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The present paper surveys and compares methods of homogenisation ap-
plied to porous media mechanics. In particular, it details the methods:
volumetric averaging, averaging by weight, self-consistent, asymptotic ho-
mogenisation method for periodic structures as well as two-scale conver-
gence. The closure hypothesis for a representative volume element has been
discussed.
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1. Introduction

It is obvious that the mathematical description of physical processes oc-
curring in a real material depends on the observation scale. Hence, while a
sample of given material in a natural observation scale might be treated as
homogeneous, microscopically it is clearly heterogeneous. Thus, a description
of such a material in the natural observation scale is, within the framework
of continuous media mechanics, a certain approximation, which also refers to
any such-scale investigation into the constitutive behaviour of the medium,
is in fact a relationship between averaged physical fields observed during the
experiment,.

In case we consider a porous material — we mostly deal with a multiphase
medium. This medium is built of the solid phase, making up the skeleton,
and empty spaces joined together or not, filled with a liquid, a gas or a liquid
and gas at the same time. In addition, the phase separation surfaces display
discontinuous step-like changes of at least one parameter of the medium.

When analysing such media, two different mathematical modelling appro-
aches are possible. The first, the so-called macroscopic one: the distances of the
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order of pore diameters are ignored, and only macroscopic distances are taken
into account. What we look for in that case is the mathematical description
of the hypothetical homogeneous continuous medium, in which each point of
the space is occupied simultaneously by all the medium phases (components)
treated as continuums. The laws of conservation are introduced at the macro-
scopic level analogous to the laws of equilibrium for a single-phase continuous
medium, supplemented with additional expressions that take into account in-
teractions between the phases. The constitutive equations are postulated on
the basis of the analysis of the second law of thermodynamics. Such a way
of modelling is called the theory of mixture. A survey of these theories was
shown by, among others (Bedford and Drumheller, 1983).

The other kind of modelling is the microscopic approach: each distinct
component of the mixture, at the level of heterogeneity, is treated as a con-
tinuous medium with its own constitutive equation, the laws of conservation
and the boundary conditions at the boundary of phase separation. Obviously,
such a way of modelling is only possible when the specific dimension of a par-
ticular component agrees with the basic hypothesis of continuum mechanics,
i.e. it is much larger than the molecular distances. Then the microscopic level
equations are averaged to obtain macroscopic equations. The effect of this pro-
cedure, 1.e. the passage with a mathematical description from the pores scale
(heterogeneity) to the macro-scale, is the equivalent macroscopic description of
the substitute hypothetical homogeneous continuous medium. Such a procedure
is referred to as the method of homogenisation (Sanchez-Palencia, 1980, 1987).

The common assumption of the two way of modelling mentioned above, i.e.
the theory of mixture and the theory of homogenisation, is the postulate about
a possibility of defining the so-called statistically homogeneous specimen or Re-
presentative Volume Element (RVE) in the medium under consideration. What
we understand by this notion is the smallest volume of the considered medium,
which contains all the information necessary for the complete description of
the structure and properties of the entire material (de Buhan and Taliercio,
1991). Following modelling, either according to the theory of mixtures or the
theory of homogenisation, the representative medium volume, exhibiting a
multiphase composition and a heterogeneous structure, is, in the hypothetical
homogeneous medium, assigned a homogeneous structure in which each point
is occupied by all the phases simultaneously (Fig.1).

Definitely, the assumption about the statistical homogeneity of the mate-
rial and the choice of the basic representative element is an extremely com-
plicated matter, which can be illustrated by, for instance, the effect of sample
size in lab tests on material strength. However, further on we assume that the
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Fig. 1. Schematic view at modelling approaches applied to porous media mechanics

choice of such a basic unit (RVE) is feasible.

In case we seek a mathematical description within the frame of the mixture
theory, the detailed knowledge of this basic element of the medium is not
necessary whereas in the case of the homogenisation theory - it is (Fig.1). The
choice of this element (i.e. RVE) and the way it is modelled make up the basic
difference between different variants of the homogenisation method (see e.g.
Hashin, 1983; Hill, 1965; Suquet, 1987).

The present paper is aimed at reviewing and discussing different techniques
of homogenisation applied to porous media mechanics. Special emphasis has
been laid on methods used in the mechanics of multiphase media, the form
of the so-called closure hypothesis, i.e. boundary conditions formulated at
the boundary of RVE and arriving at the local description of a multiphase
medium. The presentation has been confined to deterministic methods only,
i.e. those where RVE geometry and properties are determined unanimously.
Homogenisation methods for random media are presented by, for instance,
Kroner (1972), Sobczyk (1982), Rubinstain and Torquato (1989), Emeriault
et al. (1996).



660 D.LyDZBA
2. Homogenisation process — general remarks

According to what we said above, the objective of the homogenisation
method is to find the equivalent macroscopic description of a process under
study when its micro-scale description is known entirely. Hence, the following
data are to be available in this scale (micro):

— equilibrium equations for each phase (each component) of the system,
— boundary condition at the phase separation boundary,

— constitutive relationships including the parameters,

— geometry.

In the macroscopic scale (natural scale of observation), the homogenisation
process is to yield (Auriault, 1991):

— the equilibrium equations,
— the constitutive relationships and the effective parameters,

— the localisation law, i.e. the relationship which allows one to determine all
of the physical fields on the microscopic level when macroscopic physical
fields are known.

The condition necessary for homogenisation to be possible is, certainly, a
small size of RVE when compared to the size of the porous medium in question.

2.1. Micro- and macroscopic variables

Since, following the process of homogenisation, the discrete structure of
RVE is identified, in the natural observation scale, by a material point with
the spatial co-ordinate z, in the process of the passage with a mathematical
description from the heterogeneity to the macroscopic scale, two distinct fa-
milies of physical variables should be distinguished, i.e. macroscopic variables,
describing the state of the homogeneous medium the properties of which we
are looking for and microscopic variables — describing the state of the medium
within RVE (Fig.2).

Macroscopic variables are typically represented by averaged microscopic
variables, in general by the volumetric means calculated in the RVE. Thus,
for instance, if p(y) represents the medium material point density in the
micro-scale, its related macroscopic variable (p) is determined by

1
)= 1 X ply) 42 (2.1)
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Fig. 2. Two families of physical variables used in a homogenisation theory

where ||£2|| is the measure of RVE volume.

Referring to density, the above dependence properly defines the macrosco-
pic variable in the sense of physics. A problem appears when the volumetric
mean from a given microscopic variable fails to correspond to the classical me-
aning of this physical variable. This can be exemplified by stress tensor. The
macroscopic variable should represent the value of force per unit area, hence
it should be a stress mean value, in the micro-scale, calculated per unit area
- not a volumetric mean. The situation is analogous when we consider the
velocity of liquid filtration through a porous medium. The macroscopic value
should represent the flux, hence it should be calculated, like stress tensor, as
an area rnean.

The correct process of homogenisation should lead to the macroscopic de-
scription expressed by the respective, from the physics viewpoint, macroscopic
variables. :

2.2. Local description —~ the role of the material intrinsic structure

In the case of liquid-saturated porous media, the formulation of the micro-
mechanical issue (local description) which, when solved after averaging, is sup-
posed to bring about the macroscopic description not only depends on the kind

9 — Mechanika Teoretyczna
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of fluid filling the porous space (e.g. chemical activity with the solid constitu-
ting the skeleton), but also on the intrinsic structure of the porous medium.
Mostly (and in fact commonly), when formulating a local model it is assumed
that the porous medium skeleton is built of an elastic material while the li-
quid which fills the pores is described by means of the Navier-Stokes equations
for a barotropic viscous Newtonian liquid (see e.g. Gilbert, 1990; Nigmatulin,
1981; Sanchez-Palencia, 1974; Whitaker, 1986). Nevertheless, the two exam-
ples presented below point out the role of the material intrinsic structure in
the behaviour of the fluid in the interstitial space, hence its mathematical
description and the way of modelling on the local level.

Let us analyse the behaviour of a gas in the pore space with a given pore
diameter, d,. Taking into account the value § of the mean free path of a gas
molecule, i.e. the average distance the molecules travel between two successive
collisions, we can distinguish at least three extreme cases of gas behaviour:

e d,/6 > 1 - gas behaviour in the pore space is solely dominated by
collisions of gas molecules between one another. From the mechanical
viewpoint, the gas can be modelled as a barotropic viscous Newtonian
liquid

e d,/6 < 1-1in this case, the gas flow is determined by collisions of gas
molecules with the surface of solid. Certainly, the basic postulate of con-
tinuum mechanics is not satisfied in this case. Mathematical modelling
of the flow can be performed following statistical mechanics or pheno-
menologically, by treating the solid with the gas as a mixture in which
the flow process is governed by, e.g. the Fick molecular diffusion

e d,/d ~ 1 - the collision between a gas molecule and the surface of the
solid occur equally often. Then the so-called dusty gas model (Kaviany,
1991), obtained within the modified kinetic theory of gas is used for
description.

Below we have shown the values of the mean free path for three kinds of gas
(calculated under the so-called normal conditions, i.e. atmospheric pressure,
temperature T = 294°K) (Lydzba, 1996): carbon dioxide § = 57.4nm, steam

= 43 nm, nitrogen § = 67.7 nm.

The other example of the role played by the pore size in terms of, this time,
the behaviour of a liquid is provided by the laboratory investigation results
obtained by Gee et al. (1990). These studies were aimed at determining the
nature of the continual-to-molecular behaviour transition of a thin layer of a
fluid between two solid plates. It was noticed that, depending on the layer
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thickness, the fluid behaves like either a viscous Newtonian liquid or a solid.
It was also found out that the fluid layers behaving like a solid, subjected the
shear stress critical value tend to behave like a ductile solid subject to plastic
deformation.

The two examples of interstitial fluid behaviour we discussed above clearly
imply that the local description formulated for a given porous medium must
also be adequate to its intrinsic structure. Admittedly, many porous media
exhibit the so-calied hierarchical structure (Kisiel, 1982; Lasoni, 1988). This is
illustrated by the intrinsic structure of silty soils presented in Fig.3. In this
case, instead of two scales of observation, at least three are distinguished:
micro-scale, meso-scale and macro-scale. The process of homogenisation con-
sists of subsequent passages from one scale into another (Mei and Auriault,
1989) to arrive at the description in the natural observation scale.
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Fig. 3. Multi-scale model for clay used by Murad et al. (1995)

Sometimes the kind of the process under consideration determines the way
of the passage from one scale into another, i.e. a given method of homogeni-
sation and then the subsequent transitions between the scales are sometimes
done using different homogenisation techniques or by merging the theories of
mixture and homogenisation. Such a modelling was exemplified by the transfer
from the micro-, through meso-, to macro-scale, applied by Murad et al. (1995)
in order to obtain the mathematical model of the process of consolidation of
swelling silty soils.

A simultaneous occurrence of diffusive-sorptive and filtration processes in
a porous medium was taken into account by, among others, Lydzba (1996),
(1997) and Lydzba and Auriault (1996). In this case there were distinguished
only two scales: micro and macro. The diffusive processes in capillaries of
smaller diameters were introduced by appropriate formulation of the local de-
scription of RVE, i.e. the solid together with the gas diffusing in the micropores
was modelled within the framework of diffuso-elasticity (a phenomenological
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approach based theory) whereas the condition of the gas in the macropores
was described by means of the Navier-Stokes equations for a barotropic viscous
Newtonian liquid.

To generalise, the formulation of the micromechanical model for a given
porous medium must have the character of a dedicated description, ie. in
possibly the most detailed way take into account its discrete intrinsic structure
as well as the kind of the liquid filling the pores.

2.3. Conditions at the RVE boundary — closure hypothesis

It is beyond doubt that the formulated local description valid within the
RVE is not enough to determine the localisation law mentioned before. This
law is supposed to render it possible to calculate the value and microscopic
distribution of the physical fields when the values of macroscopic physical va-
riables are known. Hence, it is necessary to introduce boundary conditions
at the boundary RVE-the rest of the material. These conditions must repro-
duce, as closely as possible, the in situ state of RVE inside the material under
consideration (Suquet, 1987).

Noticeably, the introduction of a specific form of boundary conditions into
the local description might also be interpreted as imposing a limitation on the
class of possible interactions between the RVE and the rest of the material.
This limitation is often referred to as the closure hypothesis as it allows sepa-
rating the RVE from the rest of the material being considered, hence making
the material behaviour analysis confined to the analysis of RVE only.

In the case of microscopically heterogeneous solids, such as polycrystals or
solids with voids or cracks, the closure hypothesis is typically the condition of
uniform stresses or deformations (Hashin, 1983, 1988; Kachanov, 1992). The
introduction of such a hypothesis form is justifiable only when void or crack
distribution in the solid is dilute and the size of a single heterogeneity is much
smaller than that of RVE.

When analysing the process of liquid flow through a porous medium, the
only closure hypothesis known to the author, regardless of the homogenisa-
tion (averaging) technique used, is the condition of local periodicity (see e.g.

_Sanchez-Palencia, 1980; Barrere et al.,, 1992). However, it should be noted
that the application of this condition is physically justified only for porous
media which exhibit a periodic structure, i.e. generated from a unit cell by the
condition of periodicity. Of course such a unit cell constitutes the RVE.

Only in the case of flow through random media, instead of the local perio-
dicity hypothesis, the condition of the local stationariness of the fluid velocity
field is used (Rubinstain and Torquato, 1989).
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3. Different homogenisation techniques

In general, among homogenisation (averaging) methods one can distingu-
ish, depending on the kind of heterogeneous medium the analyses are applica-
ble to, two main groups of techniques: methods applied solely to single-phase
micro-heterogeneous solids and those applied to multiphase media. Since, in
the case of porous media, we typically deal with many phases occurring in the
medium, the present discussion is focused on methods dedicated to multiphase
media. For instance, no homogenisation methods applied to stratified compo-
site media (see e.g. WoZniak (1995), as one in this group) have been discussed
here.

3.1. Self-consistent scheme

This method was introduced by Hershey and Kroner (Zaoui, 1987) as an
approximation scheme to determine elasticity effective parameters for poly-
crystalline media. The basic idea of this method is to replace complicated
interactions between an element of the aggregate and any other element by
the interaction between an element and a substitute homogeneous continuous
medium displaying the sought effective parameters of elasticity (Fig.4).

real material approximate modelling scheme

Fig. 4. Interactions between grains modelled according to the self-consistent scheme

For a macro-homogeneous medium (natural observation scale), the substi-
tute continuous medium surrounding a given aggregate element is treated as
infinite with uniform boundary conditions (at infinity).

Below, we will show the framework of the self-consistent calculation scheme
for a polycrystalline-structure elastic medium (for details see Buisson et
al., 1990).
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The assumption that RVE is composed of N-grains with different elastic
stiffness values is accepted. If, for each grain belonging to the RVE, we define
the following characteristic function

arn )1 for r eV,
hr) = { 0 for 7 ¢V, (3-1)

the values of particular components of the elastic stiffness tensor within the
RVE are expressed as follows

Cijra(r Z szh (3.2)
where
1% — volume occupied by a grain o
T — spatial co-ordinate
Cijkn, — values of the elastic stiffness tensor components for a

grain a.

The local distribution of the issue being considered is made up by the equ-
ilibrium equations and the constitutive equations for a linear-elastic material

0i5,5 = 0 0i5(1) = Cijkn(r)ern(u) (3.3)
where
exn(u) - deformation tensor
U —~ displacement vector.

By substituting
Cijkn(r) = Cijkn(r) — CEl, U j(r) = uij(r) — Ui j (3-4)
with an additional condition that at the boundary of the entire space consi-
dered, i.e. at infinity, %;(r) = 0 (an assumption of the self-consistent scheme
that, at infinity, there occurs a uniform deformation state U; ;) Eqs (3.3) are
transformed for the following form

[Cga{ﬂk,l("‘)] i + fj('l‘) =0 fj("') = [6ijkl(7‘)uk,l('r)} . (3-5)

3

The tensor ij’;ﬁ is the elastic stiffness tensor for the homogenised medium
the values of which we are looking for.

The solution of Egs (3.5), using the Green function, can be presented in
the following way

+00
T) = / Gnj(r —7')f(r) dr’ (3.6)
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where the function Gg;(r) is the solution of the system of equations given
below

CHlGrmui(r = ') + Gimd(r — ') = 0 (3.7)
where d(r) and d;, stand for the Dirac function and Kronecker delta, respec-
tively.

Using Egs (3.4), (3.5) and (3.6), we obtain

+oo

emn (1) = Emn + / Dnig(r = 7")Cijra(r")epu(r") dr’ (3.8)
— 00

where
1 1
€mn = E(um,n + “n,m) Eppn = E(Um,n + Un,m)
(3.9)
1
me’j = E(ij,in + an,im)

If we assume that, within a single grain, the elasticity tensor does not de-
pend on the spatial variable, Eq (3.8) can be approximated by the following
expression

(emn)® = Emn + (Cijr1)*(er1)* Amnij

1
Afnij = Vel // Tonig(r = ') dr'dr
Vi

(3.10)

where
1

*) = /* dV,
) = v / * e
Va

In consequence, Eq (3.10) leads to the localisation law (in terms of mean value),
le. it determines mean deformation in the grain « when the macroscopic
deformation tensor is known, i.e.

__ -1
(er)® = (It — Afanij (Cim)®] Eunm (3.11)
where 1
Lkt = 5(5mk5n1 + OrmiOni)

Using the self-consistency condition, i.e. macroscopic deformation equals RVE-
averaged deformation (over N-grains), Eq (3.11) leads to the tensor equation
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in which the unknowns are the values of the components of the sought elastic
stiffness effective tensor for the homogenised medium, i.e.

N o _1 1
Eyu=3 |10, — A2 (T foE a:—/dv
" g[mnkl iy { i) ] J" B / ||VRVE||v

o

(3.12)

The scheme presented above is known as the one-site self-consistent scheme
and is applied to perfectly disordered media. In Buisson et al. (1990) one can
also find the so-called N-site self-consistent scheme, where N-grains are
simultaneously immersed in an infinite matrix exhibiting effective parameters
of elasticity. The extension of the scheme to cover media that feature plasticity
was discussed by Zaoui (1987).

The self-consistent scheme is also applied to determination of the effective
parameters of elastic media with cracks or voids (Budiansky and O’Connell,
1976), which make up a certain class of porous media. This time, the analysis
resolves itself to the issue of a single void or a crack placed in an infinite
continuous medium which has the effective parameters to be determined. In
the case of a two-dimensional issue, for a macroscopically isotropic medium,
this leads to the following formulas for the effective parameters (Kachanov,
1992)

E¢f = E(1 - 7¢) vl = u(1 = m¢) (3.13)
where
¢ - so-called crack density parameter (Budiansky and O’Connell,
1976)
FE,v - Young modulus and material skeleton Poisson ratio.

A modification of the above scheme, called a differential scheme, was pro-
posed by Hashin (1988). Again a single isolated crack in an infinite matrix
is being considered yet, contrary to the self-consistent scheme, this time the
analysis is performed in the incremental way. Cracking density is increased
by small increments, d¢, and in each calculation step the values of effective
parameter of the medium are arrived at.

For an macroscopically isotropic medium, should the issue be two-
dimensional, this leads to the differential equations (which follow Eqgs (3.13))

Eeff 4 qpeff = Eeff(l — 7d()
(3.14)

velf 4 duveff = peff(1 - mde)
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which, after determining the initial condition, i.e. E¢/f = E, v¢ff = v for
¢ =0, yield
E¢S = pe™¢ velf = pe m¢ (3.15)
In the case of porous media analysis, a certain drawback of the methods
discussed above is a lack of possibility of extending these schemes to cover
multiphase media except when the voids of the medium are filled with the
Pascal ideal liquid (Kachanov, 1992).

3.2. The method of volume and weighted averaging

The methods most commonly used in multiphase media mechanics include
those of volume averaging and averaging by weight (see e.g. Ene and Polisevski,
1987; Slattery, 1969; Whitaker, 1986). The main feature of the two methods
is the use of the transition from the microscopic scale (spatial variable y) to
the natural observation scale (spatial variable z) of spatial averaging (with

or without a certain weighting function).
We shall start our discussion of these techniques with presenting the me-
thod of averaging by weight as the other method is a specific example of the

former.

Xy ‘

Fig. 5. Change of the observation scale by the spatial convolution with a weight
function m(y)
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Let m(y) be a positive even function with the compact support in D(0)
(Fig.5), such that

/ m(y)dy =1 (3.16)

D(0)

By definition (Gilbert, 1990; Ene and Polisevski, 1990), the macroscopic varia-
ble associated with a given microscopic one ¢%(y,t) is the convolution product
(Fig.5)

m"(0°h%) = (4 (@) = [ 4" @k (y)m(z —y) dy =
P (3.17)

- / 9%(z — y)h%(z — y)m(y) dy
D(z)

where h® — function characteristic for the a-phase, determined as in Eq (3.1).
In reality, the choice of m(y) must be made in accordance with physical
considerations.
Let us consider the microscopic variable ¥, which ~ for the different phases
which occur in the medium - has the following values

(3.18)

v — oh in the (-phase
) we in the (-phase

The law of spatial averaging by weight has the form (see e.g. Ene and Polise-
vski, 1987)

ov 3}
m* (_) — 2 (mw) —m* [(w ~ wﬂ)nﬂaeiaﬂa}
Byi a.’L'i
(3.19)
o a, ,
m*(Gr) = om0+ m’ (2% — #P)n50072 5,
where
ng, — unit vector normal to the phase separation surface 3 — o
pointed from the phase F towards «
dso — Dirac distribution in the three-dimensional space with respect
to the ([ — « phase separation surface
VY3 — [ — a phase separation surface velocity vector

€; — unit vector directed along z;.
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The first of the above relationships represents the law of spatial averaging
for a certain function of weight whereas the second — a version of the general
transport law with the function of weight.

If the assumption is that the weight function m(y) equals 1/V in a sphere
of V-volume, with the centre at the origin of the system of co-ordinates and
is by identity equal to zero outside the sphere, Eqs (3.19) are transformed to
the laws of volume averaging (Slattery, 1969; Whitaker, 1986)

ov
) = 8_%' SV / P mgacidsa] AV
(3.20)
(50 = 0+ o [ 107 =9t av

The symbol (cdot) denotes the mean value calculated for the RVE volume
(see Eq (2.1))

Egs (3.19) are the basis for mathematical description transition from the
micro-scale to the macro-scale according to the method of spatial averaging by
weight whilst Eqs (3.20) are the basic laws of the volume averaging method.

Below, we present an exemplary application of the spatial averaging me-
thod to arrive at the macroscopic description once the local description is
given. The analysis focuses on the flow of a Newtonian incompressible liquid
through a non-deformable porous medium (for simplicity we have also assumed
no mass exchange between the phases of the system).

The use of Eq (3.20a) for the local law of liquid incompressibility (micro-
scopic description) leads to the macroscopic law of incompressibility for the
phase «

div (v*) =0 (3.21)

Certainly, Eq (3.21) is a classical condition of incompressibility for a continuous
medium.

The averaging of the momentum conservation equation for a Newtonian
liquid leads to (we assumed that the process is quasi-static, hence the inertial
terms are negligible)

Ap) / Ov;  Ov;
0=—— 4 uVv? 8ii + + —L)|n; dl”  (3.22
oy THY i nvvmn b+ (G ) |medl (322

where I’y — phase separation surface (Fig.5).
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Unfortunately, Eq (3.22) fails to be expressed solely by macroscopic varia-
bles. Unless additional simplifying solutions (phenomenological-nature postu-
lates (Slattery, 1969) or a value order comparative analysis (Whitaker, 1986))
are introduced, this is the ultimate form of the averaged local equation of mo-
mentum conservation, which — due to the occurrence of both microscopic and
macroscopic variables in it — cannot be treated as a macroscopic description.

The reason for the above-mentioned halting of the process of transition
from one observation scale to the other is that the methods of spatial averaging
are lacking the closure hypothesis. This is the primary shortcoming of the
two method discussed. Therefore, these methods are typically used to obtain
macroscopic equations of equilibrium, with the expressions for interactions
between multiphase medium components not being defined univocally (the
last term in Eq (3.22) represents the interaction between the skeleton and
the flowing liquid). The constitutive equations that define these interactions
are then obtained by analysing the second law of thermodynamics (see e.g.
Hassanizadeh and Gray, 1990). Such a way of modelling is called the hybrid
theory of mixtures (Murad et al., 1995).

In order to effect a full transition by the volumetric averaging technique,
some researchers apply the periodicity condition as the closure hypothesis
(Gilbert, 1990; Barrere et al., 1992).

3.3. Asymptotic homogenisation method for periodic structures

The central agssumption of this method of homogenisation is the condition
that the medium exhibits a periodic structure, i.e. it is periodicity-generated
from a single element, the so-called unit cell. The necessary condition for
homogenisation to be possible is the so-called separation of the scales, i.e. if [
denotes the unit cell size and L one of volumetric dimensions of the medium
being considered, the following must be satisfied: ¢ =[/L <« 1 (Bensoussan
et al., 1978; Sanchez-Palencia, 1980).

The solution of the micromechanical issue (local description) is sought in
the form of asymptotic expansions depending on the e-parameter while the
closure hypothesis is made up by the condition of the so-called local periodicity
of the physical fields under consideration, which will be detailed hereafter in
this paper.

Mathematically, the above issue can be presented as follows: in the domain
2, the boundary value problem is given

L(u)=f in 02 (3.23)

and appropriate boundary conditions.
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The differential operator L. displays rapidly oscillating coefficients. As-
suming that the sequence wu. converges to a limit u(0), the objective of the
asymptotic homogenisation method is to find the expansion in the form

ue = u® +eu® 4 £20@ 4 (3.24)

which will be asymptotic in general, or at least to determine the first part
of the expansion convergent to the solution of Eq (3.23) as ¢ — 0. We are
also looking for the so-called homogenised operator L, such that (%) is the
solution of the following

L(u<0>) =f i (3.25)

Eq (3.25) is the equivalent macroscopic description of the process under con-
sideration which has been looked for.

Classically, the passage from the description (3.23) to (3.25) is done by ap-
plying the so-called method of two-scale asymptotic expansions (Bensoussan et
al., 1978; Sanchez-Palencia, 1980), i.e. Eq (3.24) is postulated in the following

form . . .
ue(z) = ul® (m, —) + euV(z, —) + e2u@ (g, —) +... (3.26)
3 3 3

while it is assumed that each term u(i)(z,y) is periodic in y, l.e. for an
established z, the u(® - values at the boundaries of a unit cell are the same.
Then by substituting Eq (3.26) into Eq (3.23) and identifying the terms at
the respective powers of e-parameter, we arrive at a sequence of equations for
each term of the expansion (3.26) .

When imposed on the particular terms of u(i)(z,y), the periodicity con-
dition makes us look for the solutions of thus-obtained equations within a
unit cell; i.e. the so-called cell boundary-value problem. In consequence, after
averaging for the y-variable (within the unit cell), this process results in the
sought macroscopic description of the issue being considered, i.e. in Eq (3.25).
Importantly, when substituting Eq (3.26) into Eq (3.23), at the same time
the spatial derivative operators should be changed according to the following
dependence

V=V,+e'V, (3.27)

where: V; and V, - gradient operators calculated with respect to the spatial
variables z and y, respectively.

Noticeably, the process we described is relatively simple, being at the same
time very effective, which is proved by many important results obtained in
this way. Let us mention only some of them, obtained for fluid-saturated po-
rous media: equations of poro-elasticity for a two-phase medium (Auriault
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and Sanchez-Palencia, 1977), mathematical description of partially-saturated
media consolidation (Auriault, 1987), dynamics of a multiphase medium (Au-
riault, 1991; Boutin and Auriault, 1990), Darcy’s law of filtration (e.g. Kel-
ler, 1980), consolidation theory of porous media with fissures (Auriault and
Boutin, 1992, 1993), generalised law of liquid filtration through a porous me-
dium taking into account weak inertia effects (Mei and Auriault, 1991), theory
of thermo-diffuso-elasticity for composite media (Galka et al., 1994}, conso-
lidation equations for media with sorption phenomena (Murad et al., 1995;
Yydzba, 1996, 1997).

The method of asymptotic homogenisation also allows for an analysis of
the effect of the intrinsic structure of a porous medium on the values of ma-
croscopic description constants. We shall exemplify this with the classical con-
stitutive equation of Biot’s poro-elasticity theory

)

(o) = Cef exn(w) — oijp (3.28)

where (o) " is the total stress tensor, the tensors C¢/f and a are the
effective parameters of the medium in question.

Using the apparatus of the asymptotic theory of homogenisation, in
(bydzba, 1996a) it was shown how porosity and crack development affect the
value of the @-tensor, and a modified definition of this tensor was proposed

1
Qi = §Dijkh5kh (3.29)

where the tensor D, defined as

Ciirn — CH1 2
Zukh ” ijkh Ky=\+2p (3.30)

Diiry =
tjkh Ks 3

can be interpreted as a measure of the material elastic stiffness loss in relation
to its initial stiffness (material without pores or cracks). In the above equation,
C denotes the elastic stiffness tensor of the material making up the skeleton
and K, its volumetric deformation modulus. Hence, the principal axes of the
a-tensor are the principal directions of porous medium elastic stiffness loss.

An objection which rises as to the applicability of the above-cited method
of homogenisation to any porous media is the kind of the closure hypothesis,
1.e. the periodicity condition. It seems, however, that if we confine ourselves
to looking for a form of an equivalent macroscopic description and an analysis
of the role of the intrinsic structure of porous medium, then the applicability
of this methods might also be extended to cover not only periodic media (see
e.g.. Rubinstain and Torquato, 1989; Kroner, 1980).
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A certain variant of the two-scale asymptotic expansion method discus-
sed above is the so-called two-scale convergence method (Allaire, 1992). The
method is based on the following theorem proved by Nguetseng (1989):

Theorem: Let u, be a bounded sequence in L?({2) ({2 being an open set
of RN, L%(£2) denotes classically the Sobolev space). There exists a
subsequence, still denoted by wu., and a function wug(z,y) € L?*(2 x Y)
(Y = (0;1)" is the unit cube) such that

im [u(@)p(s,2) do = [ [wle @y dyds (331)
£ Y

for any smooth function ¢(z,y), which is Y-periodic in y. Such a
sequence uc is sald to two-scale converge to ug(z,y).

The idea of the method is to multiply Eq (3.23) by a test function of the
type @(z,z/e) (function ¢(z,y) is Y-periodic in y) and then, after in-
tegration by parts, the two-scale limit as ¢ — 0 is sought with the help of
the above theorem. This yields a variational formulation for the first term of
the expansion of Eq (3.26). After averaging the corresponding partial differen-
tial equation with respect to y-variable the macroscopic description (3.25) is
recovered. The method is detailed in Allaire (1992).

4. Conclusions

In this paper we have shown various methods of homogenisation applied
to porous media mechanics. The advantage of these methods is that the infor-
mation available in the level of heterogeneity (micro-scale) is then, using the
appropriate process of transition, transferred to the natural observation scale.
By the same token, these methods very often make it also possible to deter-
mine the effect of the intrinsic structure of a porous medium on the values of
macroscopic description effective parameters.

The following methods were presented: self-consistent, spatial averaging by
volume and by weight and asymptotic homogenisation. It was found out that
the self-consistent method might be useful for determination of the effective
parameters of single-phase porous media. In particular, it renders it possible to
identify the possibility of determining the effect of micro-cracking development
or, for instance, that of void growth, on the macroscopic mechanical behaviour
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of a solid. On the other hand, it is not possible to extend this scheme to cover
the analysis of multiphase media.

In the case of the method of averaging by volume or by weight, we have
pointed out the lack of the closure hypothesis in them. This results in halting
the process of transition from one scale into the other. We have indicated a
possibility of supplementing this method by assuming the closure hypothe-
sis in the form of the periodicity condition or by transferring the undefined
expression and analysing it following the second principle of thermodynamics.

The presentation ends with a discussion of the asymptotic homogenisation
method. This technique can be applied equally successfully to either single-
phase porous media or multiphase ones. The author believes it is the most
effective of all the homogenisation methods discussed.
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Metody homogenizacji stosowane w mechanice o$rodkéw porowatych

Streszczenie

W artykule dokonano przegladu i poréwnania metod homogenizacji stosowanych
w mechanice o§rodkéw porowatych. W szczegdlnoéci przedstawiono metody: objeto-
sciowego udredniania, uéredniania wagowego, metody samouzgodnien, asymptotycz-
nej metody homogenizacji dla struktur periodycznych oraz tzw. metody zbieznodci wg
podwdjnej skali. Oméwiono zagadnienie hipotezy zamykajacej dla reprezentatywnej
elementarnej objetosci.
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