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Stochastic ['-convergence concept of the mathematical theory of ho-
mogenization in a version is applied to calculation of effective energy of
non-simple elastic body with a microinhomogeneous random structure.
The problem of homogenization in the case considered is solved by the
application and generalization of the idea introduced by Dal Maso and
Modica (1986). The authors proved the theorem of convergence for a
special class of stochastic integral functionals. The form of homogeni-
zed, non-random integral functional was given. The first gradient-strain
modelling of elasticity leads to integral functionals of internal energy
depending on the second gradients of displacements. The main the-
orem formulated in the paper is a generalization of the result of Dal
Maso and Modica (1986) for integrands of functionals depending on the
second gradients of displacement limited, however the, to linear consti-
tutive relations. The form of effective non-random, integral functional
is given. It is interpreted as a internal energy of homogenized, effective
non-simple material body with well defined elfective, constant properties.
An example of the Kirchhoff plate with thickness randomly changing in
one direction is considered and eflective stifiness coefficients are expli-
citly calculated. They depend on a volume fraction of stiffeners in a
matrix material.
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1. Introduction

To introduce the functional formulation of non-simple body let us start
from equations of the model.
The equations of statical equilibrum of a body occupying the domain A
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in R® are (cf Hlavacek and Hlavacek (1969))
T,'j,,'(:l:) - ;L,']'k,.,'k(l‘) + .Y]'(:t) =0 z€eA ,5,k=1,2,3 (1.1)

here 7;; = 7;; and p;jr denote the stress tensor and the couple stress tensor,
respectively. X is the body force vector per unit volume.
We suppose that the internal energy per unit volume has the form

A(Eij(x), Kijk(z)) = %Kijkl(x)gij(x)gkl(x) +

(1.2)
1
+§Mijklmn(x)ﬂijk(ai)ﬁlmn(a:) + Nijeim(2)ei;(2)Ekim ()
where | 0uz)  duy(z)
oo L0uz) | Qu(= e
W@ =3 (Tt ) @ e (1Y)
Kz = Kz = Kjig Mikimn = Mimnijk
(1.4)
Niikim = Njikim

and K, M, N are bounded and measurable functions in A (A is the closure
of the region A). Displacement boundary conditions are homogeneous in the
displacement field, i.e. u =0on 0A.

Then the constitutive relations become

0A .
Tij = 9e Nijpa€pg + Nijpgrtipgr
! (1.5)
0A
Hijk = 5“7 = Nygijk€pq + Mijkpgrtipgr
11K
Moreover, we assume that the form A(:,-) is coercive, i.e.
3
Aleij ki) 2 ¢ > (el + Kk) (1.6)
1,7.k=1
where ¢ > 0 is a constant.
The global internal energy of a body has the form
1. 1
/[-2—]\ ijkl(I)Sij(.’L‘)Ek[(.’E) + 5]Wijklmn(I)’{ijk(x)’{lmn(x) +
A
(1.7)

+Nijk1m(z)5ij(z)'<klm(z)] dx



STOCHASTIC HOMOGENIZATION... 85

We rewrite it in the abbreviate notation

F(u, A) = /f(a:,Vu(a:),VVu(z)) dx (1.8)
A

where the integrand f(z,p,q) is given by the following relations

p=Vu q¢=VVu (1.9)

f(z,Vu,VVu) = %K(m)VuVu + %M(m)VVuVVu +

(1.10)
+%N(z)VuVVu
The minimum of the energy functional
ve‘%%)s{F(e;,A) +/Xv dz} (1.11)

is reached for a displacement field u € W02’2(A)3, which is a unique solution of
Egs (1.1) = (1.5) and WZ?(A)3 = W23 (A) x WEH(A)x WP A), WE(A)is
the Sobolev space.

If the material is homogeneous the material coefficients K, M, N are con-
stant tensors and the solution u can be found using standard numerical proce-
dures. But if the material is microinhomogeneous, i.e. the material coefficients
are not longer constant tensors, but they are tensor fields rapidly changing in
the domain, the problem becomes much more complicated. In such a situation
the numerical procedures are ill-posed problems. Then an overall, macrosco-
pic description of microinhomogeneities is needed to establish the global beha-
viour of the body. If the size of inhomogeneity approaches zero then different
methods of homogenization are applied. If the microstructure is assumed to
be periodic, the classical, deterministic homogenization gives good prediction
of the global behaviour. In the case of periodic inhomogeneous non-simple
body, the homogenization of the first gradient-strain modelling of elasticity
was presented by Bytner and Gambin (1988). If the microstructure of the
medium is not strictly periodic but only stochastically periodic one needs the
concept of stochastic homogenization. Such inhomogeneities correspond to a
large number of real physical microstructures in material bodies.

In the considered model a stochastic microstructure causes the material co-
efficients K, M, N to be random fields in the domain A. Then Eqs (1.1) + (1.5)
become stochastic differential equations, and Eq (1.8) becomes a stochastic in-
tegral functional. We will use the method of stochastic homogenization to pass
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from the point of view of stochastic differential equations to be solved (Eqs
(1.1) + (1.5)) to the viewpoint of random functional to be minimized. The
stochastic homogenization process will be defined under general assumptions
about the probabilistic properties of random functionals.

Below the main theorem is formulated and one gets the form of effective,
macroscopic internal energy of homogeneous, homogenized medium. The the-
orem forms a base of numerical calculations of effective material parameters.
They depend on probabilistic characteristics of random inhomogeneities. The
example of analytical calculations is given.

2. The class F of integral functionals and its structure

Let Ap be the family of all open bounded subsets of R>.
We introduce the class of all functionals F, F & F

F L,QOC(R?’)3 X Ag — R (R=RU+0) (2.1)
such that
2, Vu(z), VVu(z)) dz if u| € W22(A)3
Flu,A) = ,{f( (=) ( )) ‘A (4) (2.2)
+00 otherwise
where
f: RPRx(RPxR)x(R®x R®*xR*) - R (2.3)

is any function f(z,p, q) Lebesque measurablein z, convexin ¢ and satisfying
the inequalities

Agl? < f(z,p.q) < AL+ |p* + 191®)
(2.4)

[V f(2.0.0) = /f(2,0.0)| < S(Ip - P'))

where A, A, § are positive constants.

As we want to study the random integral lunctionals, that are measurable
maps of a probabilistic space (£2,£,P) into F, and their convergence, we
need a topological structure on F.

To create it, we define a distance d between two functionals F, G

> 1
d(F,G) = Z WiarctanTl/iF(wj,Bk)—a,rctanTl/v‘-G(wj,Bk)| (2.5)

i k=1
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where
W = {w;,i € N} - countable dense subset of W?%?2(R3)3

B ={Br,k€ N} - countable dense subfamily of Ag
and T, is a Yosida transform of [ defined in appendix.
Following idea of the proof given by Dal Maso and Modica (1986) we claim
that the metric space (F,d)is compact, complete and separable. Besides, the
convergence in metric is equivalent to the I'(L?) convergence

lim d(Fy, Fo) =0 & (L% lim F, = Fo (2.6)

the definition of I'(L?)™ convergence is given in appendix.
Having the distance d, we have the Borel o-field Y, generated in F.
Now we call F' the random integral functional iff it is measurable function

F: Q- F Flw)e F (2.7)
between (2,€) and (F, 3 y)-

The real microinhomogeneous, random structure can not be defined ar-
bitrary. Having in mind the aim of homogenization, i.e. to obtain a ho-
mogenized, non-random structure, special assumption about random integral
functionals should be assumed. To introduce the intuitive properties of ran-
dom fields such as; translational invariance and independence of probabilistic
model of the scale (homothety) the following mappings of functions, sets in
R? and functionals are defined. For every ¢ > 0 and ¢ > 0, we define the
operators 7, and p., respectively, of translation and homothety.

Tu(z) = u(z —¢) TA={z€R: z—ce A}
(2.8)
peu(z) = u(g) peA={z€R>: ez € A}
Finally, if F € F then the functionals 7.F and p.F are defined by
(r.F)(u,A) = F(r.u,7.A)
(2.9)
(peF)(w, A) = € F(p.u, p.A)
for every u € L2(R®)>, A € Ao.
If f denotes the inegrand of F then
. F(u, A) = /f(:v + ¢, Vu(a:),VVu(:v)) dz
A (2.10)

peF(u, A) = /f(g,Vu(:v),VVu(:v)) dz
4
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for every u € W22(A)3, A € Ap.

Let us introduce the small parameter ¢ being the size of inhomogeneity.
The random fields K(z/e,w), L(z/c,w), M(z/e,w) on R> are assumed to be
the random fields on (2,¢, P).

Then the problem of minimization of the random functional

/{f(%,Vu,VVu)(w) dz if u| € W2(Ap o)

400 otherwise

Fo(w)(u, A) = {

is given by
min {Fe(w)(u,A)-}-/Xu da:}
A

ucWwz2(a)s

For every fixed ¢ > 0 and w € (2 the above variational formulation
describes the beliaviour of random microinhomogeneous non-simple material
with displacements caused by external body forces X.

Let (F:)eso be a family of random integral functionals over the same
probability space (§2,£, P). We say that F, is a stochastic homogenization
process modelled on a fixed random inegral functional F over 2 if F. ~ p.F
that is to F, and p.F the same distribution laws apply.

Let F be a random functional. We say that F'is stochastically 1-periodic
(with period 1), if

F~r1.F Vze Z°

where Z is a set of integer numbers.

3. Main theorem of stochastic homogenization

Let F, be astochastic homogenization process modelled on a stochastically
1-periodic random functional F. Suppose that there exists M > 0, that two
families of random variables

(F(-)(w, 4)) (FC)(w, B)) (3.1)

ueL? (R)® uel? (R3)?
are independent whenever A, B € Ag and distance (A, B) > M.
Then F. converges in probability as ¢ — 0% to the single functional

Fy € F independent of w (i.e. to the constant random integral functional



STOCHASTIC HOMOGENIZATION... 89

Fp) given by
Vu(z),VVu(z)) dz if u| € W22(A4)3
Fo(u, A) = f{fo( ) (=) A (4) (3.2)
+o0 otherwise
where
1
s =1im/min——Fw u, e)
folp9) = lim [ min{ (s F()(w Q)
Ioi
| Ao /2,2 -
ui(z) — pijz; - §q”kz]$k € W, (Ql/s)} dP(w) 1=1,2,3
(3.3)

Qi/e = {x eR: |z< % i = 1,2,3} 1Q1/e| = (.?.)3

The convergence in probability is defined by

Plw: d(F, ) > n} =20 Vi > 0

In the periodic case the homogenized, effective functional was obtained by the
solution of variational problems defined on the single cell of periodicity of the
structure. In the stochastically periodic case we shall solve the sequence of
periodic problems defined on @, for every w

M 1 . . o 1 .. . 212
mdn{mF(w)(u,Ql,s). W= piys = Saikzsee € WEH(Quye) )

In every cube @, we must solve the problem for fixed w € 2. Then, the
mean value is calculated and the limit of the above sequence as ¢ tends to 0
gives the proper answer. The results jutify numerical procedure which could
be applied to calculation of special cases of the random structure. The very
simple example of layered structures can be calculated analytically in order to
illustrate the result.

3.1. Example

For every ¢ let us consider a plate formed by parallel stiffeners randomly
distributed in a matrix material. The elastic energy of a plate is

Fe(w)(u, A) = /A’[g,@,yg(w,x)u,aﬁ Uyys dridT,
A

(3.4)
ACR? u € WH?(A)
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where

e 2 e
MZpys(w, 1) = g(h (W»-”L'l)) Bapys

N . E
B = B =
1111 22 = T3
~ ~ Ly
Biizz = Baan = 73
Buina = Buram = Barng = Bam = — =
1212 — 1221 — 2112 — 2121 — 2(1 + 1/)

and F denotes the Young modulus, v the Poisson ratio, h¢(w,z)) the width

of the plate changing in z,-direction.
Let us suppose that A®(w,z;) is a random field (here, a stochastic process

because the problem is 1-dimensional) defined in the following way
he(w,a1) = Y XF(w)IE(ar) (3.5)
k=1

where
otherwise

ff(-'n):{(l) if 2, e<hke,(k+De> kez

and X*(w)is the family of random variables defined over the same probability
space (§2,€, P) with £2 = (hy, h2)?, Fig.1.

|

N v .
hy hy hy hy by hy by hy hy By hy ko hl’/g X1
Fig. 1.

The above formulation corresponds to the plate ¢-layers structure of
which is filled with two kinds of materials: matrix (width hg) and stiffe-
ners (width h;), chosen indepedently by Bernoulli’s law. The number 5y
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appears with probability V and the number hy with probability (1 — V).
Under these assumptions we can apply the homogenization theorem. By so-
lving the Euler equation of minimization problem in quadratures and using
the theorem of large numbers (c¢f Dal Maso and Modica (1986)), we get the
energy of homogenized plate

Fo(u, A) = Maﬂ’yé/u,aﬂ Uyys dzidzy (3.6)
A

where

— 2 E h3h3
T3 V(R — A3 1 3

~ 2
= 1/2]\/[1111 + EE[V(I')? — hg’) + h%]

5
[ )
[ )
)

I

Mii22 = My = vMun

Mgz = Mayay = Mgy = Myyyg = [V(R} = h3) + h3]

3(1+v)

The obtained expression depends on two widths h; and hy and the volume
fraction V of the stiffeners (matrix volume fractionis 1 — V).

4. Conclusions

The main theorem applied to the simplest, and in a sense unphysical, exam-
ple (for details see Caillerie (1984)) gives an illustration how to deal with a
random structure. It is clear that explicit calculations are possible to perform
similarly as in the periodic case only in one-dimensional mode of inhomogene-
ity. In general only some approximations (bounds) or numerical calculations
should be performed. Due to the increasing capacities of computers it has be-
come possible to compute the homogenized properties of a random medium by
the simulation of a representative volume element. The basic idea how to do
it correctly in agreement with stochastic homogenization is presented by Sab
(1992). A generalization to a non-simple material is straightforward. From
the practical point of view the main theorem is important for applications in
different plate theories.
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A. Appendix

Let (X,7) be a topological space and F,, h € N, F,: = — R be a

sequence of functions.

We define
r- (T)llm sup Fi(y) = su>h(m) m;lpmth( )
[SEd ¥ — 00
V= (A.1)
Ir=(r) hmmth y) = surp 11m mfmffh( ) yelU
y—-I
where 7(z) is the family of open sets, for the topology 7, containig X.
When
I'~(r)limsup Fy(y) = I'"(7) li]:] inf Fi(y) (A.2)
e y—z
we shall denote their common value by
r(r) Jim Fu(y) (A3)
y—zx
or briefly by
I' () lim Fy(z) (A.4)

h—oco
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We shall say that F = F‘(‘r)hlim Ey, iff
Ve e X F(z)= F"(‘r)hlim Fy(z) (A.5)

The e-Yosida transform of functional [I* € F is the functional T.F € F
defined by

T.F(u, A) = inf{ F(v, A) + %/lv —ulde, ve LR} (A8)
A

or

T F(u,A) = min{FA(v) + %/|u— v|?dz, ve W“(A)?’} (A7)
A

where

Fa(v) = F(v, A) Vv e L*(A)®

Stochastyczna homogenizacja gradientowej teorii sprezystosci

Streszczenie

W ramach metody matematycznej teorii homogenizacji wykorzystano koncepcje
I'-zbieznosci funkcjonaléw calkowych do wyznaczania efektywnych wlasnosci osrod-
kéw gradientowych z losowa mikrostruktura. Gléwnym rezultatem pracy jest roz-
szerzenie 1 uogdlnienie twierdzenia o nieliniowej homogenizacji stochastycznej poda-
nego przez Dal Maso and Modica (1986). Mikrostruktura ma charakter losowy,
konieczne zalozenia matematyczne ograniczaja losowos¢ do tzw. geometril stocha-
stycznie periodycznej. Funkcjonal calkowy bedacy I’ granica losowych funkcjonaldéw
stochastycznych zalezy od drugich gradientéw pola przemieszczen. Pokazano, ze
zbieznos¢ minimow ciagu homogenizacyjnego jest zbieznoscia w prawdopodobien-
stwie. Przyklad plyty Kircholla z losowym uzebrowaniem w 1 kierunku ilustruje zasto-
sowanie sformulowanego w pracy twierdzenia do wyznaczenia zastepczych moduléw
sztywnosci plyty. Zaleza one od udzialéw objetosciowych matrycy i zeber oraz od
wlasnosci sprezystych obu skladnikéw konstrukeji.
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