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In the paper the piezoelectric sensor/actuator pair capable of control-
ling structural vibrations of a simply supported beam has been analysed.
The dynamic model of the beam-actuator coupling which includes the
shear bonding layer is developed by taking into account the bending ef-
fect of the actuator. Solving the boundary value problem and assuming
a harmonic excitation by the applied voltage, the transfer functions for
the uncontrolled beam as well as for the system with velocity feedback
are obtained. The numerical results prove the influence of bonding la-
yer properties on frequency response functions. The results based on
the proposed model of dynamic coupling are compared with those one
obtained in the case the bending of the actuator is neglected.
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1. Introduction

Piezoelectric distributed actuators and sensors have been applied succe-
sfully to the vibration control of flexible structures. Dynamic analysis of beams
and one-dimensional plates is commonly based on the Bernoulli-Euler theory
and the assumption of static coupling with zero glue layer thickness between
the piezoelectric element and the substructure (cf Bailey and Hubbard (1985);
Clarc et al. (1991); Newman (1991); Lee et al. (1991); Pietrzakowski (1993)).
A comprehensive static model of the beam-actuator coupling which includes
an elastic bonding layer was analysed by Crawley and de Luis (1987). The
relationship between the strain distributions, both on the surface of the beam
and in the actuator caused by the applied voltage was demonstrated. The
dynamic behaviour of the coupled system predicted using the static approach
was compared with the results of dynamic modelling obtained by Jie Pan et
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al. (1991). Assuming the perfect bonding the differences between the strain
distributions were shown. A more advanced dynamic model including the bon-
ding layer with the finite stiffness was presented and discussed by Tylikowski
(1993).

In this paper the model of the beam-bonding layer-actuator system based
on the approach proposed by Tylikowski is formulated. Dynamic longitudinal
strain on the beam surface is calculated by considering the dynamic coupling
between actuator and substructure, by imposing the free stress conditions on
the actuator boundaries, and by including the adhesive material layer with a
finite stiffness. The dynamic model is also developed by taking into account the
bending effect of the piezoelectric actuator. The proposed model of dynamic
coupling is applied to the vibration control system used to achieve active
damping of the structure. The results obtained liere are compared with those
obtained by neglecting the deflection of the actuator.

2. Formulation of the problem

The system considered herein is a simply supported beam with piezoelec-
tric patches symmetrically bonded to both opposite sides as shown in Fig.1.
The upper piezoceramic element acts as an actator and is mounted by a finite-
thickness bonding layer to the elastic substructure. The lower piezoelectric film
is assumed to be perfectly bonded with zero glue layer thickness and is used
for sensing.

piezoceramic

___Xl’__’l:_—l /“actualor
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Fig. 1. Beam with a piezoelectric actuator/sensor pair

Dynamic analysis of the system is based on the Bernoulli-Euler beam the-
ory. Due to the geometry, the beam, is divided into three sections, for which
dynamic relation are formulated separately. To obtain the dynamic coupling
between the actuator and the beam, according to the approach presented by
Tylikowski, the pure 1D shear in the isotropic bonding layer is assumed.
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An element of dz length in the second section of the beam 2y < 2 < z;
and acting forces and moments are presented in Fig.2. The thicknesses of
beam, bounding layer, piezoelectric actuator and sensor are denoted by 1,
ls, ta, ty, respectively. The sensor is analysed together with the substructure
since the piezofilme thinness ; < 1.
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Fig. 2. Geometry of a beam element with piezoelectric and bonding layers, and
acting forces and moments

When applying an electrical field to the actuator, displacements ug,, uqsp,
up and shear stress 7 are generated. The surface displacement wu,p is caused
by the piezoceramic deflection which relates to the deflection of the beam.

The longitudinal motion of the actuator is given by the equation

Jdo 9%u
—afta—T—pataaTza:O (21)
where
o, — uniform tensile stress
pe — denotes the material density.

The stress-strain relation for the piezoelectric element has the form (cf
Crawley and de Luis (1987))

04 = Ey(eqa — M) (2.2)
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where
E, - Young modulus
€o — longitudinal strain, e, = du,/0x
A — strain of the unconstrained element induced by the voltage V
along its polarization direction
A= dilv (2.3)

and dsj is the piezoelectric strain constant.
The shear stress 7 on the interface causes the beam deflection. Denoting
the transverse displacement by w the beam dynamic equations can be written

as
o1, 0
8; ~ pelsb 8; =0
(2.4)
oM, iy
— - T b— =10
oz b+ 2
where
T — shear force
M, — Dbending moment
b,t, — dimensions of the coupled beam and piezofilm cross section,
respectively, 1, =1y + 1y
Pz - equivalent density, p, = (pots + psts)/t..

The bending moment-beam surface strain relation can be specified as

Eblgb
€h

M, = (2.5)
where ¢, is equal to €, = dup/0x.
Geometric relations of the deformed beam lead to the following formula

02w 251,

m - i (26)

Assuming deflection of the actuator the same as that of the beam, the
actuator surface strain e,, = Jugp/da is related to the beam surface strain
&y by

4

Cab = —&p (2.7)
173
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The actuator dynamic equations describing the bending effect are formu-
lated as follows

oT, 0%w
- — Palab—7 =0
dz gt (2.8)
oM 1
T, b2 =
ox T 2 0

The bending moment M, can be represented by a relation of the actuator
surface strain ¢, by

E,12b
Ma = 6a Eab (2.9)
The shear stress on a massless bonding layer is determined by the equation
T = tg(ua — Ugp — Up) (2.10)

where G is the shear modulus.

By adding Eqs (2.4); and (2.8); and Eqs (2.4); and (2.8), respectively,
after eliminating displacements w, up, %, Uqp, inner forces and moments and
7, the equations of motion of the second section of the beam
€, and pure

shear stress
and of the actuator can be expressed in beam surface strain

longitudinal strain ¢, as follows

Eblg 845[, 1o 8265 Glb Ea 826(,
< a0 e - =0
6 9z 15 012 ﬁ( z? p Jz? )
(2.11)
0%, e, G
Eata D22 — Pala 012 - E(ga - ,ng) = T € (131,1,‘2)
where
E, /1,\3 la
=1 =1+ —
y=1+ Eb(tb) B + »
ZiZ ata
, = Lelat pala te =1, +1a
e

The dynamic equations for the first and third sections of the beam are
obtained using the clasical beam theory and become

Eyt} 0° 9?
0 aa;il v =0 v €(0,21)
(2.12)
Ebig 0eps 0%y
- [
12 ozt TP © € (=2, 0)



8 M.PIETRZAKOWSKI

where unknown functions e3;(z,t), €pa(z,t) denote the surface strain for the
beam sections 1 and 3, respectively.

In the solution of the system equations the geometrical, continuity and free
stress conditions, respectively, are formulated in terms of strain. The boundary
conditions corresponding to the simply supported edges are given by

//51,1 drdz o = //51,3 dxdz

sbl(O,i) = 61,3((, t) =0

=0

r=

(2.13)

The continuity of beam deflection and slope at z = 2y and z = z4 leads

/ /ebl dede| = // e, dvdz / ey de| = / ey d
Tr=x) =) r=x

/ /eb dede| = / /gb3 dod / e do| = / ey dz
=I5 =7 =z

The continuity condition for curvature or bending moment has the form

to the equations

T=T1

(2.14)

=Ty

ep(zy,1) = ep(21,1) ep(To,1) = ep3(22,1) (2.15)

The continuity condition for transverse force at the borders of the sections
can be expressed by the following relations

Ebtg dem Ebtg ey G / /
—_— = —=7— — o dz — d
6 Jz lz=z 6 7 Oz lr=a + QiSIB( fadr—f [ I> r=z]
(2.16)
Eytf Oep G / / Eyt} dep3
— = — e dr — cp dx —2 =
6 e =127 + QtS'B( fade =B [ 1> z=r, 6 Jz lz==

The free stress condition for the ends of actuator, g.(z1,1) = 0,(z2,1) = 0,
requires that
ga(21,1) = A €a(T2,1) = A (2.17)

The dynamic equations (Eqs (2.11) and (2.12)) and boundary conditions
(Egs (2.13) + (2.17)) formulate a boundary value problem solution which
gives the dynamic strain response of the system to the voltage loading of the
actuator.
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3. Solution to the boundary value problem

The steady-state responses are analysed so the voltage applied to the pie-
zoceramic actuator as well as the strain A is assumed to be a harmonic single

frequency function
A = Apexp(iwt) (3.1)

On this assumption the solutions of dynamic strain equations are harmonic
with the same angular velocity as the excitation

gj(z,t) = g;(z) exp(iwt) (3.2)

where the subscript § = a,b,by,b3.

Substituting for ¢; into the dynamic equations (Eqs (2.11) + (2.12)), the
system of ordinary differential equations is obtained. The solutions in spatial
domain can be expressed in the form (cf Tylikowski (1993))

6
ZC exp(knz)
e
Z alk,,w)exp(k,z)

= (3.3)
epi(z) = Crexp(krz) + Cgexp(—krz) + Coexp(ikrz) + Croexp(—ikrz)

eva(z) = Cryexp(krz) + Crzexp(—kzz) + Crzexp(ikzz) + Crqexp(—ikrz)

where the wavenumbers £, (n = 1,2,...,6) are calculated from the following
algebraic equation

Eyt? Gty Eyty, Eytit
kS 28~ E t, — k Eat, — pa—b
" 128 b G, (BataB + 557) = pa =55t +
(3.4)
Glals E,t.t { G
—k2w? a - Caca__c_c_g ala 2 )=
O O T i 05" (potaws® =72y = 0
the amplitude coefficient a(k,,,w) is defined as
]. Eata,ts Patats
a(k,,w) = E(l e k% — g 0.12) (3.5)
and the wavenumber relates to the beam sections 1 and 3 has the form
2
b = g 205 (3.6)

Eb'lz
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The fourteen unknown coefficients Cy,Cy,...,C14 are calculated from the
system of algebraic equations determined by the boundary, continuity and free
stress conditions given by Eqs (2.13) + (2.17).

After itegrating the formulae for strain ¢,(z) and ¢,(2) with respect to
z and substituting into Eq (2.10), following distribution of shear stress in the
bonding layer is obtained

6
T(z) = g Z i—:[l — Bay,(kn,w))exp(knz) (3.7)

n=1

4. The control system transfer functions

The system dynamic response can be expressed in terms of a transfer
function. The transfer function relating the beam deflection to the harmonic
strain excitation A is formulated due to the geometric relation given by Eq
(2.6) by integrating the strain responses (), €p (), €p3(z) and substituting
the strain amplitude Ag =1

—L’ (C7ek7r + Cge_k7z - CgQik?I - Cloe—ik”’) T € (0, IEl)

lbk%
Gylz,w)= ———Q—ZG:Ca(k w)eknz T € (z1,29)
w ? - tb = 17_:' )y 1,42
—%(C’uek” + Crpe=h® — Cpgelkrs — CHQ_“”I) z € (2,1)

bh7

(4.1)
Deflection of the structure develops the strain in the sensor. The thinness
of piezofilm and perfect bonding let us assume the uniform distribution of
strain, the value of which is the same as that on the surface of the beam.
The piezofilm response to the applied strain ¢, = ¢, is the charge density (cf
Alberts and Colvin (1991))
k3,
q(z,1) = —ep(z,1) (4.2)
g31
where k31 and g3 is the piezoelectric electromechanical coupling constant
and the stress constant, respectively.
Assuming a rectangular shape of the sensing element and its surface elec-
trode identified by the following distribution function

Mz)=b[H(z -~ z1) — H(z — 29)]
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the total charge induced on the surface electrode is represented by the integral
on the length of the sensor

Q1) = b/q(z,i) da (4.3)

Substituting Eqs (4.2), (3.2), {3.3)2 into Eq (4.3), using the charge-voltage
relation and eliminating time ¢, the transfer function between the generated
voltage and the inpul actuator strain A is formulated

6
Gs(w) = Cy Z %a(kn,w)[exp(knzg) — exp(k,z1)] (4.4)
n=1 "

where (, is the sensor constant defined as

C _ k%l
* gnCo(zg — 1)

and Cy is the capacitance of the unit area.

To obtain active damping of vibrations of the considered system the velo-
city feedback is applied. The signal of the feedback control loop is proportional
to the time derivative of the voltage generated by the sensor. The open-loop
transfer function is a product of the transfer function G, (Eq (4.4)) and the
transfer function corresponding to the differentiator

Go(w) = 1kwG(w) (4.5)

where k is the gain factor.
The closed-loop transfer function of the active damping system is determi-
ned by the well-known formula

G(z,w)

14 Go(w) (4.6)

Golz,w)=

and relates the beam deflection with feedback loop to the excitation given by
actuator strain A.

5. Results

Calculations have been done for the simply supported steel beam of length
[ = 380mm, width b = 40mm and thickness ?, = 2mm. The length of
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piezoelectric actuator/sensor pair is {, = 38 mm and its center is located at
zs; = 98mm. The thickness of piezoceramic actuator and piezofilm sensor is
te = 0.2mm and 1; = 0.05mm, respectively. Material parameters of the
system used in calculation are listed in Table 1.

Table 1. Material parameters

Material Beam Actuator Sensor
Parameter PZTG-1195 | PVDF
p [kg/m?] 7800 7280 4500
E[N/m?] [216-10"" ] 6.3-1010 [ 2.10°
d31 [m/V] - 1.9.10-19 -
g31 [m?/C] - - 0.216
k31 - - 0.120
— 20
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Fig. 3. Beam strain {requency response ¢;(w) f{or different bonding layer stiffnesses

The dynamic behaviour of the system is represented by means of the fre-
quency response function (FRF). Figure 3 shows the beam strain response ¢;
(dB ref.1 strain) to the harmonic input strain A applied to the actuator the
amplitude of which is Ao = 1 (Eqs (3.3)2 + (3.3)4). The beam deflection
described by magnitude of transfer function &, Eq (4.1), is presented in
Fig.4. In the both cases the frequency response functions are calculated at
z = 100 mm which is in the area where the piezoceramic element is located.
To predict the influence of the bonding layer properties the shearing stiffness
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Fig. 4. Magnitude of the transfer function G, (beam deflection to strain input
ratio)

of bonding layer expressed by relation (/t; is assumed to be of the following
values G/t, = 5-10% 10'°, 10"!, 10'2N/m3. It can be scen that both the
strain and deflection magnitude plots are characterized by the poles that occur
at all resonance frequencies within the observed range. Calculations show that
the beam strain as well as the transverse displacement increase when the bon-
ding layer parameter G/1, becomes greater. Therefore, the actuator works
more effectively for a thin and stiff bonding layer.

The above remarks concern also the diagrams of feedback voltage signal
(Eq (4.5)) presented in Fig.5.

The feedback control loop parameter defined as the product of sensor and
gain constants has the value Csx = 0.4V/m. Relatively small curvature of
the beam in the sensing field for the 1st and 4th modes, where an inflaction
point is close to the center line of the sensor, reduces the ability of piezofilm
to induce a high voltage.

For the closed control loop with the velocity feedback, the frequency func-
tion defined as the ratio of beam deflection to input strain (Eq (4.6)) is shown
in Fig.6. The transverse displacement response course differs from the plot
obtained for the uncontrolled beam (Fig.4).

When the driving frequency lies within the range of resonance, the active
damping occurs and peaks are reduced significantly for all modes. The dam-
ping is heavier for the frequency corresponding to high efficiency of the sensor.
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Fig. 5. Magnitude of the open-loop transfer function Gy (voltage output to strain
input ratio)
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Fig. 6. Magnitude of closed-loop trausfer function G, (ratio of dellection of the
controlled system to strain input)
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Fig. 7. Influence of the actuator location on the beam strain frequency response
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The response of the system depends on the actuator location and its length.
In Fig.7 the beam strain frequency functions obtained for several positions of
the center line of the actuator, z,, are shown. The beam strain plots differ
significantly for the out of resonance frequencies (z;, = 85 mm). It can be
seen that position of the actuator at z, = 110 mm is not effective to generate
the 4th mode of the beam.

The influence of actuator length on the beam strain frequency response is
presented in Fig.8. The calculations have been made for the same actuator
position given by z, = 98mm. The diagrams show that the increase in the
actuator length generally increases the beam strain amplitude, and the change
of resonance frequencies can be noticed. Different behaviour of the system is
observed for the actuator of length determined by the ratio d = 0.2 at the
4th mode when the efficiency of the actuator dramatically diminishes.

40
) ] R
2 30 +
N :
g 20 74
Eo 10 —
= G/t;=5-10"% )
E 0
5 10 et |
o /"ﬂ | 2 )
f { ,.'" "~_
B 4 -’ ",
- = ,u../-"/' \.N“-.
/ Gh,=1-1010
L
0 200 400 600 800 1000

Frequency [1/s]

Fig. 9. Influence of bending of the actuator on the uncontrolled beam response

The frequency responses predicted by the present model and by the model
where bending of the actuator was neglected, respectively, are compared for
the uncontrolled system as well as for the system with the velocity feedback
(Fig.9 and Fig.10).

Calculations have been made for two values of the bonding layer parameter
G/t, = 10'° and 5-10"2N/m3. In the both figures the solid lines of each
pair obtained for the same value of the parameter G'/ts correspond to the
present model of the beam-actuator coupling. As it is seen the influence
of bending of the actuator is much stronger for smaller values of bonding
layer parameter (e.g. for G/t, = 101°N/m3), especially when the frequency
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Fig. 10. Influence of bending of the actuator on the controlled beam response
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Fig. 11. Comparison of actuator strain distributions at the first resonance frequency
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is out of resonance. An another difference causes by involving the bending
model of the piezoceramic element is the change of mode frequencies. This
effect can be clearly observed for the system with a relatively stiff coupling
(G/ts = 5-10'% N/m3) within the range of the second resonance frequency.

7 (N/m?] | J | 12
[ Gty =1-1010 2o G/1;=5-10

1-108 I
T Glty=1-10"1
I
0
-1-108
|
208 o W e
0.07 0.08 0.09 0.10 0.11 0.12
x [m]

Fig. 12. Comparison of shear stress distributions at the first resonance frequency

Fig.11 and Fig.12 show the actuator strain and shear stress distributions,
respectively, which have been obtained for the present (solid lines) and pre-
vious (dotted lines) models of the beam-actuator coupling at the first resonance
frequency. The model, in which bending of the actuator is introduced gives
the actuator strain reduction for all values of the parameter G/t; used in
calculations. Bigger differences between the actuator strain as well as shear
stress distributions can be seen for the smaller bonding layer stiffness when
the driving {requency is much closer to the modal frequency of the system.

6. Conclusions

The piezoelectric sensor/actuator pair capable of sensing and controlling
structural vibrations of a simply supported beam has been theoretically ana-
lysed. The dynamic model of the beam-actuator coupling including a bonding
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layer has been developed by taking into account the bending effect of the
piezoceramic actuator.

The transfer functions for the system with and without velocity feedback
control, respectively, have been examined.

Calculations trace the influence of bonding layer properties as well as the
actuator location and actuator length on the frequency response. Generally, if
an actuator is long and mounted to the substructure by a stiff bonding layer
is works more effectively. But the length of the actuator as well as its location
can change the actuator ability to generate some modes.

The results based on the proposed model of dynamic coupling are compared
with those where the bending of the actuator is neglected. Introduction of the
bending causes an increase in the response amplitude as well as a change
of mode frequencies which is more significant for more stiff coupling. The
influence of actuator bending is proved by the analysis of the actuator strains
and shear stresses in the bonding layer.
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Dynamiczny model polaczenia belki 1 piezoelektrycznego czlonu
wykonawczego w aktywnym sterowaniu drganiami

Streszczenie

Praca dotyczy sterowania drganiami belki swobodnie podparte] przy pomocy
elementdw piezoelektrycznych tworzacych zespdl pomiarowo-wykonawczy. W ana-
lizte przyjeto dynamiczny model polaczenia czlonu wykonawczego z belky, w kto-
rym uwzgledniono, oprécz Scinanej warstwy laczacej, takze zginanie elementu pie-
zoelektrycznego. Rozwiazujac zagadnienie brzegowe oraz zakladajac harmonicznie
zmienne napigcie zasilajace czlon wykonawczy, wyznaczono przepustowosci widmowe
ukladu gléwnego bez sprzezenia zwrotnego i ukladu zamknietego z predkosciowym
sprzezeniem zwrotnym. Na podstawie wynikéw obliczent pokazano wplyw wlasciwosci
warstwy laczacej na charakterystyki amplitudowo-czestosciowe ukladu. Poréwnano
takze reakcje ukladu w przypadku zastosowania zaproponowanego modelu polaczenia
z reakcja wlasciwa modelowi, w ktérym nie uwzgledniono zginania czlonu wykonaw-
czego.
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