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The paper presents a theoretical model for two-phase liquid-vapour flow.
The model is applied to description of the condensation within the shock
wave region. Also, the experimental results of water-vapour flow with a
stationary shock wave are presented where particular attention is paid
to the measurements of flow parameters within the shock wave. The
results of experiments support. the assumptions accepted in proposed
theoretical model.
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1. Introduction

The two-phase flows define a very wide category of flows. The paper con-
cerns two- phase one-compouent flow where the mixture of liquid and its va-
pour is a flowing medium. Most often this type of medium can be found
in power plants, chemical installations as well as in high-pressure safety sy-
stems. That is why the engineers and designers of these systems endeavour to
find an appropriate description of liquid-vapour flows. However, the reliable
description of these flows requires compreliensive knowledge of accompany-
ing phenomena and provides the rescarches with an incentive to undertake
research projects into the nature of two-phase lows.

Two aims are pursued in this contribution. Iirst, the paper presents a
broad account of the results of experimental investigation into stationary shock
waves in the water-vapour mixture. To the best of our knowledge these results
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are unique in the literature. Sccond, a simiple mathematical homogeneous
model of two-phase [low within the shock wave region is presented. The model
gives averaged distributions of lfow parameters inside the region. The use of
this model is generally justified in the case of bubble flow and may be extended
to describe the flow with foam structures. In the case of bubble flow, the
slip and temperature difference between the phases in the shock region is a
considerable source of entropy production due to the viscosity and thermal
conductivity of the liquid surrounding the bubbles. These effects, taking place
in the mezoscopic scale. namely in the boundary layer around each bubble
present in the flow, are reflected in the macroscopic scale and may be described
by dissipative terms in the homogencous model.

Those phenomena can be explained if (he wavy properties of two-phase
low are taken into account. The wavy nature of the flow becomes particularly
conspicuous in transonic or critical flows occurring very often due to the fact
that the critical velocity of the two-phase media is relatively low and for bub-
ble flow equals several dozens in/s, Bilicki (1996a). An additional feature of
two-phase flows consists in relatively long relaxation times for the exchange of
mass, momentum and energy between the phases. These relaxation times 8
determine the rate at which two-phase systems revert to the state of thermody-
namic cquilibrium. If the relaxation time 8 is of the same order of magnitude
as the characteristic time for this phenomenon 4, then the nonequilibrium
processes should be accounted for in the description of two-phase flow. Ior
example. the time @ during which a fluid clement of the two-phase medium
passes through a region of strong pressure gradient due to a shock wave of
length 20cm is about [072s. The characteristic time ¥ for the phenome-
non of expansion in the vicinity of a throat in a convergent-divergent channel
during two-phase flow at an around-critical velocity is of the same order. In
both cases the thermodynamic nonequilibrium should be taken into considera-
tion while describing the flow. Otherwise, the obtained profiles of parameters
and their evolution are far [rom the reality even qualitatively. It is believed
that the thermodynamic nonequilibriwun is important for flow modelling if the
Deborah number defined as (cf Nestin (1993))

v
De = 3
is De > 0.1.

This paper deals with lows where De > 0.01. Thermodynamic nonequ-
ilibrium in two-phase [lows means that the average or local temperatures of
the liquid 77 and the vapour 1) are not the same and that the average or
local hydrodynamic pressure /" in the two-phase medium differs from the
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corresponding thermodynamic pressure  F. Due to the difference between
the temperatures ol the liquid and the vapour the actual dryness fraction =z
differs from the equilibrivm dryvness fraction 7. The actual dryness fraction
is an easily measurable quantity. In practice, it is impossible to measure the
difference between the pressures P and  P*. The latter can be measured
using a manometer or pressure tube and is cqual to the former only in the
case of incompressible media. that is when the velocity divergence disappears,
which does not occur in two-phasce flows. The difference between P and P*
is proportional to the divergence of the baryeentric velocity of the two-phase
system and the linear cocfficient is called the second viscosity (. The second
viscosity can be sometimes larger than the molecular viscosity u, especially
for dense compressible media like two-phase media, see Landau and Lifszic

(1958).

Irreversible thermodynanic transitions which take place in the fluid ele-
ment alter withdrawing external forces bring the system back to the state
of thermodynamic equilibrinm. These irreversible therinodynamic transitions
occurring during two-phase flows are the source of entropy production. It is
an important research problem how to put thent into the governing equations
of two-phase flows. The problem is of particular significance in view of the fact
that the two-phase mediuni. as a rule. is a non-continuum described by means
of equations for continua. During the transformalion from the non-continuous
to continuous system it is necessary to preserve characteristic features of the
two-phase systemn including the factors responsible for dissipation of energy
due to irreversible thermodynamic processes. [rom this point of view the
two-phase medium can be treated as a continuous medium with an internal
structure. Let us now investigate to what degree the internal structure of two-
phase flow can be represented in the description of two-phase low by means
of a continuons model. Let us demonstrate two different cases.

The first one is the flow of a liquid undergoing spontaneous evaporation.
This flow is referred to as flashing flow and is described by means of a continuos
relaxation model. The therinodynamic nonequilibrium due to the temperature
difference between the phascs is pronounced by the difference between the
actual and equilibrium dryvness fractions. It can be anticipated that this type
of thermodynamic nonequilibrium is decisive for the properties of the two-
phase one-component flow through the nozzle.

The second casc is the two-phase bubble flow through the stationary shock
wave where the condensation takes place. In order to describe this case two
sources of energy dissipation are distinguishied. The first source is due to the
shear stress and the second one due to the heat conduction along the flow.
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2. Modelling of two-phase flow by means of a continuous
relaxation model

In order to describe multi-phase flows, including two-phase flows, the me-
thods of continuum mechanics, see Truesdell and Noll (1965), are widely ap-
plied and transferred onto the grounds of multi-phase flows by incorporating
the concept of a multi-velocity continuous medium and mutual penetration of
different phases. In the case of two-phase media this resolves itself into the
assumption that a given point in space can belong to both phases, each phase
laving its own velocity and different physical parameters including density,
specific enthalpy and temperature. In keeping with the properties of conti-
nuum the parameters of cach phase make up continuous fields. This method
is used by the so-called two-{luid model widely used for modelling two-phase
media. A disadvantage of this model is the fact that it requires 56 closure equ-
ations in a one-dimensional approach and -I8 in a two-dimensional approach,
see Drew and Wood (1986). Thercfore, it is worth looking upon the two-phase
medium from a different point ol view as a continuum with an internal struc-
ture. This concept seems (o be a valuable alternative for the two-fluid model.
Besides, the same transformation procedure from the non-continuous to con-
tinuous medium can be applied beariug in mind that an infinitesimal fluid
element comprises both phases and its properties reflect its structure, Bilicki
(1983). This way the physical properties of the two-phase medium; like, the
relaxation time @, thermal conductivity, viscosity will carry weight of opera-
tive quantities depending on the structure of two-phase flow, or generally on
the internal structure described on the mezoscopic level, Bilicki (1996b).

The simplest model treating the two-phase medium as a medium with
the internal structure is the nonequilibriwn relaxation model (HRM) put for-
ward by Bilicki ¢t al. (1990). The model incorporates the thermodynamic
nonequilibrium in the form of difference in the local temperature between the
phases Tj and T, at the infinitesimal level ol a two-phase fluid element. Due to
the temperature difference. the local dryness fraction z defined at the same
infinitesimal level has a dillerent value than the corresponding equilibrium
dryness fraction 7. The above model with respect to one-dimensional flow
through a channel is described by the following equations:

— Tlie mass conservation cquation

Dp dw  pwdA

IR A -
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— The momentum conservation equation

D or ('r
i R 2.2
TR R (2:2)
— The energy conservalion equation
ph-ypr_ Crw (2.3)
Dt 1 Dt /)/l
— The evolution equation for the dryness {raction
D r—r
TR (2.4)
where n p
St 2.
pDeoot T Jz (2:5)

The evolution equation (2.-) originates from the theory of internal parame-
ters which enables one to obtain the relationships for the internal parameters
describing thermodynamic nonequilibrivin of the medium, Bilicki (1994). In
the case of HRM, the actual dryvness fraction 2 assumes the role of an internal
parameter. According to this theory. an internal parameter «; is linked to
other thermodynamic parameters «; ol state, including the temperature of
medium 7, and their gradients and high-order derivatives, generally by means
of a first-order differential cquation with respect to time

= (T o0 a;,. NT,Va;,...) (2.6)

The following quantities appear in the above equations: the barycentric
velocity 1w expressed by the formula

N .
o o v)zww,w’g 2.7)

where the subscript [ stands [or the liquid, g for the vapour and ¢ is the
void fraction (the volume ratio of the vapour phase in the fluid). The void
fraction is related to the dryvness fraction by the formula

p=-L (2.8)
Py

where the density of two-phase medinm p s

=il = @)+ pye (2.9)
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The other quantities in I5q (2.6) are the thermodynamic pressure P, en-
thalpy h, cross-section of the channel Al wall shear stress 7

= %‘[u)?p (2.10)

where f is an empirical friction coefflicient.
The state equation accounting for thermodynamic nonequilibrium in the
present model is of the form

h=hip, Pa)=ah"(P)+ (1 —a)h[P,TL(P,p, )] (2.11)

where A" is the enthalpy at the saturation line z = 1, in keeping with the
assumption that the vapour phasc is under the satnration conditions. The
other quantities, like p” are also assumed to correspond to the saturation line
@ = 1. The above set of equations has to be supplemented with an expression
for the relaxation time #,. Such expressions in the form of correlations were
worked out by Downar-Zapolski (1993) and Downar-Zapolski et al. (1996).
Besides, also based on experimental data, the superheat of the liquid necessary
for the onset of flashing was established. 1t was found that this superheat in
the Moby Dick experiments carried out by Reocreux (1974) was between 2.5
and 3.0K.

It should be underlined that the results of calculations by means of HRM
agree well with the Moby Dick experiments, see Bilicki et al. (1990). A
comparison of theoretical and experimental results is presented in Fig.1.

The physical properties ol HRM were discussed in detail by Bilicki and
Kestin (1990), with an analvsis of entropy production in the two-phase medium
described by HRM. It was established that the entropy production due to the
thermodynamic nonequilibrium is

Ds Da M, —p)?  prDeN2_ prx—T\2
T— = —(py —p)—— = —L— =] = 2.12
Dt gz =~ =175 » z(m) 1( 0, ) (212)
where
{ - phenomenological coellicient
fgott — chemical potentials of the vapour and the liquid, respec-
tively.

During expansion the chemical potential of the superheated liquid is always
higher than that of the vapour, which gives rise to the production of the vapour
phase in the two-phase medimn. that is Da /Dt > 0. The entropy production
due to the thermodynamic nonequilibrium (2 # 7) depends on the relaxation
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I'ig. 1. The comparison ol nmmerical investigations and Moby Dick experiments
(run 402); G = pw = 6496 kg/in*s, 7" = 116.7°C; P., — measured pressure
distribution, Py, — [[RM-calculated pressure distribution, 8 — calculated relaxation
time 0., o — measured void fraction (Bilicki et al. (1990))

time @, and the level of thermodynamic nonequilibrium. The total entropy
production in the two-phase medinm described by HRM equals

Ds  1Cw prae—7T\2
T = - 2.13
/ D1 Ap /( 9, ) ( )

The first term on the right-hand side of Eq (2.13) is due to the friction against
the walls and is usually negligibly small compared to the entropy production
due to the thermodynamic nonequilibrinm.

In order to find the relationship between the relaxation time and the inter-
nal structure of the medium. Bilicki et al. (1996a) made an effort to evaluate
8. in a theoretical wav.

Now let us concentrate on the second case that is the stationary shock
wave.
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3. Experimental setup

In the experiment, the stationary shock wave is observed during the super-
critical water-vapour flow in a vertical straight tube past an expansion nozzle.
The flow velocity decreases with the distance and takes subcritical values in a
narrow region, where a significant pressure rise and intense condensation are
observed. Concluding, in this region a shock wave of finite width and complex
internal structure appears. This shock wave is called stationary because its
strength and width do not vary in time provided that flow conditions before
the expansion nozzle are kept constant. The location of the shock wave, i.e.
the distance from the nozzle, is also lixed under such conditions.

8

platform

Fig. 2. Scheme of the experimental stand: | - pump system, 2 - flow rate control
valve, 3 - flow meter, 4 — expansion nozzle, 5 — test section, 6 - air escape,
7 - heater, 8 — excess water tank, 9 - cooler, 10 - drainage valve, 11 - filling valve

A schematic diagram ol the experimental setup is shown in Fig.2. Essen-
tially, the stand consists of a closed-circuit pipeline filled with water. The
circulation of water in the circuit is induced by a system of two pumps (1)
connected in a series to obtain the required llow rate. The flow rate is con-
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trolled by a valve (2) and the actual volumetric flux is measured by a rotary
meter (3). An expansion nozzle (1) is located at the beginning of a vertical
downward flow. The diameter of the throal, equal to 14.3 mm, was chosen
in a way to cause a pressure drop and spontancous boiling of the liquid. Si-
multaneously, the velocity of the flow increases. The resulting supercritical
two-phase flow may be observed in a perspex tube (5) of internal diameter
32mm. A heater (7) and air escape (6) are used to remove dissolved gas {rom
the water. An excess water tank (8) assures complete fill of the loop. The
constant temperature of the circulating water is maintained with the help of a
cooler (9). Valves (10) and (11) arc used for filling and emptying the pipeline,
respectively.
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Fig. 3. Arrangement of the measurement points: P - pressure, T - temperature,
© - void fraction

The shock wave, which forms in the test section (5) for a sufficiently high
flow rate, separates the two-phase [low from the flow of the liquid. Six pressure
sensors are installed in the region where the shock wave is located. The arran-
gement of measurement points is given in 1"ig.3. At cach point the pressure
can be measured by a U-tube mercury manometer or by piezoelectric sensors
PCB HM 105. The U-tube manometers are used to measure the average static
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pressure. Fluctuations of the mercury level up to 60 mmHg were observed at
some points located inside the shock wave. The piezoelectric sensors are used
to record instantaneous fluctuations of pressure relative to the average value.
The output from the sensors is recorded by means of an analogue-digital acqui-
sition system at the maximum sampling frequency of 500kHz. The maximum
length of a record is 65536 samples with resolution of 12 bits.

Besides the pressure, additional measurements of the temperature and void
fraction can also be taken at two points, located at low and high pressure sides
of the shock wave (see Fig.3), respectively. The used thermocouples allow the
determination of temperature with the accuracy of 0.5°C. The average void
fraction is measured with the use of a capacity sensor, Jaworek (1991). This
technique enables the estimation of the average void [raction in the channel
section of approximate length 100 mm with accuracy of 10%.

4. Experimental results

The location and strength ol shock wave depends on the actual flow rate,
the temperature of the circulaling water and - to a degree — on the atmospheric
pressure, Lor the present configuration, the distance between the expansion
nozzle and the shock region. and thus the length of a stretch where the two-
phase flow is observed, is about 0.8 at maximum. During the measurement
series the flow paranmecters helore the expansion nozzle are kept constant, so
the location, strength and width ol the shock wave are also constant. The
shock wave is placed in the section covered with the sensors when the flow
rate G ranges from 0.278 to 0.287m?/min. The shock strength does not
change significantly in this range ol llow rate; the pressure rise is then equal
to 1.5 bar and the shock width is about 0.2m.

The profile of average pressure. obtained for G = 0.2835m?/min and the
average temperature of water 7y = 20°C, is shown in Fig.4. The void fraction
in the two-phase flow before the shock region. at the distance of 0.4m from
the nozzle, was about 0.3. luside the shock wave intense condensation of the
vapour takes place. The void fraction in this region drops below 0.1. A dozen
of centimetres past the shock wave it equals almost zero and few bubbles are
visible there. The temperature dillerence on both sides of the shock region is
below the measurement accuracy. i.e. is less than 0.5°C.

When the measurements of average pressure were completed, the U-tube
manometers were replaced with piezoclectric sensors and pressure pulses were
recorded. The pulse amplitude and frequency ol occurance depend on the
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Fig. 4. The profile of average pressure measured in the stationary shock wave;

G = 0.2835m3/min, T, = 20°C. The intervals indicated on the curve show the level
of pressure fluctuations measured by U-tube manometers. The points P1 = P6
denote the average pressure during the measurements of pressure pulses,
shown m Fig.5 and Tg.6

location in the shock wave. The points where the pulses were observed are
plotted in Tig.4 against the average pressure. Typical records of pressure
fluctuations at these points are presented in Fig.5 = Fig.8. Similar records were
obtained in experiments on noise generated by travelling cavitation (Kumar
and Brennen (1993)). Therefore, it is considered that the pressure pulses are
produced due to the collapse of vapour bubbles passing through the shock
wave region. During the final stage of the collapse a spherical shock wave is
generated that propagates through the two-phase medium and can be detected
as a sharp high pressure pulse wlen it reaches the sensor. It follows from Fig.5
and Fig.6 that most of the bubbles collapse inside the shock region when the
average pressure in their vicinity reaches a value of about 0.5 + 1.0bar. The
amplitude of some pulses in this region may exceed 70bars. The time interval
between the pulses is of the order of 10 + 100ms. The pressure pulses are
also present at the low and high pressure edges of the shock wave but they are
generally of smaller amplitude and do not occur so frequently.

A more detailed view on the shape of the pulse is given in Fig.7 and
in Fig.8. As in the case of bubble cavitation, two features of the pressure
pulses are recognised: rebounding and multipeaking. The rebounding refers
to an observation that the main (high) pulse is usually followed by a smaller
one. This is due to the fact that the collapsing bubble does not disappear
immediately but reappears for a short time as a growing bubble that soon

5 — Mechanika Teoretyczna
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IFig. 8. An example of multipeaking. Two peaks of amplitude about 70 bars and
30bars, respectively, can be distinguished in the main pressure pulse

starts to collapse giving rise to generation of a weaker secondary pulse (see
Fig.7). The duration of the main pulse is about 0.04 + 0.06 ms. The time
between the maximum peak in the main pulse and the maximum peak in
the rebound pulse ranges from 0.5ms to 2.8ms. The multipeaking can be
recognised in Fig.8, where it is seen that the main pulse consists of two peaks.
According to Kumar and Brennen (1993), multipeaking can be the result of
several mechanisms: (i) — the collapsing bubble generates microjets that are
the source of multiple pressure waves; (i1) — the bubble breaks up into several
pieces while collapsing; (iii) — the volume oscillations of the bubble during its
collapse give rise to multiple peaks. These explanations are based on high-
speed photography of the collapsing bubbles taken by several researchers.

5. Simple mathematical model

The parameters of the flow across the shock wave, averaged over a time
interval greater than the duration of the pressure pulse, are constant. Thus
the shock wave may be regarded as a steady phenomenon. Let us assume
that the two-phase medium is considered to be a homogeneous mixture and
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that the flow is one-dimensional. With those simplifications the structure of
the shock wave may be described by the theory originally derived to analyse
a normal shock wave in viscous and thermally conductive gases (cf Whitham
(1974)). When the mass force is neglected. the fundamental equations of mass,
momentum and energy balance in the gencral case of one-dimensional flow are
in the form

dp 0

o T =0

d d 4 o
8—t(pu) + %<pu2 + P - T L) =0 (5.1)

%(%puz + pe) + a—d{[(—l—u + (J)/)u + Pu — ﬁ

where

— density
- velocity
pressure

— specific internal energy

N R D
«

— temperature
i, A —  coefficients of dynamic viscosity and thermal conducti-
vity, respectively.
These equations take a stationary form in the {rame moving at the velocity
U of the shock wave. In this new frame the spatial coordinate is calculated
from

r=a-Ul (5.2)

Hence 9 / 9 J
, Yy _ 4 '
ot -t dz dx  dz (53)

and the balance equations can be easily integrated

—Up+pu=A4
=U(pu) + (p'u2 +P - ﬂuzi[) =B (5.4)
U( —pu? + pe) + [(éu? + e)p'u + Pu — %pu(?% - /\g—f] C

where A, B, C are integration constants. Defining the relative velocity
w = U — u,the above sct of cquations can be simplified
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pw = Al
2 4 dw
pw* + P+ Flaria L (5.5)
I ooy 4 dw dl'
(h. + F )p(b + FHw == + /\zi; = I

The symbols M, L, I denote integration constants, which are different from
A, B, C. The enthalpy /I is introduced in the energy equation. In this
notation, the direction of the velocity vector w is opposite to the direction
of the coordinate z. It should be emphasised that Eqs (5.5) are valid in the
coordinates moving together with the shock wave. In our case, the shock wave
is stationary, so U = 0.

It was proved by Gilbarg (1951) that there existed a unique solution of the
above system of equations describing a continuous transition from a uniform
statel at 2 = —oo to a different state 2 at & = +o00. With nonzero coefficients
of viscosity p and heat conductivity A. the transition takes place in the region
width of which depends on actual values of the mentioned coefficients. This
region is sometimes called a shock layer to distinguish it from the discontinuous
solution obtained for the shock wave in non-viscous and non-conducting flow.

Far away from the shock wave the flow is uniform and the derivatives d/dz
vanish. Hence, the shock relations are obtained

MWy = Prwg

prw? + Py = pywl 4+ Py (5.6)
w? w32
/ L = hy+ 2
Ay 5 2+ 3
where 1 and 2 denote the state at z = —oo and z = 400, respectively.

If we intend to adopt these equations for the flow of a two-phase homo-
geneous mixture we should allow for thermal nonequilibrium. It follows from
experimental measurements that the temperature of water Ty, does not change
considerably, while it may be expected that the temperature of vapour Ty
equals the saturation temperature

Ty = Ts(P) (5.7)

We assume that the heat flux in the energy equation is proportional to the
gradient of the vapour temperature only.
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It was pointed out by Bilicki et al. (1996h) and by Kardas (1994) that
the dissipation of mechanical encrgy in bubble flow was mainly due to entropy
production in the boundary laver around the vapour bubbles. The energy
dissipation due to the slip, which is significant inside the shock region, can be
taken into account by a corresponding increase in viscosity of the homogene-
ous two-phase mixture. Therefore, the coefficient of operative viscosity i can
be introduced, whose order of magnitude is estimated to be 10° + 105 times
higher than that of the coefflicient of dynamic viscosity for water (Bilicki et
al. (1996b)). Due to the presence of a temperature difference between the
phases inside the shock wave, a thermal boundary layer where additional dis-
sipation takes place develops around the vapour bubbles. This phenomenon
is accounted for in the homogeneous model by means of the operative heat
conductivity A. Its value is estimated to he 103 = 104 times higher than the
coefficient A for water (Kardas (1991)). Thus the system of Eqs (5.5) for the
homogeneous mixture takes the form

pw = A
, 4 _dw
pwﬁ+P+%ﬁ%i:L (5.8)
. (£
| 4 dw  ~d
(b + %w)/mv + S‘ﬂ«;“—“ + /\‘(ZV = K

The symbol w now denotes the barycentric velocity and P is the pressure,
common for both phases. The density of mixture p is calculated from

p=vpv+(1-9pL (5.9)

where ¢ denotes the void fraction. The conservation equations (5.8) are
augmented with the state equation

h=h(PpTL) (5.10)

Eqgs (5.8) are valid for the flow which is uniform and in equilibrium at an
infinite distance from the shock wave. The flow observed experimentally fulfils
these conditions at some distance from the shock region, so we expect that the
flow conditions on both sides of the shock wave should satisfy the relations
(5.6). The exemplary calculations were done to confirm the experimental
pressure profile shown in Fig.4. The comparison of measured flow conditions
at the low-pressure and high-pressure sides of the shock wave with the values
calculated from Iigs (5.6) is shown in the table below.
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Par _ Al the low-pressure side At the high-pressure side
arameter z [m}| Measured |Calculated |z [m] | Measured | Calculated
0.12135 1.54505
bar 0.6 0.0:302 0.8 1.5421
pressure [bai] LI +0.01
void fraction 0.4 |0.829+ 0.1, 0.8116 0.95 | = 0.015 0.0266
flow rate 0.2835 . 0.2835 .
3, - 0.2835 0.2835
[m?/min] 1+0.0005 +0.0005
velocity [m/s] 0475 - 31.2321 (0.775| - 6.0395
liquid
am 0.54 | 2040.5 20 08620405 2029
temperature [°C]|
[ vapour _
0.475 - 20 0.775 - 112.21
temperature [°C]

The calculated boundary conditions agree with measurements assuming
that the temperature of water Ty, across the shock region rises by 0.29 K. This
value is smaller than our measurement accuracy, so it was not detected, but it
is expected according to the Second Law of Thermodynamics. In order to solve
Eqs (5.8) it was therefore assumed that the distribution of temperature T,
may be approximated by a proper sine function. The calculated distributions
of pressure, void {raction and velocity ave shown in Fig.9 = Fig.11. These
results were obtained for the operative coefficients g = 248.35kg/m-s and
A =5373W/m-K,ie 2.5-10%and 9-103 times larger then the coefficients of
viscosity and heat conductivity for water, respectively. These multiplied values
are in agreement with the necd lor increased dissipation of the homogeneous
medium, which is, as already mentioned, due to the mechanical and thermal
nonequilibrium existing inside the shock wave.

6. Conclusions

The stationary shock wave was observed in the supercritical flow of a water-
vapour mixture. The location, strength and width of the shock wave remained
constant under fixed flow conditions. The width of the shock wave was about
0.2m and the pressure increase was 1.5bar in this region. Inside the shock
region sharp pressure pulses were detected. Their amplitude and frequency
depend on the location in the shock region. The observed maximum am-
plitude was as high as 70bars and the duration of an individual pulse was
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about 0.05ms. It is considered that the pressure pulses were generated by
the collapsing vapour bubbles.

The pressure pulses are short-time phenomena and the parameters of the
flow across the shock wave. averaged over a time interval greater than the du-
ration of the pulse, are constant. Thus, if the two-phase medium is considered
to be a homogeneous mixture, the shock wave can be regarded as a steady
phenomenon. With this simplification the strncture of the shock wave can
be described within the framework of theory originally derived to analyse the
structure of a normal shock wave in viscous and thermally conductive gases.
However, the shock width calculated in this manner agrees well with experi-
mental observations if the coefficients of viscosity and thermal conductivity
are assumed to be several orders of magnitude greater than those of water
or vapour. Values of the coefficients of viscosity and conductivity should be
assumed large enough so as to properly represent the energy dissipation in the
two-phase mixture which is due to the velocity and temperature gradients in
the boundary layer around the vapour bubbles.
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Nieréwnowaga termodynamiczna i mechaniczna w przeplywie mieszaniny
wody 1 pary z gwaltownym odparowaniem i falg uderzeniowsy

Streszczenie

Zawarto takze wyniki badai eksperymentalnych stacjonarnej fali uderzenio-
wej w przeplywie wody 1 pary, kitore obejmowaly pomiary parametrow przeplywu
wewnatrz obszaru zajmowanego przez fale. Dane doswiadczalne wykorzystano do
sprawdzenia zalozen modelu matematycznego.
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