in the bulk fluid (without skeleton). This provides a
model in which dynamical properties of fluid-porous solid composition are re-
presented by the properties of individual components i.e. the Auid and porous
skeleton considered as single materials.

Calculations of the energy reflection and transmission coefficients as func-
tions of the angle of wave incidence have been made for both water- and ethyl
alcohol-saturated porous glass bead solids and the results obtained were pre-
sented graphically.

2. Dynamics of fluid-saturated porous solid

The description of mechanical behaviour of an elastic porous medium fil-
led with fluid we base on the continuum immiscible mixture theory (Cieszko
and Kubik, 1993, 1996a,b; Kubik, 1986, 1992), in which the geometrical pore
structure is characterised by the two macroparameters (Kubik, 1992); i.e., vo-
lume porosity f, that represents the fluid volume fraction and parameter x
which is the measure of inhomogeneity of the fluid micro-velocity in its relative
flow to the porous solid being the ratio of the fluid kinetic energy expressed
in terms of an average velocity to the average fluid kinetic energy. In general,
both these parameters are space and time dependent field quantities. Within
the framework of linear theory changes of x do not influence the balance
equations of the porous solid-fluid system and its initial value kg is related to
the Biot coupling parameter po (Biot, 1956), and the tortuosity parameter
a7 used by Johnson (1986)

1
1 e

Ko A

where p! is the fluid partial mass density in the reference configuration.

The equations of this theory concern both the physical components; fluid
and porous solid, and the so-called virtual components of the porous medium.
The first virtual component (-)(!) is formed by the skeleton and the fluid
associated with it and moving at the skeleton velocity »(") and the other
(-)®) is the free fluid moving at the velocity »(?). The partial densities p(%),
o and the partial Cauchy stresses T(l), T of virtual constituents are
related to the partial densities p°, p/ and the partial Cauchy stresses T°, T/
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of the physical constituents by the following equations (Kubik, 1986)

AV =7+ (1~ r)p! P = rp!
TO =T+ (1 -5)Tf TO = T/
where
=f f 55— (1 — E]
p= fup pP=01=fo)p
and pf, p° stand for the effective density of fluid and porous skeleton, respec-
tively.

Such a description includes the dynamical coupling between the pore fluid
and porous skeleton (added mass effect) and the linear equations of this theory
are equivalent (see Cieszko and Kubik, 1996; Kubik, 1992), to those of Biot
(1956).

For porous materials with average and greater values of the volume porosity
it is observed that small elastic deformations of a porous skeleton take place
mainly at the cost of change in the pore volume. Therefore, we assume that
the material of the skeleton is incompressible. It is a kinematical constraint
imposed on the motion of the porous skeleton due to the constant effective
mass density p® of the skeleton during the deformation process, i.e.

p° =P,

where p? is the effective mass density of the skeleton in the initial state of
porous medium (reference configuration). This assumption provides a model
in which all characteristic properties of the dynamics of fluid-porous solid
composition are preserved and represented by the properties of individual
components i.e. the fluid and porous skeleton treated as separate materials.

For the inviscid pore fluid and incomnpressible material of the skeleton the
linear equations of this theory take following forms:
— continuity equations

—85;“ + (1= £ dive) =0
(2.1)
~f )
;’% 1 (1 = ko f0) divelV) + k, fo dive® =g
— equations of motion
o) . .
Pgl)w = (L= f)div(T™ + p/1) = (1 — &, f2)p! grad p”
(2.2)

@) Sv(?)

Po’ 5p = —Kofop) grad 5’
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where ;
p~f: P —P{; ﬁf f—P{;

ol rh
and T is the effective stress tensor in the porous skeleton related to the
skeleton partial stress tensor T* by

=T - f,)
This quantity, in the reference configuration, takes the value
™ = —p{;l

where p/ is the fluid pore pressure in this configuration. The quantities pE,”,

pS,Q) and p, pf stand for the partial mass densities in the initial state of the
medium.

Taking the incompressibility assumption of the skeleton material into ac-
count the constitutive relations for increments of the effective stresses are (cf
Cieszko and Kubik, 1996a)

AT* + Apfl = 2uE + A" tr (E)I
(2.3)
Apf = agApf

where

AT =T -T2 =T + p!l

ap’ =p/ —p] Apf =p’ —pf

and E is the infinitesimal strain tensor and a, is the velocity of wave propa-
gation in the bulk fluid.

The effective material constants p*, A* of the porous skeleton are related to
the partial constants p, A (corresponding to Lame coefficients for nonporous
medium), by

A= (1= p=01-f)u

The system of equations (2.1) + (2.3) supplemented with the geometrical
relations ]

E= 9 [grad‘u(l) + (grad u(l))T] (2.4)

reduces to the following two coupled dynamic equations representing the di-
splacement fields of the skeleton and free fluid, respectively

3 — Mechanika Teoretyczna
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o*u(V)
A o = VRV + [p3(VEL - V) +

(2)g2 (L= o 0 (1) o (2 2! )
+p§ ( .7 )]graddlv‘u + py PT: graddivu

(2.5)

R L )2 L= oy
O

% — graddlvu(l) +p(2) 2graddivu(2)
oJuy

where

are the velocities of compressional and shear waves, respectively, in the dry
skeleton, and

Co = Qor/Ko

is the velocity of wave propagation in an inviscid fluid filling rigid porous
skeleton (Cieszko, 1992). The vectors u{") and u(® stand for the displacements
of the skeleton and free fluid, respectively.

Eqgs (2.5) describe wave propagation in the elastic porous skeleton, material
of which is incompressible and saturated with a barotropic fluid. Form Eqs
(2.5) it follows that the motion of porous skeleton and the fluid filling its
pores is strongly coupled, and this fact is directly connected with the skeleton
pore structure.

2.1. Waves in fluid-saturated porous medium

We use Egs (2.5) of dynamics of fluid-saturated porous solid to derive the
equations describing propagation of compressional and shear waves in such a
medium.

Applying the divergence and rotation operators to Eqgs (2.5) we obtain the
equations for compressional waves that can be written in the matrix form

62

= = V3(Te) (2.6)

and the equations for the shear waves

2wV o 52w
7 = V2viu® o
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where the vector € is

(1)
€
= 2.8
€ [ £(2) ] (2.8)
and
e®) = divu® w® = curl u® k=12
whereas W is
U Y
¥ =
[ Vg Yao }
of the following elements
= (2) o
Po 1r2 L —Kofy\2ps" o 1 = Kofy o
U =% Vé + [ —=2 c Uy = ———¢
11 ps;l) SL ( KofO ) ps;l) 0 21 KofS °
(2.9)
(2)
1 — o
Vg = Soly Ps 2 Wyg = c3

K'ofz? pf,l)

The quantity Vi in Eq (2.7);, given by the relation

3
Vo= |2 = vy | Lo (2.10)
) @)
Po Po

is the velocity of shear wave propagation in porous skeleton filled with fluid.
From Eqgs (2.7) it is seen that in such a medium only one shear wave propa-
gates.

To state the conditions for propagation of compressional waves we analyse
Eq (2.6) for the dilatation vector €. Taking into account that §2/9t% and V2
are isotropic operators and do not change the direction of vector ¢, from Eq
(2.6) we conclude that the vector & can satisfy Eq (2.6) only in the case when
it is collinear with the vector We. Thus, we obtain the algebraic equation for

the eigenvalues of matrix ¥
Ve =Vi (2.11)

where V2 is a scalar coefficient that is the square of velocity of compressional
wave propagating in porous medium filled with fluid.
The nonzero solution of Eq (2.11) requires the condition

det(¥ — V21) =0 (2.12)
to be satisfied. This yields the equation for the velocity V in the form

VA4 (01 4 W) V2 + 01 Wyy — W9y, = 0
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which has the two real solutions

(W), + Wyy — VA) (2.13)

DO

1
1/12 == 5(@11 + WQQ + \/Z) VIZI ==

where
A= ()) 4 Uy9)? — 4(0) Wy — W1aWy) = (¥)) — Wpa)? + 2W 90y > 0

The above results show that, in general, in a deformable porous solid filled
with fluid two compressional waves propagate and the system of Eq (2.6) is
purely hyperbolic.

The existence of two compressional waves in saturated porous medium was
theoretically discovered by Biot (1956) and experimentally proved by Plona
(1980). The wave propagating at the greater velocity defined by Eq (2.13), 1s
called the fast wave (wave of the first kind), and the wave propagating at the
lower velocity defined by Eq (2.13)5 is called the slow wave (wave of the second
kind). These two velocities (eigenvalues of W) correspond the two vectors of
dilatations ey, €77 (eigenvectors of W) given by the equation

e, = Ve, o=11I (2.14)

The components of vectors £y and €77 represent the values of dilatations of
the skeleton and free fluid in the fast and the slow waves, respectively.
From Eq (2.14) we obtain

) = well) o=1I11I (2.15)
where
V-,
V9

Taking into account Eqs (2.14) and (2.15) we find out that the matrix equ-
ation (2.6) for the compressional waves can be replaced by the two equations

W, =

826(1)
at‘; = v2v2ell) =111 (2.16)

referred to the dilatations of the porous skeleton in the fast and slow waves
propagating in such a medium. Then dilatations of the free fluid in both waves
are given by Eq (2.15).

Finally, due to linearity of the considered equations, the general solution
of Eq (2.6) can be written as a sum of the solutions of both Eqs (2.16). For
dilatations of the skeleton and free fluid we have

) = ) 4 elD) £ — el 1 gyl (217)
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Eqs (2.7); and (2.16) representing the special case of Eqs (2.5) form the set
of three independent equations describing propagation of the shear, fast and
slow waves in the saturated porous medium. This shows, that in the infinite
porous medium each of these waves propagate independently of the other
waves. However, in general, any mechanical excitation of such a medium, e.g.
by a wave incident on the boundary of saturated porous medium, will produce
all these three waves.

3. Interaction of acoustic waves propagating in fluid with the
boundary of saturated porous halfspace

3.1. Formulation of the problem

We analyze the problem of reflection and transmission of a plane harmonic
oblique wave incident both from the bulk fluid and the saturated porous solid
on the I'-surface being the boundary of porous halfspace (Fig.1). The consi-
derations are limited to the case of purely elastic interactions. It is assumed
that the fluid is barotropic, and the porous skeleton has the isotropic pore
structure and the isotropic elastic properties, and its material is incompres-
sible. Moreover, the displacement amplitudes of fluid and skeleton particles
in the waves are assumed to be considerably shorter then the wave length.
It enables one to use the linear description of the problem and to avoid the
necessity for imposing the compatibility conditions on the movable boundary
of deformable halfspace.

e

bulk fluid

Fig. 1. Geometry of the problem

In such a case the wave propagation in a saturated porous halfspace
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(z; > 0) is described by the equations presented in Section 2 and the wave
propagation in the bulk fluid (z; < 0) is given by the equation
2
gt—i; = a2 grad divu (3.1)

where u is the displacement vector of the bulk fluid particles.

The acoustic fields in both regions (z; > 0, z; < 0) are coupled by means
of the compatibility conditions of mechanical fields on their contact surface I’
(z; = 0). These conditions are (Cieszko and Kubik, 1993): continuity of the
fluid mass flux; continuity of the effective fluid pressure and continuity of the
normal component of the total stress vector. Also, due to the assumed fluid
inviscidity, the skeleton tangential stresses disappear.

For the small disturbances of the medium the compatibility conditions
written for displacement fields of components in both regions take the form

—fodival + (1 - KofD) divu(l))‘p + ko f? divum‘p —0
(3.2)

/\divu(l)l + 2pe; - grad (u(l) 'el)‘ =0
r r
e, - grad (u(l) -T)+ 7 grad (u(l) . e1)|r =0

where 7 is an arbitrary unit vector tangential to the I'-surface.

Eqgs (2.7)1, (2.16) and (3.1) together with the compatibility conditions (3.2)
fully describe the interaction between the acoustic fields in the halfspaces of
bulk fluid and the saturated porous medium.

3.2. Solution to the problem

The acoustic fields induced by the wave incident from the bulk fluid on the
boundary I' of the porous medium is composed of the incident and reflected
waves in the halfspace z; < 0 (Fig.2) and, according to the considerations
presented in Section 2, is composed of three waves; two compressional ones
(fast and slow) and one shear wave, in the halfspace z; > 0. We assume that
the plane of wave incidence spanned over the normal versor of I'-surface and
the direction of incident wave agrees with the plane of Fig.2.

In order to solve the problem of wave interaction with the boundary of
saturated porous solid we introduce the displacement potentials for all waves
appearing in the system, i.e. ¢4, ¢p for the potentials of incident and reflected
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incident
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Fig. 2. Geometry of waves induced by a compressional wave incident from fluid

waves and ¢y, ¢rr, ¥ for the displacement potentials of porous skeleton in
fast, slow and shear waves, respectively. Then the acoustic fields in the bulk
fluid and the porous skeleton are given by

u = grad¢4 + grad¢p ull) = grad ¢; + grad ;1 + rotyp  (3.3)

for
divyy =0 (3.4)

In the free fluid, by virtue of Egs (2.15) and (2.17); we have
u® = @y grad ¢; + ¥y7 grad (3.5)

The potentials appearing in Eqgs (3.3) + (3.5) have to satisfy the suitable equ-
ations of wave propagation (2.7)1, (2.16) and (3.1) written for the displacement
potentials.

For the harmonic waves of frequency f (w = 27 f) we obtain

$a = Re (eiwte—Zwiko-z) ép = Re (Deiwte—27rik-a:)
o = Re(Raei“"e_"ika'z) a=11II (3.6)
% = Re (Rvmeiwte—27rikv-z)

where D, R,, Ry are the amplitudes of particular waves. The amplitude of
incident wave, without any loss of generality, can be assumed to be equal to
unity.
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The wave vectors k°, k, k%, k" are related to the wave numbers

_f a_ S v_ L
k= B = W= (3.7)

and the direction versors p,, i, Vo, Vv of waves propagation by
K = kp, k=rkp kS = k%, E  =kYvy (38)

for a=1,11.

The unit vector m in Eq (3.6)4, due to the condition (3.4), is normal to
the direction vector vy of the shear wave propagation, and the vector product
m X vy defines the direction of displacement of the skeleton particles in the
shear wave.

Substitution of Eq (3.6) into Egs (3.3), (3.5) and next into Eqs (3.2) leads
to the following set of equations for waves amplitudes

arK'Ry+arr K" Rip + (1 = ko) fRy sina — D cos o = — cos

a aII
TR+ —Ryr — f2D = f¢
VI II (3 9)
br brr
R[+ R11—2K Rysina=20
1 Vn .
2K'Rysino+ 2K Riysine — (= - 2sin” a) Ry = 0
Vy
where
ax =1+ kofo(¥x — 1) by = (VSL) — 9V ysin2a X =111
Vsu
and

1 — . .
K"{:__—\/l—V2 sin’ a X=11IV ():Q
% X

b ¢ Qo

Additionally, we obtain that the directions of all waves induced by the wave
incident on the I'-surface lay in the plane of wave incidence and the direction
angles of the fast, slow and shear waves in that plane are given by Snell’s low

sina  sinf; _ sinfy;  sinfy
o Vi Vir Vv

(3.10)
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Also, the displacement vectors of the skeleton particles in the shear wave lay
in the plane of wave incidence. Therefore

m = é3

The solution of Eq (3.9) determines the amplitude reflection and transmission
coefficients for the wave incident from the bulk fluid. In order to calculate
these coefficients for energy we have to derive expressions for the average
energy carried by particular waves propagating in the considered system.
Generally, the flux of mechanical energy in any process in a fluid-saturated
porous medium is given by the Poynting vector that for description used in
this paper takes form
P = _TWy) _ T2)y(2) (3.11)

Similarly, the Poynting vector for the bulk fluid is
Pl = —Tv=>pl (3.12)

Representing these two vectors in the quadratic form of displacements and
velocities and applying the displacement potentials (3.6) the Poynting vectors
(3.11) and (3.12) can be specified for the waves propagating in the saturated
porous medium and the bulk fluid, respectively. Applying the time averaging
over the wave period we obtain

PX:IXVX for X =I1,I1,V
(3.13)
P{’:IY#Y for Y=A,D
where
w a
Ix = 213 |Rx|? (2,u+ A+ /’ofoo[l + Kofo(Ux — 1)]) X=11I
) : ’ (3.14)
4 4 4
w W w
I = _R 2 I = f— I = f—D2
v #2V3| vl A= Pog D P02a0| |

are the intensities of the fast, slow, shear, incident and reflected waves, respec-
tively. Taking Eq (3.13) into account the energy reflection and transmission
coefficients are

I I
10 =2 |Dp W=y oy )
Ia Ig cosa
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Fig. 3. Energy reflection coefficient of a compressional wave: (a) — incident from
water on the interface between water and water-saturated porous fused glass bead
solid, (b) — incident from ethyl alcohol on the interface between ethyl alcohol and

ethyl alcohol-saturated porous fused glass bead solid

They satisfy the equation

Y+t +op =1

resulting from the wave energy conservation.

Numerical results for the energy reflection yp and transmission coeflicients
vy, (Y = I,11,V) for the wave incident from a fluid on the surface of saturated
porous solid are shown in Fig.3 and Fig.4. The calculations have been made
for the porous material made of fused glass bead solid of the physical para-
meters assumed after Wu et al. (1990), i.e. pS = 2500kg/m>, V = 2250 m/s,
Vsg = 1350 m/s, f2 = 0.38, k, = 1/1.8. The diagrams shown in Fig.3a and
Fig.4a refer to the porous medium saturated with water (pf = 1000 kg/m?,
a¥ = 1500 m/s) while those in Fig.3b and Fig.4b concern the porous material
saturated with ethyl alcohol (pf = 790kg/m3, a¥ = 1130 m/s). For the water-
saturated porous medium velocities of the fast and slow compressional waves
and the shear wave are: V¥ = 2660m/s, V{7 = 900m/s, Vi = 1280 m/s,
and these velocities in the porous medium filled with alcohol take the va-
lues: VP = 2400m/s, Vf; = 750m/s, Vi = 1300m/s. Since V}¥ > a¥ and
V¥ < a?, from Snell’s law (3.10) it results that there is only oue critical an-
gle of = arcsin(a?/V) = 34° at which the normal component of the fast
wave In the water-saturated porous medium disappears. On the other hand,
in the porous solid filled with alcohol both the velocities V}* and Vi are
greater then the velocity a2 in the bulk alcohol, therefore there are the two
critical angles: of = arcsin(a?/V/?) = 28° and @} = arcsin(a?/Vi¢) = 60°
at which the normal components of the fast and shear waves disappear. Fig.3
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and Fig.4 prove that for angles of incidence close to their critical values the
energy reflection and transmission coeflicients change rapidly.

(a) (®)

1.0

0.8F

0.6: slow
0-45 shear

0.2

P ST I T T T NS S S T N Y L 1 U P R | P W T, 1
40 60 80 0 20 40 60 80
Angle of incidence [deg] ’ Angle of incidence [deg]|

Energy transmission coefficients

Fig. 4. Energy transmission coefficients of a compressional wave: (a) — incident from
water on the interface between water and water-saturated porous fused glass bead
solid, (b) — incident from ethyl alcohol on the interface between ethyl alcohol and

ethyl alcohol-saturated porous fused glass bead solid

Comparing graphs in Fig.3 and in Fig.4 it is seen that the change of dyna-
mical properties of the fluid in the considered system significantly influences
the distribution of energy transmitted through the I'-surface. For subcritical
angles of incidence (o < 28°) the replacement of water with ethyl alcohol
does almost not influence the energy carried by the reflected and shear waves.
This replacement, however, increases considerably the amount of energy car-
ried by the slow wave what occurs at expanse of the energy for the fast wave.
Similarly, for intercritical angles of incidence (34° < o < 60°) the energies of
reflected waves in both cases are of the same, very small amount. The energy
carried by the slow wave in ethyl alcohol-saturated porous material is greater
then that in a porous material filled with water and increases with the increase
in the angle of incidence but this time it takes place at expanse of energy of
the shear wave.

The existence of critical angle for the shear wave in the alcohol-saturated
porous medium causes that for angles of incidence greater than this critical
angle the whole energy of incident wave is transmitted by the reflected and
slow wave only and with the increase in the angle of incidence the energy of
slow wave rapidly decreases. For angles « > 80° the incident wave is almost
completely reflected from the surface of alcohol-saturated porous solid.

The results obtained for the energy reflection and transmission coefficients
for the wave incident from water on the surface of porous fused glass bead
solid are in good agreement with those obtained by Wu et al. (1990). The same
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concerns the energy reflection and transmission coeflicients for fast and slow
compressional waves and the shear wave in water-saturated porous material,
not presented here. Therefore, hereinafter, we restrict our considerations to
the analysis of such coefficients for alcohol-saturated porous fused glass bead
solid only.

4. Interaction of acoustic waves incident from the saturated
porous halfspace

In the case when the fast, slow or shear wave propagating in porous fused
glass bead solid saturated with alcohol is incident on its contact surface with
the bulk alcohol three reflected and one transmitted waves will be generated
in each case. The procedure of solution to these problems is analogical to that
presented above for the wave incident from fluid. Changes in the acoustical
fields in both halfspaces of the system should be only taken into account. Here
instead of the solution procedure details we will present the results only.

1.0
0.8F
g slow

0.6F

0.4FE
- fast

fast

0.2F shear

Eshear l ) 1

1 F— P | - P R R PR
0 20 40 60 80
Angle of incidence |deg]

Energy transmission coefficients

Fig. 5. Energy transmission coefficients of fast, slow and shear waves incident from
ethyl alcohol-saturated porous fused glass bead solid on its contact surface with
bulk ethyl alcohol

Fig.5 shows the energy transmission coefficients for fast, slow and shear
waves incident from porous fused glass bead solid saturated with alcohol on
the surface I" for different values of the angle of wave incidence. Comparing
the transmission coefficients in Fig.5 with those in Fig.4b it is seen that the
curves for particular waves have the same character. It is easy to find, that
for the angles related by Snell’s law (3.10) the suitable curves in both figures



INTERACTION OF ELASTIC WAVES... 577

coincide. It means that the energy transmission coefficients for wave incident
from bulk fluid on the I'-surface and characterizing the energies transmitted
by the fast, slow and shear waves, are equal to the transmission coefficients
for the waves propagating in the opposite direction. Physical explanation of
this statement does need any further theoretical investigations.

As a consequence of the noticed equalities we find that the transmission
coefficients % (X = I,I1,V) of the impulse waves through a layer of porous
material immersed in fluid are the squares of transmission coefficients for the
wave incident from bulk fluid on the surface of porous material presented in
Fig.4b.
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Fig. 6. Energy reflection coeflicients of the fast (a), slow (b) and shear (c)
compressional wave incident from ethyl alcohol-saturated porous fused glass bead
solid on its contact surface with bulk ethyl alcohol
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Fig.6 shows the energy reflection coefficients for a fast, slow and shear
waves, respectively, incident from a porous material saturated with alcohol
on the I'-surface.

For the fast compressional wave (Fig.6a) there is no critical angles of inci-
dence since the fast wave velocity V}* is the greatest velocity appearing in the
system. Therefore, for each angle of incidence, the fast wave induces all three
reflected waves and the energy reflection coefficients form smooth curves. It is
seen that the fast wave induces a very weak slow reflected wave.

For the case of slow compressional wave (Fig.6b) there are three critical
angles since the slow wave velocity V7 is the smallest velocity appearing in
the system. The first critical angle is connected with deccy of the fast reflected
wave, second — with deccy of the shear wave, and third — with deccy of the
transmitted wave. For values greater than the third critical angle total energy
of the slow wave reflects from the I'-surface and further is carried by the slow
wave only. It is seen in Fig.6b that slow wave induces very weak reflected fast
wave.

For the energy reflection coefficients of shear wave, shown in Fig.6c, the
only one critical angle exists, i.e., for the reflected fast compressional wave.

5. Final remarks

In the paper the problem of energy reflection and transmission of an ob-
lique incident plane harmonic wave at the contact surface between the fluid-
saturated porous solid and the bulk fluid has been considered. Discussion has
been limited to the pure elastic behavior of the system. The assumption of
incompressibility of the skeleton material does provide a model in which all
characteristic properties of dynamics of fluid-porous solid composition are pre-
served and represented by the properties of fluid and porous skeleton treated
as single materials.

It is shown that the obtained values of energy reflection and transmission
coefficients for waves interacting with surface of porous glass bead solid hal-
fspace immersed in water are in good agreement with the results of Wu et al.
(1990) based on Biot’s theory. Comparison of these results with calculations
made for porous glass bead solid saturated with ethyl alcohol proved that the
dynamical properties of fluid filling the porous skeleton influence substantially
the energy of waves induced by the wave interacting with the surface of po-
rous material. Particularly, the energy transmitted by the slow wave induced
in alcohol-saturated porous glass bead solid halfspace is much more greater
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than that induced in water-saturated porous glass bead solid halfspace. This
result is important for experimental investigations of slow waves in saturated
porous materials which due to strong attenuation can be hardly observed.

Moreover, it was shown that the transmission coefficients of energy trans-
mitted by fast, slow and shear waves through the layer of porous material are
equal to the squares of such transmission coefficients through the surface of
porous material.
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Oddzialywanie fal sprezystych z brzegiem nasyconego plynem osrodka

porowatego

Streszczenie

W pracy rozwazono zagadnienie odbicia i przenikania fal harmonicznych ukoénie
padajacych na powierzchnie porowatej polprzestrzeni zanurzonej w plynie. Przeanali-
zowano czysto sprezyste zachowanie sie ukladu o niesci§liwym materiale szkieletu. Do
rozwazan wykorzystano dwuparametrows teorie deformowalnego oérodka porowatego
nasyconego ptynem, w ktdrej struktura poréw szkieletu charakteryzowana jest przez
porowato$¢ objetodciows 1 kretosé pordw. Przeanalizowano wplyw mechanicznych
wlasnoéci skladnikéw fizycznych oraz kat padania fali na energetyczne wspétczynniki
odbicia 1 przenikania fal. Rozwazono dwa przypadki: gdy fala pada na powierzchnie
porowatej péiprzestrzeni od strony samego plynu oraz przypadek, gdy fale (szybka,
wolna i poprzeczna) padaja od strony nasyconego plynem porowatego oSrodka. Obli-
czenia przeprowadzono dla o$rodka porowatego ze spiekanych kulek szklanych wypel-
nionych woda w jednym przypadku oraz alkoholem etylowym w drugim przypadku.
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