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Propagation of the harmonic plane waves in periodically stratified fluid-
saturated porous solids i1s considered. lavestigations are conducted on
the basis of the linear homogenized theory of consolidation with micro-
local parameters (cf Matysiak (1992)).
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1. Introduction

In view of their importance in numereous applications to geotechnical engi-
neering, ground water hydrology, exploration geophysics, sejsmology, filtration
and purification and sound absorption engineering, respectively, porous mate-
rials have received great attention in the literature on mechanics. There are
many papers dealing with the development of basic equations governing beha-
viour of these materials as well as the matliematical analysis of the phenomena
described by these equations (cf Biot (1941), (1956); Biot and Willis (1957);
Crocket and Naghdi (1966); Derski (1979); Derski and Kowalski (1978); Lui-
kow (1966); Paria (1966); Schneider and Bowen (1977); Zareckii (1967)).

This paper deals with the propagation of plane waves in a stratified fluid-
saturated porous solids. The nonhomogeneous body under consideration in a
natural (undeformed) configuration is composed of periodically repeated two
elastic layers permeated by a network of interconnected pores filled with fluid.
Perfect bonding between the layers is assumed. The inwestigations are con-
ducted on the basis of the homogenized model with microlocal parameters (cf
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Matysiak (1992)), in which the equations are given in terms of unknown ma-
crodisplacements of the skeleton and fluid as well as certain extra unknowns
called the kinematical microlocal parameters of skeleton and fluid. The homo-
genized model was derived by using the linear theory of consolidation given
by Biot (1941), (1956), Biot and Willis (1957), Derski (1979). Following Biot
(1957), Biot and Willis (1957) the homogenized model consists of two super-
posed continuous phases, each fiiling separately the whole space occupied by
the aggregate.

The problems of wave propagation in a fluid-saturated porous medium
composed of an elastic homogenous isotropic matrix permeated by a network
of interconnected pores filled with liquid were considered by Biot (1956),
(1962a,b), Dziecielak (1980a,b), Kosmatka (1976), Mynett and Mei (1983),
Mokryk and Pyryev (1985), Koniczak (1992). The problems of shear waves in
multilayered medium were considered by Koficzak (1989). The homogenized
model with microlocal parameters was applied by Jakubowska and Matysiak
(1987), Bielski and Matysiak (1992) to some problems of wave propagation in
the periodically layered elastic bodies.

The obtained solution can be used in solving some problems of geophysics
(e.g., wave propagation in varved clays (cf Kaczyiiski and Matysiak (1993)),
thin-layered limestone, sandstone shale).

2. Basic equations

Consider the nonhomogeneous body which in a natural (underformed) con-
figuration is composed of periodically repeated two fluid-saturated porous ela-
stic layers (see Fig.1). Let 0z;2223 be the Cartesian coordinate system such
that the axis is 2z normal to the layering. Let [y, I3 be the thicknesses of
layers, and § be the thickness of each repeated unit of the body, so § = [1 +1,.
Let j denote the density of free fluid and p(1), p(2) be the densities of ske-
letons and non-free fluid of the subsequent layers. By N M) R Q6)
i = 1,2 we denote the porous media constants and by b i = 1,2 the dissi-
pation coefficients of the subsequent layers, respectively. Let ¢ denote time,
u(z,t) = [ui(z, 1), ua(z, 1), uz(z,t)] be the displacement vector of skeleton and
U(z,t) = [Ui(z,1), Us(z,1), Us(z,1)] be the displacement vector of fluid.

According to the results given by Matysiak (1992), where the governing
equations of the homogenized model with microlocal parameters are derived,
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Fig. 1.

the displacement vectors are assumed as follows
ui(z,t) = wi(z, 1) + l(22)q(2,1)
- (2.1)
Ui(z,1) = Wiz, 1) + l(22)Qi(z, 1) 1=1,2,3

where [(-): IR — IR is a é-periodic continuous function known a priori,
called the shape function, given by

l(z2) = { Ty — 711 for 0<2a, <1

22'2 %1+T_L for Ly £z2<9

l(z2) = l(z2 + 6)

where
_h 2.3)
M=% (2.
The functions w,(-), Wi(-) are unknown and interpreted as the compo-
nents of macrodisplacement vector of the skeleton and fluid, respectively. The
unknown functions g¢;(-) and Q;(:) stand for the microlocal parameters of
skeleton and fluid and correspond to the stratified material structure of the
body.

7 — Mechanika teoretyczna
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Using the following notations

f=nfi+1-0)f

[f]=n(h - f2) (2.4)
. 2
f=nh+ 177 fa

-n

for an arbitrary §-periodic function f(-) taking a constant value in a layer of
the ith kind (¢ = 1,2) and by substituting into Eqs (2.4) for f; the values of
the é-periodic functions p, N, M, i, (), b we obtain all the material modulae
of the homogenized model with microlocal parameters (cf Matysiak (1992}).

Following the results given by Matysiak (1992), the governing equations of
the homogenized model of periodically two-layered fluid-saturated bodies take
the form (in the absence of body forces)!

Nwigj + (N + M+ Qwii + (@ + Wi + [Naiz + (M1 + Q1) g2 +

HINVgsi62 + ([Q1 + [R1) Qe = pwie + b(wiy = Wiy)
(2.5)

Qujji + RW; ji + Qg2 + [R] Qo = Wi — b(wi — Wiy)

and

~2[N|Rwz 2 + ([Q1Q — [MIR)w;, + ([RIQ - [QIR)W,,

e MR- Q?
0 2NVQwap + (QUMI - MIQY)w;,; + (QIQY - MIR])W;;
2 = PN =
MR- Q? (2.6)
Q= —%(wm + wa1)
(V]

= —‘T(’CU2,3 + 1[)3'2)

N
Substituting the microlocal parameters given by Eqs (2.6) into Lgs (2.5) we
obtain six linear partial differential equations with constant coefficients for

macrodisplacements of skeleton and fluid and this system will be considered
in the next sections.

'Summmation convention holds for the repeated indices and f;, = 9f/0z,
fy’ = 8f/8t, 53‘]' =1 for i:j, 5,']' =0 for 7:,'5]
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Following to results of paper (cf Matysiak (1992)), stresses and fluid pres-
sures in the subsequent layers are expressed by the macrodisplacement vectors
of skeleton and fluid as well as the microlocal parameters. It is emphasized,
that since |l(z3)| < é for every w3 € IR, then for small § the underlined terms
in equations (2.1) are small and are neglected (see for an exact explanation in
paper of Wozniak (1987)). However, 5(+)is not small and the terms involving
[ 2(+) cannot be neglected. It leads to the following approximations

U o Wi o ;o ~ Wwio + 1 2g;
Ui = Wi o Ui > Wio +120Q; (2.7)
Us g = Wiy Ui,t ja- Wi,t

and a € {1,3}, 7€ {1,2,3}.

3. Harmonic wave propagation

Consider now the problem of plane harmonic wave propagation in an ar-
bitrary direction through an unbouned, periodically layered f{luid-saturated
porous body. To derive the dispersion equation, the homogenized model with
microlocal parameters presented in Section 2 will be used.

We are looking for the solution of the equations of homogenized model in

the form
{w, W} = {wk, W*}expli(kn z; — wt)] (3.1)
where
wi, W* -~ constant amplitudes of the macrodisplacements of ske-
leton and fluid
k - wave number
w — circular frequency
n; ~ components of the unit vector determining the direc-

tion of propagation, j =1,2,3.

In Eq (3.1), which represents the harmonic waves, constants k and w are
complex quantities, so the lenght is 27 /Re k, the phase velocity is w/Re k
and the period is 27 /Re w. Now we shall investigate the following problems
of wave propagation.

3.1. Propagation of the waves normial to layering

Let the macrodisplacement vectors w, W and the microlocal parameters
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¢, @ be dependent on the variables (z;,7) only. Then, eliminating the micro-
local parameters from Eqs (2.5) (by using Eqs (2.6)) we obtain the following
system of formulas for macrodisplacements w; and W;

Lij(al‘,‘,ai)wj(wi,i) + IVfij(aIi,ai)Wj(l‘,’,t) =0

(3.2)
Nij(0ai, dt)wy(ar, 0) + Riy (D, D)Wi(zi,1) = 0
where
Li;(9;,00) = 1;;02% — 502t — bt
M;;(dzy, dt) = 6;5m;;02% + bt
Nij(0z;,00) = bi;mi;0f + bt (3.3)
Rij(9wi, 0t) = b;yri;0uf — pO*t ~ bot
i,j=1,2,3

and l;;, m;;, n;j, ri; are constans, which will be determined seperately for the
considered wave types.

3.1.1. Longiludinael waves normal to the layering
For waves of this type the field variables are of the form
{wq, Wa} = {wi, Wi exp[i(kzy — wi)] (3.4)

while other field variables vanish identically. The above assumptions and Eqs
(2.5) (after elimination of the microlocal parameters by using Eqs (2.6)) lead
to Eqs (3.2) together with the notations given by Eqs (3.3), where i = 2,
j = 2 and

by = 2N + M + @ + (2[N]+ [M] + [Q1)m + (1Q + [R]) 72
ma = Q@+ R+ (2AN] + [M]+ [Q)) s + (1Q1 + [R] )74

nag = C? + (@1 + [R]v2

rop = B+ [Qlys + [Rlha

1= (~2[NJR +[Q1Q - [M]R)y™! (3.5)
(2071 + QIal - M Q)7

([R1Q - [QIR )~

(Q1Q1 - MIR])Y"

— ~

=MR-Q*

|

i

Y2

1l

T3
Y4

>

-2
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Substituting Eq (3.4) into Eqs (3.2) we obtain two algebraic equations in
amplitudes w¥, WF in the form

Loo(ik, —iw)wE + Moa(ik, —iw)WE = 0
(3.6)
Noo(ik, —iw)wi + Rao(ik, —iw)WFE = 0
where Lgo, Mo, Noo, Ry are determined in Eqgs (3.3) by substituting constans

ik, —iw for differential operators Jz; and 01, respectively.
Eqgs (3.6) yield the amplitude relation

wi _ My(ik, —iw)  maggh? +ibw (3.7)
ng L22(ika —i(.U) 1221»‘2 - ﬁuﬂ - 15(4.) -
and the frequency equation
kY — k2(022w2 + iaglw) + (104(4)4 + 1(1030.)3 =0 (38)
where
_ praa+ plae
Qg2 =
laa799 — Maanay
~ lag + mag + nop + 722
az =0 lo97T99 — Magn
22722 22722 (3.9)
dos = b
laro2 — Magnagy
ap3 = 5 pEp

l29799 — Maan2g

Assuming that w is a real constant Eq (3.8) has then the roots ki, £k,

where
Y .
ky(w) = \/;\/azzw + iag; + 1/ N2(w)
(3.10)
w .
bafw) = [ 2z + 01— \/2()
and
wj:Eiwé:l:wé2 w(})?:Q\/p_2 wé:—p—3
P D2
P = (1%2 - 4(104 P2 = Q22021403 — a%lam - (L(2)3 (311)

P3 = G22a2;1 — 2Q03
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Denoting by

w
Re kn(w)
where V,(w) is the phase velocity and 7,(w) is the attenuation coeficient.
We have

Va(w) = M(w) = Im &, (w) n=1,2 (3.12)

kn(w) = % +ina(w) n=1,2 (3.13)

The solution to the considered problem of longitudinal waves propagating in
the direction normal to the layering can be written in the form

wy(22,1) = wy eXP[—m-”Cz - iw(t - %)] + wy exp[mxg - iw(t + —;—T)] +

{M/; exp[—ngzz — iw(t — %/—z)] +

Mgg(ikg, —iw)
ng(ikz, —iw)Vz

+Wy exp[nz-’cz —iw (t + ‘z/_z” }

(3.14)
Wy(zo,1) = —%g—zg;%%{w.} exp[—mzz - iw(t - :—Z—)] +
oz xplouss -1+ )]+
+Wi exp[—n2(l‘2 - iw(i - %)] + W5 exp [7721'2 - iw(t + -;C/—z)]

The solution given by Eqs (3.14) contains two types of harmonic waves:
modified elastic waves and modified acoustics waves corresponding to the expo-
nents 1+ zo/Vy and 1+ z2/Va, respectively. The superscripts (-)* and (-)~
are correspond to the wave moving in the positive and negative directions,
respectively.

The phase velocity V,(w) presented in Eqs (3.12) and (3.10) is subjected
to dispersion. The attenunation coeficient 7, and the phase velocity V,, are
functions of the reduced frequency w.

Remark. The behaviour of the wave number range at the extremes of w
may be predicted from Eqs (3.10) and (3.11). It leads to the following
relations

k(W) ~ = i 4+ 0w ™) w— o0
* (3.15)

ko(w) ~ gi—kin_ + O(w™) W — 00
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and
kl(w) ~ i\/ —iw\/(121 (1 + O(u)))
(3.16)
w Lo, 3
ko(w) ~ —— + —iw?pus + o(w?) w—0
Co 4
where
2 1 cd—c2
g = | ———— + = &
azy + /p1 n 2ncx ¢ — 2
(3.17)

210 agq as

2 2 2y .2 2 1

pe = —-(cg—ci)(e —¢ N = — co=/—
0= "3 4 ) 03 o
It can be shown that
c_>cg>cy >0 n>0 (3.18)
3.1.2. Transverse waves normal to the layering
For the waves of this type the field variables are of the form
7=1,3
(3.19)

{w;, W;} = {w'i, I/V]-i} expli(kzy — wt)]

we = W2 =0
Eliminating the microlocal parameters from Egs (2.5) by using Eqs (2.6)
we obtain the system of formulae for macrodisplacements in the form given

by Eqs (3.2) and (3.3) where

2
lj=N~M Mg]‘:bf)t
N (3.20)
Ngj = ‘1;(91 R2]' = —5(921 —’I;({)t 7=13

Substituting Eqs (3.19) into Eqs (3.2) we arrive at the following frequency
equation B

— k2(pw 4 ib) + boaw? + ibosw? = 0 (3.21)

where N
. (545
bos = p_p bos = (pl? P (3.22)

) 2
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The roots of Eq (3.21) are k3 and —*k3, provided that

b ib
ky = w, [t o3 (3.23)
pw + ib

The solution to the considered problem of transverse waves propagating in
the direction normal to the layering takes the form

w;(22,1) = w} exp|-nyzs — it - %)] + wy expneay — it + 2]

V3
) _ ig + . . T2
Wi(zo,t) = ot ig{W'j exp[—ngmg —iw (t - —%N + (3.24)
X T
+W; exp [7’]3.’[2 — 1w(t + ﬁ)]}
where 7 =1,3 and
: w
= - — = = I k «
Vs = Va(w) Re fa(w) 73 = n3(w) = Im k3(w) (3.25)
Remark. From Eq (3.23) it follows that
w o, .
kg(w)Nz+l7]o+O(w ) w — 00
(3.26)
w1, 3
k3(w) ~ — + —iw*py + o(w”) w—0
Co 4
where
la; 2p* =
Cc = - = —/ly; + 3.27
p+p 1 i 2](/) P) ( )

3.2. Propagation of waves in the direction of layering

We assume now that the macrodisplacement vectors w, W as well as the
microlocal parameters ¢, @ depend on the variables (z;,t),j=1o0r j=3.
Eqgs (2.5) and (2.6) reduce to the form given by Eqs (3.2) and (3.3) provided
that ¢ =1,3,j = 1,2,3. So, we have the following cases.
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3.2.1.  Longiludinal waves in the direction of layering

For the waves of this type we have

{w;, W;} = {w]-i,l»V]-i}exp[i(kwj — wt)] =1 or =3
(3.28)

{’U)g, I/Vg} == {0, 0}

The wave equations are obtained {rom Eqs (3.2) and (3.3), where ¢ = j =1
or i=j=3and
L= 2N + M+ G+ ([M]+ [Q1)8: + (IQ) + [R]) 52
mi; = Q + R+ (IM]+1Q1) s + (IQ) + [R]) 74

nj; = Q + [Q151 + [R)B:
Tii = T22 (3.29)

B = ([Q)Q - [MIR)y™!
B2 = (QIM] - MQ]) 7™

Substituting Eqs (3.28) into Eqs (3.2) together with Egs (3.3) and (3.29) we
arrive at the frequency equation

kY — k2(C22w2 + iweag ) + C04(JJ4 + iCogUJs =0 (330)
where
__Lijptriip
62'2_[.. B o
73T — MyiNy;
_ gl it my g
= lijri; — mjjng;
(3.31)
Co4 = ! ; i .
335 — MyNy;
C03:5 p+p j=101‘j23

Li5mi5 = M5y,

The roots of Eq (3.30) are given by Eqgs (3.10), (3.11), (3.15), (3.16) and (3.17)
provided that the constants aqs, a2y, agy, ags are replaced by ¢29, €21, €g4,
¢o3 given in Egs (3.31) and (3.29).
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3.2.2. Transverse waves in the direction of layering

For the shear horizontal waves in the direction of layering we have

{wj, W;} = {w, Wi} expli(ha, — wt)] j#n jyne{l,3}
(3.32)

{’(UQ, W2} == {0, 0}

Substituting Eqs (3.32) into Eqs (2.5) and (2.6) we obtain the system of equa-
tions in the form given by Eqgs (3.2) and (3.3), where

ljn = ﬁ L,‘j = ljnaiv? — ﬁaQt — Eat
M;, = pot N, = bt (3.33)
Ry = —pd*t — b0t j#n jne{l,3)

By analogy to Case 3.1.2 the frequency equation takes the form

— k2 (pw + 1b) + dosw?® + idozw? = 0 (3.34)
where N
. 545
dog = ?VTP do3z = M (3.35)

The roots of Eq (3.35) are k3, where k3 is given in Eq (3.23) provided that
the constants by, bos are replaced by the constants do4, dos, respectively.

4. Final remarks

The present paper is devoted to the problems of plane harmonic waves
propagating in the periodically stratifield fluid-saturated porous infinite so-
lids. The exact solutions of the considered problems within the framework of
the homogenized model with microlocal parameters have been obtained. The
dispersion relations for harmonic waves propagating parallel and normal to
the direction of layering have been presented. The wave number ranges at the
extremes of the circular frequency has been discussed.

Assuming that the skeleton is homogeneous so

(p(]),N(l),M(l),R(l),Q(l),b(l)) - (pm,Nm,M(Q),Rm,Q(z),b(Q)) (4.1)

then Eqs (2.6) yield
Q=¢p=0p=0Q=0 (4.2)
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Substituting Eq (4.2) into Eqgs (2.5) and using Eq (4.1) we arrive at the equa-
tions of the theory of consolidation for the case of homogeneous elastic skeleton
(cf Derski (1979); Derski and Kowalski (1978)). Assumptions (4.1) together
with the obtained solutions given by Eqs (3.14), (3.24) as well as the frequency
equations for all considered cases lead to the case of homogencous skeleton.
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Propagacja fal plaskich w nasyconych ciecza porowatych osrodkach

warstwowych

Streszczenie

W pracy rozpatrzono zagadnienie propagac)i plaskich fal harmonicznych w nasy-
conych ciecza porowatych osrodkach warstwowych. Analiza zostala przeprowadzona
wykorzystujac linlowa homogenizowang teorie konsolidacji z parametrami mikrolokal-
nymi (Matysiak (1992)).
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