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Weight functions of stress intensity factors for a single radial crack ema-
nating from a semi-circular side notch are derived for the loading modes |
and Il using the boundary element method (BEM) together with the
complex stress function Z(z) applied at the crack tip and satisfying the
Bueckner type singularity. The mode 11T weight function, being identi-
cal with the known solution of two symmetrical cracks emanating from a
circular hole, is also shown to complete the present analysis. All weight
functions, corresponding to particular modes, are represented in a unified
form convenient to create the database suitable for rapid calculations of
the stress intensity factors K for any elastic stresses distributed along
the potential crack path. Accuracy of the present approach is about ni-
nete nine percent, verified by comparing the values of K obtained using
the weight function method with particular solutions known from the
literature and to the BEM results.
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1. Introduction

The stress intensity factor K" is one of the most important parameters
used in fracture mechanics for estimating the safety margins and durability of
engineering structures, when the presence of material imperfections as cracks,
flaws and inclusions is tolerable. In such cases an actual value of K, esti-
mated for the real structure, is compared to the critical K values, obtained
from experimental tests and recognised as characteristics of the material, re-
presenting quantitatively possible failure modes. In this way brittle fracture
conditions, fatigue crack growth rate and some effectts of the corrosive envi-
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ronment may be considered for the structure under static and variable loading
conditions.

Since the value of K depends on many factors; namely, shape of the body,
crack geometry and its location, loading and displacement conditions, residual
stresses, temperature field etc., there exist a great number of particular so-
lutions of K available in the literature (cf Murakami (1987); Nisitani et al.
(1992); Sih (1973a,b); Tada et al. (1973)), and many methods developed for
a convenient approach when solving various crack problems.

The weight function method, suggested by Bueckner (1970), (1973) and
Rice (1972) has the virtue of being most versatile, due to the possibility of
putting together different linear elastic stress fields — as far as the principle
of superposition remains valid. Since the appropriate weight functions and
the resultant stress distributions oy;(z) along the potential crack path of the
uncracked body are found, the related stress intensity factors Ky, 'y and K3,
corresponding to the opening, sliding and tearing loading modes, respectively,
may be determined by the following simple integration

a

K;= /alj(z)m(j)(m,a) dz (1.1)
0
where
a — crack length
mU)(z,a) - known weight functions adequate for a cracked body
a15(2) - components of the stress tensor released on the crack

surface in the directions corresponding to three loading
modes j=1,2,3.

Some approximate solutions of the weight functions method can also be
found in Wang (1993) and (1994).

Some improvements of the weight function method were published by Mol-
ski (1992) and (1994a). It has been shown that any form of the classical weight
function m{) may be represented by two different functions: the correction
one Fj; and the unitary weight function wli), accompanied by the scale coef-
ficient +/ma. Since F} describes the effect of a uniform load applied directly
to the crack surface, the w() function, having the features of the weight
density function, qualifies the load along the crack surface and estimates its
contribution to the stress intensity factor value.

In the present study a plane elastic problem of semi-circular side notch with
a single radial crack loaded symmetrically on both sides, as shown in Fig.1,
has been analysed. The normal and tangential stress components oy;(z) that
appear in uncracked body, are released on the crack faces and form multiaxial



WEIGHT FUNCTIONS OF THE STRESS INTENSITY FACTORS... 59

stress state, represented in the vicinity of the crack tip by three different stress
intensity factors Ky, K7 and Kj.

Thus, the aim of the present work is to determine weight functions corre-
sponding to the modes I and II, since the mode III solution obtained by means
of the weight function method is identical to that of the symmetric problem
of two opposite radial cracks emanating from a circular hole, published by

Molski (1996).

Fig. 1. Single edge crack emanating from a semi-circular notch, subjected to
multiaxial load on the surface

2. Determination of mode I and mode II weight functions
2.1. General principles of the method

The method applied to evaluation of weight functions for the mode I and
mode II, 1.e. for j = 1,2, is the same as that used in solving the case of
symmetric circular hole with two opposite radial cracks, described by Molski
(1996).

The method is based on Betti’s reciprocity theorem and Bueckner’s pro-
cedure which demonstrate that if a known stress or displacement field, cor-
responding to the known value of the stress intensity factor K, is applied
directly in the vicinity of the crack tip as the only loading condition, the di-
splacements u}(r,¢) and v;(r,) of the remaining part of the whole body
stand for the weight function components. Though the method provides the
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weight functions valid for the whole body, only solutions of m{) related to the
crack-line and corresponding to the relative opening and sliding displacements
of the crack faces; i.e., vi(r,7)—vi(r,—7) and uj(r,7)— uj(r,—7), are of
interest here.

The complex stress function Z;(z) satisfying Bueckner’s singularity of the
stress field near the crack tip is given by

B.
Zi(z) = —]3 (2.1)
where
z — complex number in the polar coordinate system (r,¢) origina-
ted at the crack tip, 2 = rexp(ip)
B; - Bueckner’s parameter, representing the strength of the singu-

larity of the stress field for the modes I (j = 1) and IT (j = 2),
respectively, for a pair of self-equilibrating forces P; applied at
a smali distance ¢ from the crack tip, being the only boundary
traction imposed on the body, B; = P /c/7.
So far, the only reasonable and most accurate way in determining the crack
face displacements v7(r,+7) and wuj(r,+m) are numerical techniques based
on the finite or boundary clement methods.

2.2. Boundary element modelling and numerical results

Numerical calculations of weight functions for different ratios of the crack
length a to the notch radius R have been made using the BEM software
program Cracker (cf Portela and Aliabadi (1993)). Due to the symmetry of
the present problem, only one half of the semi-circular side notch with one
crack face in a quadrant of the plane has been modelled by 198 circular and
straight boundary elements. In order to improve accuracy of the numerical
results in the way suggested by Tada et al. (1973), a small semi-circle with
its diameter equal to 0.5% of the crack length @ has been modelled at the
crack tip region by 17 nodes of 8 circular quadratic boundary elements. The
boundary displacements, corresponding to the stress function Z;(z), have
been applied to each of 17 nodes as the boundary conditions of the problem,
causing exactly the same effect as that produced by the self-equilibrating pair
of forces P;. Numerically obtained crack face displacements i.e., vi(r,7) for
the opening mode I and u5(r,7) for the sliding mode II, have been analysed
separately and interpreted as displacement weight functions.
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Since the weight functions in this case do not depend on the elastic material
constants F and v, their values have been conveniently chosen as F = 1 and
v = 0 to simplify the output data analysis.

The next step consists in transforming computed crack face displacements
vi(r,m) and w3(r,7) into the correction and unitary weight functions, re-
spectively, (cf Molski (1992), (1994a,b)). To facilitate the description of wei-
ght functions for various /R ratios in the whole domain, a new parameter
s = a/(a+ R) has been introduced, where s €< 0,1 >.

Two different correction functions: Fj(s) and Fy(s), shown by the solid
and dashed lines, respectively, in Fig.2, have been obtained by numerical inte-
gration of the previously found and normalized displacement functions vj(r,w)
and uj(r,m). They depend only on the parameter s and indicate influence
of the uniform normal ¢;; and tangential o), stresses, released or applied
directly to the crack surfaces, on Ky and Ko, respectively. Numerical values
of the correction functions Fj(s) and F3(s) interpolated by polynomials are
given by Eqs (2.2) and (2.3). To complete tlie analysis, the F3(s) correction
function for the mode III is also shown in Fig.2 by a dotted line, for the tearing
uniform load distributed along the crack surfaces. More details related to the
mode IIT weight function solution can be found by Molski (1996).

Fi(s) = 1.1215—0.882s 4 2.426s% — 4.4145> + 6.763s" +

~ 5.884s% + 1.991s° (2.2)
Fy(s) = 1.1215—0.202s — 0.050s% 4 0.146s> + 0.251s% +

4+ 0.066s° — 0.2115° (2.3)
F3(s) = 1.0-0.1565 4 " 362s% — 0.5155% 4 0.309s* (2.4)

The values of stress intensity factors Ay, L'y and K3 are expressed now
by Egs (2.5), valid for the uniform stresses o1, 012 and o3 released along

the crack surfaces

K, = \/7F(LO'11F1(S)
Ko = /mao12F5(s) (2.5)
K3 = Vrao3F5(s)

In order to take into consideration the effects of non-uniform stresses oy;(z)
distributed along the crack sides, the unitary weight function, being in fact
a weight density function, should also enter the integral to qualify the load
applied.
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Fig. 2. Correction functions Fj(s) for the modes I, 1I and 111
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Fig. 3. Fractional values of the unitary weight function integrals (weight
coefficients) for the mode I: 2;(s) versus s
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In that case the stress intensity factor K is represented by

K; = /raF; (s)/ol w(J <a s) d(f) (2.6)

a

where the value of the integral being a weighted averaged quantity, may be
interpreted as an equivalent uniform stress (o¢,); applied directly to the crack
faces that gives the same stress intensity factor value as the real non-uniform

one.
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Fig. 4. Fractional values of the unitary weight function integrals (weight
coefficients) for the mode II: 2);(s) versus s

As Molski (1992) and (1994a) showed, for numerical purposes in the case of
nonuniform stress along the crack path, it is more convenient to use fractional
values of the unitary weight function integrals §2;(s), which are obtained by
dividing the whole crack length « into ten equal segments 1 and integrating
the w(z/a,s)function numerically, starting from the crack end opposite to the
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considered crack tip. The courses of fractional integral values (21;(s), {211:(s)
and {2115;(s) of the unitary weight functions versus the shape parameter s are
shown in Fig.3, Fig.4 and Fig.5. They are interpreted as weight coefficients,
valuating the non-uniform stresses for each tenth of the whole crack length.
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Fig. 5. Fractional values of the unitary weight function integrals (weight
coefficients) for the mode III: £2j11;(s) versus s

Once obtained correction functions Fj(s) and fractional integral values
24(s), f211(s) and 2111(s), being only functions of s, are interpolated by po-
lynomials and incorporated into the main program (cf Molski and Truszkowski
(1995)) enabling the stress intensity factors KL'; (see Eq (2.6)), for any load
distribution to be calculated.

All normalized K; values obtained in this way and used below for compa-
rative studies in the accuracy assessment, are indicated as the results obtained
by means of the unitary weight function method.
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3. Assessment of the accuracy
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Fig. 6. Elastic stress distributions along the potential crack path for various loading
conditions

To assess accuracy of the present approach, the values of stress intensity
factors K;, K, and K3 calculated using the unitary weight function method
have been compared to the reference solutions from the literature (¢f Murakami
(1987); Nisitani and Isida (1982); Sih (1973a); Tada et al. (1973)) and to the
BEM results obtained by the author for modes I and II. Uniform loads: o for
the mode I, 7 for the mode Il and 7y for the mode III have been applied
to the plate sufficiently far from the cracked area. The resultant stresses
o11(z/R) and oy2(z/R) that appear along the potential crack path ahead of
the notch (Fig.6) have been determined for an uncracked body using the BEM
analysis, since only the mode III exact solution to this problem is known {rom
the theory of elasticity.

These stresses, together with the weight coefficients (2;(s) and correction
functions F(s), contribute to calculation of the stress intensity factors for

5 — Mechanika teoretyczna
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various a/R ratios according to Eq (2.6). The K results obtained in that
way, are compared to the reference K values known from the literature for
these particular loading conditions, and to the ones derived by the author
using BEM for modes I and 1II.

The results of normalised stress intensity factors for three loading modes
are shown in Tables 1, 2 and 3, where the three new correction functions Yj,
Y11 and Yipp, appropriate for the loading conditions shown in Fig.6, are defined
as follows

v - I, Voo — Ka
= o\/m(a+ R) n= T/m(a+ R) (3.1)
[(3
Vi = ———
U /A(et B)

For all the values of K shown in the tables, the agreement is very good with
the maximal difference not exceeding one percent.

Table 1. Mode I correction functions Y

Yi(a/R)
o/R "BEM []9,11] | UWFM"
0.02 [ 0.464 [ 0.462 | 0.462
0.05 | 0.684 | 0.680 | 0.680
0.10 | 0.865 | 0.863 | 0.863
0.20 | 1.020 | 1.019 | 1.019
0.30 | 1.078 | 1.076 | 1.079
0.40 | 1.103 | 1.101 | 1.105
0.50 | 1.114 | 1.113 | 1.117
0.60 | 1.119 | 1.118 | 1.122
0.80 | 1.122 | 1.121 | 1.126
1.00 | 1.123 | 1122 | 1127

1.50 | 1.123 1.127
2.00 1123 | - 1.128
2.50 | 1123 - | 1.128

* — Unitary Weight Function Method.
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Table 2. Mode II correction functions Yip

Vig(a/R)

o/R "BEM | UWFM*
0.10 | 0.110| 0.118
0.25 | 0.329 | 0.326
0.40 | 0.490 | 0.486
0.50 | 0.570 | 0.566
0.75 | 0.710 | 0.706
1.00 | 0.794 | 0.792
1.50 | 0.888 | 0.886
2.00 | 0.937 | 0.936

Table 3. Mode III correction functions Yip

‘mi(a/ R)

/R g, (exact) | UWFM*
0.01 0.19753 0.1975
0.04 | 0.38105 0.3806
0.10 0.56302 0.5619
0.30 | 0.80615 0.8057
0.50 0.89581 0.8968
1.00 0.96825 0.9695
1.50 0.98712 0.9863
2.00 0.99381 0.9910

4. Concluding remarks

The boundary element method accompanied with the complex stress func-
tion Z(z), describing the Bueckner type singularity at the vicinity of the crack
tip, have appeared to be a very effective numerical tool in determination of
the stress intensity factor weight functions of modes I and II, for the problem
of a single radial crack emanating from a semi-circular side notch.

All three weight functions, including that for the tearing mode, are gene-
rally different, however, for relatively long cracks compared with the notch
radius R, i.e. in the range 0.7 < s < 1.0, mode I and mode II weight
functions are quite similar.
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The unitary weight functions, represented by the weight coefficients §2;(s),
1(s) and  f2qp(s), as well as the correction functions Fj(s) are scale-
independent and valid for any «/R ratio.

The accuracy of the unitary weight function method used for computation
of the stress intensity factors for the three loading modes appeared to be sa-
tisfactory with the maximal error much smaller than one percent compared
to some particular KA solutions known from the literature and to the BEM
results obtained by the author. This is a very optimistic conclusion conside-
ring applications of the present solutions, since the stresses distributed ahead
of the notch and applied for the unitary weight function method were deri-
ved numerically. This fact might cause additional small errors in the values
of K. Thus, a similar accuracy of about 99% may be expected for any other
loads, including the residual and thermoelastic stress fields, as far as their
distributions along the potential crack path of unckracked body are properly
identified.
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Funkcje wagowe typu I, IT i III dla pojedynczej szczeliny wychodzacej =
dna pélokraglego karbu

Streszczenie

Rozwazano plaskie zagadnienie pojedynczej szczeliny wychodzacej z dna poél-
okraglego karbu. Wyznaczono funkcje wagowe, sluzace do obliczania wartosci wspol-
czynnikéw intensywnosci naprezenia R 1 A2 dla dowolnych pdl naprezen uwalnia-
nych na powierzchni szczeliny. Rozwiazania te uzyskano laczac numeryczna metode
elementu brzegowego MEB z analityczna, zespolona [unkcja naprezefi Z(z), opisujaca
osobliwodé Buecknera w otoczeniu wierzcholka szczeliny. Otrzymane rozwiazania
funkeji wagowych przedstawiono w zunifikowanej formie, umozliwiajacej utworzenie
komputerowej bazy danych. Podano réwniez funkcje wagowa dla przypadku $cinania
poprzecznego — typ I, ktdra jest identyczna z wczesniej opublikowanym rozwiaza-
niem dla otworu kolowego z dwiema symetrycznymi szczelinami.

We wszystkich przypadkach oszacowany blad obliczen wspélczynnikéw K nie
przekroczyl jednego procenta.
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