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Large displacements and finite strains of saturated porous media will be
congidered. A consistent lagrangian description for both solid and fluid
phases is presented. The problem of interaction between phases, cru-
cial for computation, is discussed in detail. Variational formulations for
the initial boundary value problem and iterative procedures allowing for
overcoming nonlinearities are given. These enables one to solve a com-
plex problem of deformation of two-component bodies with deformation-
dependent porosity, permeability and separation of particles.
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1. Introduction

Nonlinear effects in porous media have been investigated by many authors.
Among the results most suitable for our analysis, we might mention here the
papers of Raats (1968), Szefer (1980), Prevost (1984), Schrefler (1994) and Wil-
marniski (1996). A finite strain formulation in multicomponent continua leads
to circumstances which are not trivial from the computational point of view:
the lagrangian for solid and eulerian for fluid descriptions contain terms de-
pending on a relative motion between the components (fluid-solid drag force).
This fact, fundamental for proper formulation and analysis of the Boundary
Value Problems (BVP), must be carefully taken into account. Therefore
the proper choice of the form of description is of great importance.

In the present paper a finite deformation of a porous medium, skeleton of
which is fulfilled by a fluid will be considered. A consistent material description
for both phasges has been used. The scope and range of the paper are as follows:
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we begin with a short recapitulation of the general theory where the field
equations of the system are be given (Section 2). The problem of interactions
between phases mentioned above, which is crucial for the deformation process,
will be considered in Section 3.

Then, we will pass to a variational formulation of the BVP (Section 4).
Section 5 deals with approximations containing both the incremental approch
(to overcome nonlinearities) and the iterative process to circumvent the inte-
ractions.

2. General theory. Field equations

Consider a two-component body B¢% « = s,F consisting of a porous
solid skeleton B® and an inviscid, incompressible fluid B¥ which fulfils the
pores. Assuming large deformations of the skeleton and using the lagrangian
description one can write the balance equations for each constituent in the
form:

— balance of mass
p*n*J* = prnk (2.1)

— balance of momentum
Diva§GTg +rJ% + p%ned® = pHngio® (2.2)

— balance of angular momentum

T4 = PoT R a=sF (2.3)

Above the following denotations have been used

T% - Piola-Kirchhoff partial stress tensor

b - external body forces

r® - internal volume forces resulting from interactions between the

phases
v® - velocity of the constituent particle
F® - deformation gradient of the constituent B®
F° = dz” = Gradz® ¢ =¥*(X, 1)
dX ’

¥*:. Bgr-— B; C E3 J* = det F“
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% ~ position vector of the particle X
n® — volume fracture, n® = dV%/dV
nF ~ porosity, nf =n

p® — partial mass density

The subscript R stands for the reference configuration Bp which is assu-
med to be the initial configuration of the skeleton.
The following conditions must be satisfied

n*+nfF =1 r 5+ g =0
(2.4)
J*>0 AV +dvVFE =dv

Remark 1. Since the constitutive law for the fluid component is obviuosly
expressed by means of the Cauchy stresses T%, the following formula

ngTh = neJjeTep-Le
is valid for porous media. Thus for inviscid fluid it will be
nRTg — nJFTFP-LF = nJF(—pl)F_l’F = —nJFF_l'Fp

where p is the fluid pressure.
The above relations result from the equalities

t2dA%* = 1%dA% dA® = J*VF DA NF YN dAS

where t* = T% t4 = TN stand for the stress vectors in the current and
reference configurations, respectively. Obviously, the vectors n and N stand
for the unit outward normals to the considered surfaces (in B; and Bp,
respectively). dA%, dA% denote the elementary fields of surfaces in B, and
Bp, respectively.

The space deformation gradients are
dX 1 1 9J¢

—cof P¢

—l,a _ _ 7Y
F deex Jo Jx oF¢

where the operator cof denotes the algebraic co-factor.

Remark 2. Very often it is convenient to introduce:
— total stresses

TR = (1 - TLR)TS + TLRTZ
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— total body forces
prb = pR(1 — np)b* + ppnrbd”

— the mean velocity

prY = ph(l — np)v° + phngo”
Thus adding Eq (2.2) (for both constituents) and taking into account (2.4),
one obtains

DivTg + prb = pr¥
DivngTE +¢FJF 4 pEnpb?’ = phnpo?

Remark 3. In the theory of consolidation (generally considared in soil
mechanics) the notion of the so called water content ratio 8 (firstly introduced
by Biot) is very useful. Denoting by df the amount of water impressed from
the skeleton one defines
dQ dVF —dVE  ndV —ngdVg  nJ*dVg —ngrdVg _

= = = J5 —
dVa dVa dVg dVr ndo TR

6

One should distinguish between # (which depends on the current porosity)
and the partial dilatation

dve — dvg

= J% -1
dvg

A% =

which expresses the volume deformation of the constituent. Hence, it can be

written
§=n(l+ A% —ng

For small deformations we have immediately § ~n — npg.

3. Phase interaction forces

In order to describe precisely the interaction densities r® we apply the

decomposition
r*=0%471° (3.1)
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first introduced by Heinrich-Desoyer (1955) and later by Raats (1968) and

Szefer (1980). The term o corresponds to the deformation contact between

phases whereas the second 7¢ stands for the diffusive resistance (Stokes drag).
Let as use the average approach in the form given by Raats (1968)

[omav = [t dse (3.2)
\4 SaB
where
t — represents the interface microstress vector, tj; = Tz‘n"‘ﬁl
T, - partial microstress tensor
Sop — interface between phases (see Fig.1)

Fig. 1.

Introducing the following denotations
— aﬁUSaa S=SaaUSﬁg

for the closed surfaces in the domain V', one can write the right-hand side of
Eq (3.2) in the form

[ t2dSap= [t S0~ [ 83 dSea= [TindSa- [ten=as -
Suﬂ SG Saa Su S

= / divTy dV, — /n"‘TZ‘n ds = /n"‘ divT) dV — /n"‘Tz‘n ds =
Ve S |4 S

= [neavTgav - [ divnTgav = [(ndivT] - divn®T2)J® dve
v v Vr
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Assuming that for fluid the same relation between micro-stresses in the current
and reference configurations is valid (see Remark 1) and then taking into
account the following easy provable formulas

div(J 'F) =0
div(J 'TrF) = J ' GradTgl = J ' DivTy

one obtaines
o' Jl = —nDiv(JFFFp) + DiviIF~Tp = JFpF~YF Gradn  (3.3)

that represents the average effects of intrinsic contact between phases in a
material description.

The second term in Eq (3.1) which describes the exchange of momentum
resulting from different velocity fields of the components (diffusive force) must
take the form

JFrF = K7 (o — o) (3.4)
where K is the permeability tensor defined within the framework of constitu-
tive relations.

'//.Y(Xf")

Fig. 2.

Eq (3.4) constitutes the crucial point of computations since the velocities
in Eq (3.4) are related to different particles (see Fig.2).
Namely, for z° =z = X°* £ XF it is

Jrs(X%) + JFrF(XT) = 0 (3.5)
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Hence J*r*(X?®) = —JFrl(XF).
Then we have
Js,’.S(XS) - —(JFO'F + JFTF)\X’F —
‘ (3.6)
= —JFpp~bF Gradn| o r ~ KX)o (X7) - v*(X)]
Thus on the basis of Eq (2.2) the equations of motion for the constituents

obtains the final form

X : Div(l—nr)Th - JIpP b Gradn(XT) +
—KYXF) [vF(f(F) - vs(Xs)] + p%H(1 = np)b® = p%(l — np)®

(3.7)
XF . —nDivJFpF b 4 K"(i{ﬁ)[vF(f(F) - (X%)] +
+pfnrd" = phnri”
with the substitution R
XF —wr <¢(Xs,t),t) (3.8)

where W is the inverse mapping of ¥7(X,t) =z’
The system of equations given above should be discussed together with the
initial

u¥(X, 1) = u2(X) W%(X,t) =v¢(X) X € Bg (3.9)

and boundary conditions

N(Xo,t) = pgr(Xo,?) Xo €5,
u*(Xo,1) = g%(Xo, 1) Xo €8y
(3.10)
(0 — v = w(Xo,t) for permeable edge X € Sy,
v YR E for impermeable edge
SrR=S8,US,USy SeNSy =10
where
u® - denote displacement of the particles
Py - prescribed surface tractions of the constituents

w - prescribed outflow velocity of the fluid.
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Remark 4. Condition (3.10)3 represents the situation when the outflow
w is known a priori. In practice, however, it occurs very often, that the out-
flow through the permeable edge is induced by the tractions p% only. Then
obviously one assumes on S, : p =0 (or p = p, — atmospheric pressure) for
the fluid constituent.

Thus, the amount of fluid which flows through the boundary results from
the continuity of the momentum balance (see (3.7)2)

-~

WP (XF) —v'(X%) = K[pgnR(i;F — ") + nDiv JFpFl’F] on Sy

The fluid particles which leave the skeleton constitute a one-phase medium
with a moving free boundary (separation of phases outside the skeleton domain
occurs). This problem is not discussed here and will be an objective of another
paper (our analysis is restricted to the region where no separation of phases
takes place, only).

Remark 5. The argument of the inverse function ¥F (z”,¢) results from
the equality zF()A(F, t) = z5(X°*,t). Hence, taking any X° one must find z° =
9°(X?,t) and than through-out (3.8) determine the corresponding particle
XF. As we see this can be done by considering simultaniously Egs (3.7), (3.8),
only. Overcoming this difficulty is possible only on the basis of an iterative
procedure.

Difficulties mentioned above vanish immediately in the case of small defor-
mations (i.e., by assuming small displacements, where the difference between
particles X° and X7 can be neglected).

For the skeleton it is convenient to introduce the symmetric II Piola-
Kirchhoff stress tensor

S=TLF T (3.11)

Thus Eq (2.3) holds automaticaly. It is satisfied also for the inviscid fluid.
The system (2.1), (3.7) (by introducing Eq (3.11)) need complementation
by constitutive relations which we take in the form

S = F*(C*,0) p = II(C*,6)
(3.12)

7 =K '(C*, 9, |vF—vs|)(vF—vs)

where C° = F' F® is the Cauchy-Green deformation tensor and 6 is described
in Remark 3.
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The system (2.1),(3.7) together with the above relations and definitions of
6 and C° enables one to determine the unknown functions n, 6, p, v*, v,
C’, S describing the state of the porous, fluid saturated medium.

Remark 6. The form (3.4) of the drag vector 7 (and hence its constitu-
tive equation) results from the representation theorems of the tensor functions.
Indeed, any vector function of the kind 77(C® »% v%,6) can be of the form
(3.12)3 only.

4. Variational formulation of the BVP

Considering the set of kinematical admissible velocities
(X, t,q) =v*(X,t) + ¢n*(X,t) qeR

let us define the virtual velocities

ov
o = 5 dg eV ={1°: 1°(Xo,) =0, Xo€ S}

For the sale of simplicity, let us write the system (3.7) in the compact form

Div(l —ng)Th — JIrF + p%(1 — ng)b®* = pk(1 — ng)v* @)

DivnRTg + JErT 4 pBnpb” = pEnpo”

Multiplying the first equation by dv°, the second one by év’ and than
applying the standart procedure for the weak formulation one obtaines the
principle of the virtual power

/ (1 = nR)SFT* - Vou® + ngTh : Voo¥| Vi +
Ve
+ / TFeF (50T — 69°) dV — / [P(1 = nR)b*6v° + pfnpd” s07| VR +

V, Vi
? ? (4.2)

+ / (93,60° + pE6vT) dSp / ({1~ mR)odu® + phings" 60" Vi
Sr Vs
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where
(:) - inner product of tensors
V - gradient operator.

Remark 7. All dynamical and kinematical quantities in Eq (4.2); like,
stresses S, Tg (or p), deformation measures F* JF, C* and topological
characteristics 7, 8 should be expressed in terms of displacements u°®, ul as
basic unknowns of the deformation process.

Remark 8. Principle (4.2) (with Remark 7) represents the pure kinema-
tical approach of the analysis which differs from the mixed velocity »* -
pressure p formulation, very often used in fluid mechanics. We prefer here
the kinematical approach since by virtue of the constitutive equation (3.12),
the pressure p can be eliminated. Moreover, our exprience shows that this
formulation has also some computational advantages (facility to construct the
kinematical admissible fields, loss of numerical instabilities).

Then, introducing for simplicity the denotation

B(u®, jv%) - first integral in Eq (4.2)

R(v*, 6v9) - second term of the left-hand side which describe
the virtual power of interactions

L(b%,p*, év*) - the virtual power of the external forces (two first
integrals on the right-hand side)

Ly(v®, dv°) — last term in Eq (4.2)

one can rewrite BEq (4.2) in the abstract form for év®,dv € V
B(u%, §v%) + R(v%, 6v*) = L(6v*) — Lp(v7, 6v%) (4.3)

convenient for further considerations.
Eq (4.3) must be solved together with Eq (3.8).

5. Incremental formulation. Discretization

To solve any initial-boundary-value problem of the type (4.3) with Eq (3.9)
the incremental approach will be obviously applied. As it is known, it consist in
the mapping of the prescribed quantities (b%,p%) : [0,1] — f(A) = (A%, Ap%)
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and then in partition of the interval [0,1]: 0 =Xy < A\ < ... < Ay = 1.
Then it follows

u®: [0,1] - u*()) 6.1)

ul = u%(Aiy1) = u¥(\; + AN) = uf + Au®

Similarly, all remaining quantities F% T%, n etc. have the same (like Eq (5.1))
representation.

Assuming that all functionals in Eq (4.3) are at least one-sided Gateaux
directional differentiable, we obtain the incremental formulation of the virtual
power principle

! (ud; 69*) Au® + B p(uf; 6v*) Aul + Rl (0% 6v%) Au® +
+R. o (0% 0v*) Au” + Ly(AD®, 5v*) = L(Ab*, Ap®, 6v°) + (5.2)
—B(uf; 6v%) — R(v; 6v%) 1=0,1,2,..,N a=s,F

Here the terms with the superscript (-)’ denote suitable Gateaux derivatives
of the functionals.

The above equation being linear with respect to the increments Au®,
Au” gives a recursive ”step by step” procedure for finding a solution to the
boundary-value problem. This procedure, combined with the finite element
technique in space and with the finite difference discretization in the time
domain, leads to a matrix equation of the type

MA% + CAL + KAZ = AF + Q, (5.3)
where
Au ~ incremental nodal displacement vector
M,C,K - matrices obtained from Eq (5.2) by inspection
AF — external force-increment vector
Q, ~ residual vector resulting from linearization of the nonlinear

terms.

Difficulties in solving the large displacement and finite strain boundary
value problem arise not only due to strong nonlinearities of the system (4.1),
but (as mentioned previously) also from the fact that the function (3.8) must
be taken into account. This can be done iteratively as follows:
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one starts with the given particles X* and X% at the time ¢
(related to Bp). We are looking for the localizations

N

Th, =X+ (X% AU
=0

gy =X+ Y eF (XM auf

where ®% — matrix of the shape functions.

Then taking the equality

we solve the equation

N
z; = X"+ e"(x")au] = X[,
=0
Now we pass to the new finite element coordinates and find new z] ; and
#f . This procedure shuld be repeated until

|z}, — ziFH N+l < ¢ sufficiently small

A numerical example of a multilayered porous subsoil in the uni-axial state of
deformation will be given separately.
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Obliczeniowe aspekty nasyconych oérodkéw porowatych przy duzych
deformacjach

Streszczenie

W pracy rozwazano duze przemieszczenia i skoniczone odksztalcenia nasyconych
o$rodkéw porowatych. Przedstawiono konsekwentny opis Lagrange’a dla obu faz: cie-
klej i stalej. Szczegélowo oméwiono zasadniczy dla obliczerl problem interakcji faz.
Podano wariacyjne sformulowanie problemu poczatkowo-brzegowego oraz iteracyjne
procedury dla pokonania nieliniowoéci. To pozwala rozwigzywaé zlozone problemy
deformacji odrodkéw dwu-skladnikowych ze zmienna, zalezng od deformacji porowa-
toscig, przepuszczalnodcia i separacja czastek.
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