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The aim of this contribution is to elaborate a general framework for mo-
delling flows of electrolytes through porous piezoelectric media. Organic
madterials like animal and human bones provide an example of materials
to which our results apply, though in wet bones the piezoelectric effect
is smaller than the electrokinetic one. Those materials may be treated
as piezoelectric porous materialg through which a conductive fluid flows.
The present work is confined to a regular distribution of pores. On the
interfaces between the piezoelectric skeleton and conductive fluid natural
jump conditions are imposed.

By using the method of two-scale asymptotic expansions, the macro-
scopic phenomenological equations describing electrokinetics of such a
two-phase structure are derived and the formulae for the effective me-
chanical and nonmechanical coefficients are given.
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1. Introduction

Porous materials are either natural or man-made, cf Sahimi (1995). Porous
rocks as well as animal and human cartilage and bone provide important
classes of natural porous media (cf Mow et al., 1984; Sahimi, 1995; Bourgeat
et al., 1995; Bielski and Telega, 1997).

From the mechanical point of view one distinguishes between rigid and
deformable skeletons (Sahimi, 1995; Cieszko and Kubik, 1996a,b). The pre-
sent contribution is devoted to the study of flow of electrolytes through a
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piezoelectric skeleton. By using the method of two-scale asymptotic expan-
sions, equations of electrokinetics involving the piezoelectric effect have been
derived.

The present contribution is a continuation of our previous papers on homo-
genization of piezoelectric composites (Telega, 1991; Galka et al., 1992) and
homogenization of the flow of electrolytes through porous media (Gatka et al.,
1994; Wojnar and Telega, 1997). In the papers Galka et al. (1994), Wojnar
and Telega (1997), Auriault and Strzelecki (1981) it was assumed that the
skeleton is rigid. The essential novelty of our paper consists in assuming that
the deformable skeleton reveals piezoelectric properties.

For earlier developments related to electromechanical properties of connec-
tive tissues the reader is referred to Demiray and Giizelsu (1977), Giizelsu and
Demiray (1979), Grodzinsky (1983), Uklejewski (1993).

We observe that a different approach to modelling of bones as porous
piezoelectric materials was proposed by Avdeev and Regirer (1979). These
authors did not precise the equations governing the fluid flow. Their approach
resembled that typical for mixture theory.

Our approach seems to be lucid from both the physical and mathematical
points of view. In fact, from the equations of the fluid filling the pores and the
equations of the piezoelectric skeleton, after homogenization we arrive at the
equations of electrokinetics.

The general macroscopic model offers further possibilities of simplifications
when some effects may be neglected. For instance, in wet bones the piezoelec-
tric effect is significantly smaller then the electrokinetic effect (cf Johnson and
Katz, 1987; Salzstein and Pollack, 1987). However, our model enables to obtain
in a natural manner the effective model for dry bones.

Throughout the paper the following notation has been assumed

3] 3]

(79;;; = azi and 8_% = Oyi

2. Notations and basic relations

Let £2 C IR® be a bounded sufficiently regular domain. This domain
consists of two parts

2 =820 82 N=0sU 80y

We assume that {2g is made of piezoelectric material (the skeleton) while 2
is filled with a conductive fluid.
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The interface solid-liquid is denoted by I'; 9f2s (9f2r) is the boundary
of g (£2;). We have 98825 UBS2, = 012.
2.1. Skeleton

The material of the skeleton is described by the linear relations between
stress Sfj, strain e;;, electric induction Df and electric field F; as follows
Si‘g- = Qijmn€mn — WkijEk D;g = Mimn€mn + eiEk (2.1)

where a;jmn i8 the elasticity tensor, m;; denotes the piezoelectric tensor
and eﬁc is the tensor of dielectric coeflicients (c¢f Landau and Lifshitz, 1957);
moreover

1
exs () = 5 0z, + O u5) (2.2)
The electric field F; is given by gradient of electric potential &
E, = -0,,9 (2.3)

The processes considered are slow, near the equilibrium and are governed
by the following equations

82,55 + f =0 8., Df =0 (2.4)
where ff denotes the mass force of nonelectric origin.

2.2. Liquid

The electrolyte is treated as a conductive viscous fluid with the viscosity
tensor 17;;mn. The linear relation between the stress Sz-’;, pressure p and liquid
strain rate e;;(v) is assumed

55 = ~pdij + Thijmnemn (v) (2.5)

The relation between the electric current J;, electric field FE;, liquid velocity
v; and electric charge ¢ has the following form

J; = UijEj + qu; — d,-jazjq (2-6)

where o;; = b;;q is the electrical conductivity, b;; = eB;;, B;; is the mobility
of free charges while d;; is the coefficient of diffusion. If the dielectric tensor
of the liquid is denoted by eiLk, then

DF =L By (2.7)
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For an isotropic liquid these tensors are of the form

2
Migmn = n(éim‘sjn + 5jm5in - g‘si)‘(smn) + gfsijémn
Oij = 003; bi; = bdy;
dij = déij fil;c = fL(Sz‘j

where 7, ¢, 0, b, d and €” are constants.
The tensor e;;(v) has the usual form

ei;(v) = %(azj vi + x5 (2.8)

The electric field FE;, similarly as in the case of skeleton, is given by

E;, = —-0;,9 (2.9)
The flow of liquid is stationary
Oz, St + fE + qB; — kg =0 (2.10)
and incompressible
Oz;v; = 0 (2.11)

In Eq (2.10) the coefficient k& = xpT/e, where xp is the Boltzmann constant
and e stands for the value of the elementary charge; the term fF denotes the
mass force of nonelectric origin (cf Wojnar and Telega, 1997).

The last term on the left-hand side of Eq (2.10) is given by the Einstein-
type relation between the coefficients d;; and b;;

di; = kpThy;

Moreover, we have v; = by; fj(l) where fi(l) stands for the force acting on the
particle (Lifshits and Pitayevskiy, 1979).
The vector D; satisfies the Gauss equation

0r;Di =g (2.12)

and the stationarity implies
Oz, Ji =0 (2.13)

In our paper (Wojnar and Telega, 1997) we have studied the flow of two ion
species electrolyte through a nondeformable dielectric porous medium, cf also
Teso et al. (1997).
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2.3. Solid-liquid interface

The conditions at the solid-fluid interface I" are assumed to be given by

[Si]n; =0 [2] =0 [Di]ni =y

vr = 0 Jin = 0 (2.14)

where -y is the density of electric charges on the surface of skeleton (cf Teso
et al., 1997; Hunter, 1981). Here [-] stands for the jump on I, e.g.
[SijIn; = Simnj — Sin; [] =& — &5

with &g and @ denoting the values of potential & on both sides of I
The coeficients a;jmn, €5, Mijmn, bij and d;; satisfy the usual symmetry
and positivity conditions, for instance

3e¢>0  aymnbiil; 2 cllE? V& € E}
eimin; = cllnl|? Vne R (2.15)
dijmin; = c|nll? VneR®

3. Equations of microperiodic porous media

2ag

N

O<ax<l

Fig. 1. Example of a skeleton, after Allaire (1989)

Consider now a porous medium with an eY-periodic microstructure. Here
€ is a small positive parameter, ¢ =1/L, and [, L are characteristic lengths
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of the micro- and macro-scale, cf Fig.1. The basic cell Y consists of two parts:
Ys and Y7 with Y = ?5 U?L.

For a fixed ¢ > 0 all the relevant quantities have now the superscript ¢.
From Egs (2.1) =+ (2.13) we obtain the set of equations for the fields u;, v;, &,
p and gq.

—in £2%
893]' (azs'jmna-’cnufn + Wliz'ja-’ﬁkdss) =0
(3.1)
Or; (menamnufn - eﬁfamkgﬁe) =0
— in {27
Ou; (P85 + € Njun O Vi) + 7 = 4 0r, @ = kpi® = 0
8,05 = 0 Ou, (€ 0, 9°) = —¢° (3.2)
O, (—b10° 00, B + ¢°0f — d5;00,0%) = 0
The conditions imposed on the solid-liquid interface I'® read
[S5lns =0 @I=0  [Difu=r -
vy = 0 vji n; — 0
where Si;, Df and J7 are given by
ge - z]mna-’cn m + sz]amk@ in “Q% (3.4)
—p©l;; +€ nfjmnamnvfn in 2%
_ Se ; €
Df _ zmnalnu €ik 81’1:@5 m Qb (3.5)
—eked,, o° in 0%
Jf = =b5;q° 00, 9° + ¢°vi — d;0.,¢° in (2 (3.6)

Note that in Egs (3.2); and (3.4)2 the following rescaling is introduced
Nigmn — 527]ijmn (3.7)

According to the method of two scale asymptotic expansions we assume
the following substitution for the scalar field @° and vector field wuf

¢¢ = 8O0 (z,y) + e0W(z,y) + 20D (z,y) + ... y=z/¢
(3.8)

z,y) + eud( (2

:ugo)( z,y) + 2w (z,y) + .. y==z/e
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as well as analogous expansions for pf, ¢%, v{ and J;.
Assume also that in Eq (3.3)3 we have

¥ =7z, 1) = 1" ()8, 8z, ) yely (3.9)

where 'y,(co)(y) is a given function; particularly it may be constant.

Next, taking into account the relation

0uif@y) = (0 +20,) [&)  y=3/e

and comparing terms with the same power of €, we arrive at the homogenized

set of equations.
According to the above given division of cell Y we define three types of

averages
1 1
()= J () dy (e = 1y, Y/ (Vdy a=S5,L

Note that Y = 'y U Ps while the surface 8Y; = I'vy UPy,; Iy is the contact
surface solid-liquid; and Pgs and Py, are parts of the surfaces of the solid and
liquid, respectively, coinciding with the boundary of Y.

4. Results of homogenization

The results of homogenization depend strongly on the interface conditions
(3.3). The conditions (3.3); and (3.3)3 imposed on I'¢ can be rewritten also as

[afjmn(?zn up, + Wiijazkdse]nj — p°n;
) € _ 568 i Lea € \n, =~°
TimnOznUm — €k Oz, + €k Oz, n; =17
and after substitution of expansions (3.8) we get
L (©) 4 oy(D) 4 242
[aijmn(azn + ann)(um +euy) +efupy + ) +
1
i3 (O + 20, ) @0 + e84 200 4 ]ng| = (41)

= (© + ep® + 2P 4 )din; .
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1
[Wimn (az + _a )(Ugg) + E’U,grll) + EQUS,?L) + )+
—efi (O, + ay (@) 460V +£26®) 4 ) |ny|S = (4.2)

1
=" — € (&ck + gé)yk)(fﬁ(o) + 0 4+ 20 1 )p; .

Then on I'y Egs (4.1) and (4.2) at €~! yield

[aijmnayn (0 )+7r1”_78 ép( )] =0 (4 3)

[mmné)ynu( ) — € ké) o0 4+ €50y 45(0)] =0

The analysis of terms of the order £~2 appearing in Egs (3.1) is carried out
in Appendix A. Combined with the interface conditions (4.3) it yields

u® = uf)(z) o0 = ¢O(z) (4.4)

Eqgs (A.12) are satisfied provided that
ull) = A(,,zgﬂazqu;‘)) + qué)zqfﬁ(o) + Ppp©®
(4.5)
) = R0, ul) + Fy0,,8© + 5p®

and coeflicients A%Q), Bq etc. are Y-periodic solutions to the following local
equations on Yg

By; (@130 + Qimn By, ARD + mhi 0y, qu) =0

8y,

i

(Wipq + Tirnn Oy, ARY — € 6ykRPQ) =0

Oy; (az]mné)yn Bing + Tgij + Oy, Iy ) =0 (ws)
4.

By; (Tirn Oy Brmg — €5y = €50y, Fy) = 0
81/

j

Iy, (”imnaynpm - fib;cayk) =0

(55mn By P + Trij0y, ) = 0
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The terms linked with €° in Eqgs (4.1) and (4.2) yield
[aijmn (6:1:,1 Usg) + 6yn uSrll)) + Tkij (azkds(()) + ayk 45(1))]nd5 = p(O) 6ijnj‘

L
(4.7)
[mmn (Gznugg) + Bynugl)) ~ 6;-51; (8zk<.15(0) + 6yk¢(1))]ni]5 =
= 1002, 80 - € (0,89 + 8, 8D ), .
where assumption (3.9) was used. Hence, by using Eqgs (4.5), we get
(as1pg + Gigmndy, AR + hig Oy, Ry s s=0
Tipg + mmnay"A( Pa) _ ¢ kaykqu) | = 0
@ijmn By Bmg + Tgij + ThisOy, Fy )n])s =
(4.8)

0 L L
— ’Yf(l ) —_ <€iq + fikakuq)ni L

(w,mn q - efk@kuq) n; s

(a,]mnaynP + WkljaykS)n]’S = 5ijnle
) _ S N -

(iran By P — €0 S )|, = 0

The interface conditions (3.3) and (3.3)4 are written as follows

(45(0) 4 e 4 200 4 )!S - (45(0) +ed) 4 26D 4 )l )

o)
( ,()+ev()+62 ) 4 ..)IL:O
Hence we obtain
@(0)‘ - ¢(0)| qs(l). - 4;(1)' 45(2)' - 4;(2),
S L S L S L (4.10)

v’(O)IL =0 vz(l)lL =0 'Ui(2)|L =0 etc.
The interface condition (3.3)5 can be rewritten as
1
['—bij(q(o) +eqV +e2¢ + ...)(6_,5]. + —6yj)(d5(0) + eV 420 4 ) 4
+(@@ + ¢V + £2¢® + . )(v + ev( e v(2 +..)+ (4.11)

1
—dy; (6mj + anj)(q(o) +eqt) + %@ 4 )] ni|, = 0
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By virtue of Eq (4.4)2, comparing in the last relation the terms linked with
1

e~' we conclude that
—~dij0y;¢Oni| =0 (4.12)
and consequently
¢ = ¢ (z) (4.13)
Eq (A.17) is satisfied provided that
o) = F,9, o0 (4.14)
where Fy satisfies the local equation in Y},
By, (ely + €Dy, Fi) = 0 (4.15)
The local problems (4.6) and (4.15) are supplemented by the interface condi-
tions (4.8).
Eq (A.17) is satisfied provided that

¢ = Q0:,q + Wig 0, o) (4.16)
where (Qr and Wy are Y -periodic solutions to the local equations in Y,
Oy (dix + dis 0y, Qi) = 0
(4.17)
By (bik + big0y, Fie + diy, Wi)) = 0
We recall that &) has the form of Eq (4.14).

The functions @ and Wj are additionally subject to the boundary con-
ditions

(bik + bijayj Fr+ dijayj Wk)ni L =0
(4.18)
(dik + dijaijk)ni L =0
Really, Eq (4.11) at €° gives
[~0i54 (92,8 + 8,,00)) — di; (85,4 + 8y, ¢V|ni| =0 (419)
Substituting Eqgs (4.14) and (4.16) we get
{—bijq(o) (6jk + Bijk) azkdi(o) +
(4.20)

—dij [(5_7k + Byj Qk) 8zk q(o) + Byj qum)azkdi(o)] }nz s =0

L

Hence we arrive at Eqs (4.18).
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5. Macroscopic constitutive relations

Applying asymptotic expansions to the constitutive relations (3.4),, (3.5)2
and comparing the terms linked with £° we get

Gijmn (anu(o) Gynugnl)) + g5 (azkezs(O) + Bykéﬁ(l)) in Yg

s (5.1)
—;D(O)(Sij n Yy
Timn (Gznu(o) + aynuﬁn“) — € (azkgpw) + aykqﬂ”) in Ys
p® (5.2)
—eh (00, 8O + 0, 0V in Y,
We observe that
(S) = (s + (S (D) = (D)5 + (D (53)
Using Egs (4.5) and (4.14) we get
0
(57)) = a0, ul®) + 7t 0, 0O + (i — (1 = £)b351p®
(5.4)
(D7) = nt B, ul) — e 8, 0O + dip®)
where
@l = (@ijpg + @ijmnyn AR + Tisj By, Rog)s
Wgz; (@ijmn Oy, Bmg + Tgij + TkijOy, Fy) s
Gj = <aijmn6 Py + mkijOy, S)s (5.5)
zpq = (Tipg + Mimn Oy, AZY — €0y, Bpq) s
& = (~Timn0y, B o+ €10y F, Oy, F
eiq_( TimnOy, Bmq + €55 + €30y, q)5+(e +e @)L
d; = <7rimnayan - fﬁcaykS>S
and f denotes the volume fraction of the solid (skeleton)
Ys| [Ye|
f=7> -f= (5.6)
Y] 1Y

The coefficients A(rﬁtn, Bing, etc. have to be determined from the local equ-
ations (4.6); » and (4.15) jointly with Eqgs (4.8).
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6. Mechanics of porous medium with liquid

From Egs (3.1) and (3.2);, by comparing the terms linked with €°, we get

Oz, [a”mn (&cnu(o) + 6ynu( )) + Tgij <6zkd5( ) + 6ykd§(1))]

m Y
+0y; [aijmn (Bza ulh) + 0y, u)) + mhij (02, 8 + 8, 0| =0
(6.1)
-~ (6&.1)(0) + 6yl.p(1)) + flg + 6yj (mjmnaynfuﬁn)) +
in Yy,

43,8 + 8,,00) = x (94,40 + 8,,¢V) =0

On the other hand, the terms linked with ¢! in the interface condition (4.1)
lead to the relation

[simn (02, ulh) + 8y, uD) + iy (92,80 + 8y, 82 |my | = pWVéiyn|  (6:2)

Integration of Eq (6.1); over Yg and (6.1), over Yy, gives

J

Oa; (s (O ) + By D)) + mrij (05,80 + 8,618, )) 5 +
in Yg
+ / [aijmn (6an£,1L) + 6ynu£,21)) + Tkij (6zkd5(l) + 6yk45(2))]nj dA=0
aYs
(6.3)
~(1= )8 + () = (1= £)(¢0:,89 + 58,4 +
n YL
+ / [ ( ey + q(O)é(l) + I‘Cq(l))51] + Th]mnayn ( )]TLJ dA =10
aYy,

Adding Eqgs (6.3), using the interface relation (6.2) and taking into account
Egs (5.1) and (5.4); we obtain

0, (S +(f2)n = (1= N4V, 87 = k,,d®) =0 (64)

This is the macroscopic equilibrium equation for the porous medium filled
with liquid.
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7. Electrostatics of porous medium with liquid

From Egs (3.1); and (3.2)3, by comparing the terms linked with €%, we

get

Og; [mmn (8znu$2> + aynug,p) — € (8zk‘15(0) + 3yk(p(1))] N

in Ys
+0y, [mmn (&cnu%)) + Gynug)) — €S (3zk¢(1) + 3yk¢(2))] _ 0
(7.1)
0y, [l (0,9 + 8, 80)] - 8y, [chi (02,9 + 8y, 8?) | = ¢©
in YL

Further, the terms linked with e! in the interface condition (4.1) lead to the
relation

[m,mn (aznugp n %uﬁ)) — (azkgzsn) + Gykdi(?))]ni

(7.2)
= —eli(95,90) + 3, 8)n,|
Integration of Eq (7.1); over Ys and Eq (7.1); over Y7, yields
Oz, (Timn (81'n ?42’ + 6%»“9) - 65&: (6171: o) 4 aykds(l)) )s +
in YS
+ / l”rimn.(azn ug!) + alln ug)) - ffk (31%@5(1) + aﬂ’k@(z))J ni dA =0
aYs
(7.3)
_a:c.'(ffic (a:ck@(o) + ayké(l)))L = / [ef,‘c ((9;%@(1) + 3ykq5(2))]ni dA = q(O)
aYy,
in YL

Next, we add by sides Egs (7.3), using the interface relation (7.2), and the
results (5.2). Finally, we arrive at

0s (D" = ¢ (7.4)

This is the Gauss equation for the porous dielectric medium filled with dielec-
tric liquid.
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8. Flow of liquid in porous medium

As we have seen in Section 6, Eq (3.2); yields the following relation, z € (2,
yeyr

12 = 0e,0' = 8y, 5V + By, (Mismny, oD +
(8.1)
) <3z,-45(0) + 6%.43(1)) _ K(aziq(O) + 3%,(1(1)) =0

Let # = (u;) be a Y-periodic and divergence-free function, which vanishes

on I'
Oyu; =0 in Y up=0 on I (8.2)

We look for a weak solution to Eq (8.1). To this end we multiply Eq (8.1) by
u; and integrate over Y. We get

/"Iijmnaynvgg)ayj“i dy =
YL

= / (78 = 020 — 8,80 — 50,40 )u; dy
YL

This equation is satisfied provided that
o) = XD @) (f2 - 82,5 - 498,89 - £0,,¢®) (83)
(s)

The functions x;, are Y-periodic solutions to the following local problem

[ im0 XD W3,y 0aw) by = [ww)dy  vue

Y Y,
‘ ‘ (8.4)

Vy = {u € HY(Yr)3|u|g = 0, divyu =0inYs, uisY — periodic}
The strong form of Eq (8.4) is given by
Oy, (nijmnayn grlf)(y)) = —0i (8.5)
After averaging we get
(D)1 = (ms @)1 (£8 = 02,00 — 408,80 — k8,,¢) (8.6

This is the Wiedemann-Darcy equation describing electrokinetics of our
system.
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9. Flow of electric current
Applying asymptotic expansions to the current law (3.6) and comparing
the terms linked with €%, in Y}, we get
T = —bipg® (82,80 + 8, 80 + g0 — diy (8,0 + 8y, V) (9.1)
Next, using Exqs (4.14) and (4.17); we obtain
(IO = —bq 98,6 + ¢y, — a8, ¢ (9.2)
where

b:g = (b + bijé’ijk + dijé’yj Wit 9.3)

d = (dik + dij Oy, Qi)
Comparing the terms linked with € in Eq (3.2)4 we get the relation in Y7,
—3:51. [—bijq(o) (3_»6]. 0 + 8yj QS(I)) + q(o)’liz(o) — dij (&ci l](O) + ayj q(l))] +
_a, [_bijqw) (8,8 + 8,8 - b;0V (8,80 + 8, 60) + (9.4)

+a0( + 0 — dij (8,0 +8,47) | = 0

Similarly, from the interface condition (3.3)5, by comparing the terms linked
with e! we arrive at

[—bz-qu) (arj o) + 8, 45<2>) — bi;qV) (amjds@ + ayJ@s(l)) + 05)

—dij (aqu(l) + ay]. q(2))]ni P =0

where Eqs (4.4)2 and (4.10), have been taken into account.
We now integrate Eq (9.4) over Y and use Eqs (9.5) and (4.10),. We
readily obtain
az.'<Ji(0)>L =0 (9.6)
Thus the property of electric current stationarity conserves under the homo-
genization.

Remark 9.1. Eqgs (5.4) could be used to a generalization of equations due to
Biot (1955), provided that an evolution problem would be considered.

17 — Mecchanika Teoretyczna
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A. Appendix

A.1. Analysis of terms of ¢~ % order
Egs (3.1) yield in Y
Oy [ iimn Oy ulD) + Wkijaykds(o)] =0 Oy, [mmn(?ynugg) - efkayk@m)] =0
(A1)

Multiplying (A.1); by uz(-o) and (A.1); by &) integrating by parts and
substracting the relations obtained we get

/ [(aijmnaynugg) + ki Oy, QS(O)] u” +
aYs
- (ijnaynusg) - ffkayké(o))é(o)] nj dA + (A.2)

- /[aijmnayj uz('O)aynugr?) + 6593%.@(0)3“@(0)) dy =0
Ys
On the other hand Eq (3.2)3 yields in Y7,
Oy, (€0, 89) =0 (A.3)

from which in a similar way as above we obtain

/ (Gjl-’kayk@(o)@(o))nj dA — /(5ﬁcayi@(0)3yk @(0)) dY =0 (A4)
a}/L YL

Adding Eq (A.2) we obtain
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/ [(aijmnayn ulp) + ”kijaykqj(O))uz(O) +

dYs
~ (mmndy, ) — €50, 8 + 0, 8 ) 8O n; dA +
(A.5)
- [/ (aijmnayj UEO) 3ynu$3) + ei's;cayi ¢(0)8y‘= ¢(0)) dy +
Ys
+/(€il;cayi¢(0)ayk¢(0)) dy] =0
YL

By virtue of the interface conditions (4.3), the surface integral in the last
equation vanishes and the rest implies, by Eq (2.15), 2 that

u{” = u{O(z) 3 = ¢(O(z) (A.6)
Finally, by comparing the terms linked with =2 in Eq (3.2)4 we get in Y7,
B?/i (—bz'jq(o)ayj@(()) - dijayj q(O)) =0 (A-7)

or by Eq (A.6)
By, (dij0,,0®) =0 i vy (A8)

Multiplication by ¢ and integration by parts leads to

[ 4©dis,,qOn; a4 - [ 450,08, dy = 0 (A.9)
Yy, Yz

On account of Eq (4.12) and due to periodic boundary conditions the surface
integral vanishes and we get

[ #38,09,,4® dy = 0 (A.10)
Y,

Hence, Eq (2.15)3 we conclude that

¢ = ¢O(x) (A.11)
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-1

A.2. Analysis of terms of ¢ order

Egs (3.1) yield now the relations for £ € 2 and y € Yg

Oy, [ ijmn (8171“52) + 8ynu$7i)) + iy (alkgp(O) + 83“‘@(1))] =0

2

(A.12)
Oy [Tirmn (02, ) + By uld)) = €5 (02,8 + 8, )| = 0
Similarly, Eq (3.2); gives for £ € 2 and y €Y}
—8,, 09 — ¢8,, 8 - £3,,¢ =0
By (A.6)2 and (A.11) we have
8,7 =0 (A.13)
what means that p(® does not depend on y, z € 2
p = pO(z) (A-14)
The incompressibility equation (3.2), yields
0,0” =0 (A.15)

what means that the field v(® is divergence free with respect to y € Y;.
Next, the Gauss equation (3.2)3 yields for z € 2,y €Y

Oy, (el (82,0 + 8, 8N)| = 0 (A.16)

where Eq (A.6)2 has been exploited.
The current equation (3.2)4 gives for £ € 2,y €Y},

Oy [~bija @ (02,2 + 8,,8V) — di (0,0 + 8,dV)] =0 (a17)
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Przeplyw cieczy przewodzacej przez ofrodek porowaty o wlasnosciach

piezoelektrycznych

Streszczenie

W pracy podajemy ogdlny opis przeplywu elektrolitu przez porowaty osrodek
piezoelektryczny. Otrzymane wyniki mogg by¢ wykorzystane do materialéw organicz-
nych; koéci zwierzat i ludzi stanowia przyklad takich materialéw, choé w kosciach
zywych efekt piezoelektryczny jest mniejszy od elektrokinetycznego.

W niniejszej pracy ograniczamy sie do regularnego (okresowego) rozktadu poréw.
Na powierzchniach miedzy fazami zakladamy naturalne warunki styku.

Korzystamy z metody dwuskalowych rozwinie¢ asymptotycznych i wyprowadzamy
makroskopowe réwnanie fenomenologiczne dla elektrokinetyki takiego ukladu dwufa-
zowego. Podajemy tez wzory matematyczne na wspélczynniki skuteczne (zhomogeni-
zowane), zaréwno mechaniczne jak i niemechaniczne.
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